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A symmetry broken phase of a system with internal degrees of freedom often features a complex order
parameter, which generates a rich variety of topological excitations and imposes topological constraints on their
interaction (topological influence); yet the very complexity of the order parameter makes it difficult to treat
topological excitations and topological influence systematically. To overcome this problem, we develop a general
method to calculate homotopy groups and derive decomposition formulas which express homotopy groups of
the order parameter manifold G/H in terms of those of the symmetry G of a system and those of the remaining
symmetry H of the state. By applying these formulas to general monopoles and three-dimensional skyrmions,
we show that their textures are obtained through substitution of the corresponding su(2) subalgebra for the su(2)
spin. We also show that a discrete symmetry of H is necessary for the presence of topological influence and find
topological influence on a skyrmion characterized by a non-Abelian permutation group of three elements in the
ground state of an SU(3)-Heisenberg model.
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I. INTRODUCTION

Topological excitations create nontrivial spatial struc-
tures of the order parameter that cannot be removed
by continuous deformation and are characterized by a
topological charge. When a system has internal de-
grees of freedom as in spinor Bose-Einstein condensates
(BECs) [1,2], p-wave superfluids and superconductors [3,4],
and multiorbital electron systems [5–9], a symmetry bro-
ken phase has a complex order parameter, accommo-
dating a rich variety of topological excitations. Exam-
ples include fractional and non-Abelian vortices [10–12],
skyrmions [13,14], Shankar skyrmions [15,16], and knot
solitons [16,17]. Several different types of topological ex-
citations have been experimentally observed in condensed
matter and ultracold atomic systems: skyrmions in chiral
magnets [18,19] and quantum Hall ferromagnets [20–22],
half-quantum vortices in p-wave superconductors [23] and
liquid 3He [24], and knot solitons in liquid crystals [25]. In
particular, ultracold atomic gases offer an ideal playground for
the study of topological excitations due to high controllability
of experimental parameters; here the controlled generations
of vortices [26–28], skyrmions [29,30], monopoles [31,32],
and a knot soliton [33] have been demonstrated. Yet another
remarkable feature arising from internal degrees of freedom is
the coexistence of different types of topological excitations,
which leads to nonconservation of individual topological
charges due to topological influence [34–36]. For example, the
A phase of superfluid 3He can simultaneously accommodate a
half-quantum vortex and a monopole. When the latter makes
a complete circuit of the former, the topological charge of the
latter changes its sign [37].

In mathematical parlance, the set of topological charges
constitutes a homotopy group of the order parameter manifold
(OPM) G/H , where G and H are the symmetry of a
system under consideration and the remaining symmetry of
its state, respectively. Topological charges classify textures of
an order parameter of topological excitations; two textures

can continuously transform into each other if and only if
their topological charges are the same. While the complexity
of G/H leads to the richness of topological excitations,
it makes the calculation of homotopy groups involved, the
understanding of textures highly nontrivial, and the analysis
of topological influence difficult. While topological influence
of a vortex on a topological excitation is known to be described
by the action of the fundamental group π1(G/H ) on the mth
homotopy group πm(G/H ) [34–36,38], where m is the spatial
dimension in which the texture of the topological excitation
varies, general conditions for its presence are yet to be clarified.
For topological influence on a monopole or a skyrmion, only
one type is known, in which the topological influence changes
the sign of the topological charge of a monopole and that of a
skyrmion [34,36,37,39,40].

In the present paper, we develop a general method to
calculate the homotopy group πm(G/H ) of the order pa-
rameter manifold G/H by deriving a formula which ex-
presses πm(G/H ) in terms of πm(G) and πm(H ). Since the
homotopy groups can be determined systematically for Lie
groups [41,42], πm(G/H ) and the corresponding textures can
be determined through the formula. By applying the derived
formulas for m = 2 and 3, we show that the texture of a general
monopole and that of a general three-dimensional skyrmion
are obtained from that of a monopole in a ferromagnet and
those of a knot soliton or a Shankar skyrmion, respectively,
through substitution of an appropriate su(2) subalgebra in G

for the su(2) spin. Consequently, their topological charges are
described by a set of integers distinguished by coroots [41,42],
which label different su(2) subalgebras in G.

We also obtain the necessary and sufficient condition for
the appearance of non-Abelian vortices and prove the absence
of topological influence on a three-dimensional skyrmion. We
find that possible types of topological influence on a monopole
or a skyrmion can be identified with the Weyl group [41,42]
of G, where only one type is shown to be allowed if G is
U(1), SU(2), SO(3), or their direct product. Moreover, we
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find topological influence on skyrmions characterized by a
non-Abelian permutation group of three elements in the ground
state of an SU(3)-Heisenberg model [7,8,43,44], in which three
types of skymions exchange their types through topological
influence.

This paper is organized as follows. In Sec. II, we derive
a decomposition formula for πm(G/H ) for an arbitrary
dimension m. In Sec. III, we derive simplified formulas for
πm(G/H ) with m = 1,2, and 3, and determine the texture of
a general monopole and that of a general three-dimensional
skyrmion. In Sec. IV, we analyze the conditions for the
presence of topological influence. In Sec. V, we discuss
the non-Abelian topological influence on a skyrmion. In
Sec. VI, we conclude this paper. Some mathematical proofs
are relegated to the appendices to avoid digressing from
the main subject. Appendix A proves a lemma on the third
homotopy group of a compact Lie group used in Sec. II.
Appendices B and C prove formulas for πm(G/H ) and
π2(G/H ), respectively, discussed in Sec. III. Appendix D
proves a theorem concerning topological influence on a general
topological excitation discussed in Sec. IV. Appendix E proves
a corollary concerning topological influence on a monopole or
a skyrmion discussed in Sec. IV.

II. DECOMPOSITION FORMULA FOR HOMOTOPY
GROUPS OF ORDER PARAMETER MANIFOLDS

A. Homotopy groups of a Lie group

We first introduce the Cartan canonical form and the
lattices of a compact Lie group, by means of which the
first, second, and third homotopy groups are determined.
When the parameter space of G is (not) finite, G is said
to be (non)compact. If G includes translational symmetry,
G is noncompact. However, for the calculation of homotopy
groups, G can be replaced without loss of generality by its
compact subgroup constituted from internal and rotational
symmetries through the following isomorphism:

πm(G) � πm(Gint × Grot) for ∀m � 1, (1)

where Gint and Grot are the internal and rotational symmetries
of G, respectively, and � denotes the group isomorphism.
The relation (1) can be proved as follows. The symmetry
G is, in general, constituted from an internal symmetry
Gint and a space symmetry Gspace, i.e., G = Gint × Gspace.
The former is compact, while the latter may not be. Since
πm[SO(d,1)] � πm[E(d)] � πm[SO(d)] and πm(Rd ) � 0 for
any m (� 1) and any spatial dimension d for the Lorentz group
SO(d,1), the Euclid group E(d) and the translation group Rd ,
the translational part of the symmetry does not contribute to
homotopy groups. Then, we have

πm(G) � πm(Gint) ⊕ πm(Gspace)

� πm(Gint) ⊕ πm(Grot)

� πm(Gint × Grot), (2)

where ⊕ denotes the direct sum. The first and third iso-
morphisms follow from the relation πm(X × Y ) � πm(X) ⊕
πm(Y ).

1. Cartan canonical form and lattices of a compact Lie group

The Lie algebra g of a compact Lie group G has a convenient
basis called the Cartan canonical form [45]

g = {{Hj

}r
j=1,

{
ER

α ,EI
α

}
α∈R+

}
, (3)

where ER
α := (Eα + E

†
α)/

√
2 and EI

α := (Eα − E
†
α)/(

√
2i)

are the real and imaginary parts of the raising operator
Eα , and r is the rank of g. The Cartan canonical form
(3) is a generalization of the basis of the su(2)-Lie algebra
{S3,{S1,S2}}, and decomposes the generators of the Lie
algebra into the off-diagonal matrices {ER

α ,EI
α}α∈R+ and the

diagonal ones (Cartan generators) {Hj }rj=1, where α is an
r-dimensional real vector known as a positive root and R+
denotes the entire set of positive roots. The positive roots are
introduced to distinguish different su(2) subalgebras in g. It
is known that any positive root can be expressed as a linear
combination of the r positive roots known as simple roots,
which we denote as {αj }rj=1. Two matrices Eα and E−α = E

†
α

are generalizations of the raising and lowering operators
S+ := S1 + iS2 and S− := S1 − iS2 of the su(2)-spin vector
S = (S1,S2,S3). Physically α describes the difference between
two quantum numbers. When E+α (E−α) is applied to a state,
its quantum number changes by α (−α), as S+ (S−) changes
the magnetic quantum number of a spin state by +1 (−1).

Together with the Cartan generator Hα defined by Hα :=∑r
j=1(α)jHj with α = ((α)1,(α)2, · · · ,(α)r )T ∈ Rr (T de-

notes the transpose of a vector), the two generators ER
α and EI

α

satisfy the following commutation relations:[
ER

α ,EI
α

] = i(α,α)Hα,[
Hα,ER

α

] = i(α,α)EI
α, (4)[

EI
α,Hα

] = i(α,α)ER
α .

We define the coroot αc as a dual vector to each positive root
α and the corresponding generator Hαc as follows:

αc := 2α

(α,α)
, (5)

Hαc :=
r∑

j=1

(αc)jHj . (6)

One can see from Eq. (4) that a triad Sα defined by

Sα := (Sα,1,Sα,2,Sα,3) :=
(

ER
α

(α,α)
,

EI
α

(α,α)
,
Hαc

2

)
(7)

forms an su(2) subalgebra satisfying the following commuta-
tion relations:

[Sα,a,Sα,b] = iεabcSα,c for a, b, c = 1, 2, 3, (8)

where εabc is the three-dimensional Levi-Civita symbol which
is a totally antisymmetric unit tensor of rank three. We refer
to Sα as a generalized su(2)-spin vector by analogy with the
ordinary su(2)-spin vector S [46]. The integral lattice LG and
the coroot lattice Lc

G of G are defined in terms of the Cartan
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generators of g and those of the coroots as follows:

LG := {Ht ∈ g| exp(2πiHt ) = e}, (9)

Lc
G :=

{∑
α

nαHαc ∈ g

∣∣∣∣∣nα ∈ Z,α ∈ R+

}
, (10)

where Ht ∈ g for t (∈ Rr ) is defined by Ht :=∑r
j=1 tjHj

with t = (t1,t2, · · · ,tr )T (T denotes the transpose of a vector).
Both LG and Lc

G form Abelian groups under the addition of
matrices.

Consider an example of g = su(3), which is generated by
the following nine generators:

SRG,1 = 1

2

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠, SRG,2 = 1

2

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠,

SRG,3 = 1

2

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠, SGB,1 = 1

2

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠,

SGB,2 = 1

2

⎛⎝0 0 0
0 0 −i

0 i 0

⎞⎠, SGB,3 = 1

2

⎛⎝0 0 0
0 1 0
0 0 −1

⎞⎠,

SBR,1 = 1

2

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠, SBR,2 = 1

2

⎛⎝ 0 0 i

0 0 0
−i 0 0

⎞⎠,

SBR,3 = 1

2

⎛⎝−1 0 0
0 0 0
0 0 1

⎞⎠. (11)

The corresponding Cartan canonical form is constituted from
the following three generalized su(2)-spin vectors

SRG = (SRG,1,SRG,2,SRG,3),

SGB = (SGB,1,SGB,2,SGB,3), (12)

SBR = (SBR,1,SBR,2,SBR,3).

Note that the three diagonal generators SRG,3, SGB,3, and SBR,3

are not linearly independent because SRG,3 + SGB,3 + SBR,3 =
0. Three root vectors αRG, αGB , and αBR corresponding to
generators SRG, SGB , and SBR are given by

αRG = (1, − 1,0), αGB = (0,1, − 1), αBR = (−1,0,1).

(13)

Since the lengths of these vectors are all
√

2, the corresponding
coroots αc

RG,αc
GB , and αc

BR are given from Eq. (5) by

αc
RG = αRG, αc

GB = αGB, αc
BR = αBR. (14)

From direct calculations using Eqs. (11), (13), and (14), one
can show that the integral lattice LSU(3) and the coroot lattice
Lc

SU(3) coincide and that they are isomorphic to the triangular
lattice (see Fig. 1):

LSU(3) = Lc
SU(3)

=
{ ∑

a=RG,GB,BR

maα
c
a

∣∣∣∣∣ma ∈ Z,
∑

a=RG,GB,BR

αc
a = 0

}
.

(15)

FIG. 1. Coroot lattice Lc
G of G = SU(3) generated by the three

coroots αc
RG,αc

GB , and αc
BR in Eq. (14). Since αc

RG + αc
GB + αc

BR = 0,
Lc

G is isomorphic to the triangular lattice. We take the system of
coordinates such that αc

RG = (1,0),αc
GB = (−1/2,

√
3/2), and αc

BR =
(−1/2, − √

3/2).

2. First, second, and third homotopy groups
of a compact Lie group

It is known that Lc
G is an Abelian subgroup of LG and that

the quotient group LG/Lc
G is isomorphic to π1(G) [41,42]:

π1(G) � LG/Lc
G. (16)

While LG describes all loops on G, Lc
G describes only those

loops on G that can continuously transform into a trivial one,
so the quotient space naturally gives π1(G). To be concrete,
let us consider an element Ht of LG corresponding to a loop
defined by

g1,n(φ) := exp(iφHt ) for φ ∈ [0,2π ]. (17)

The map g1,n indeed describes a loop on G, since g1,n(0) =
g1,n(2π ) = e from Eq. (9). The triviality of loops in Lc

G

can be checked by considering one of its generator Hαc and
the corresponding loop g1,d (φ) := exp (iφHαc ). This loop can
continuously transform into a trivial one through g

(2)
α (θ,φ)

defined by

g(2)
α (θ,φ) := e−iθSα,2 eiφSα,3 eiθSα,2 eiφSα,3 , (18)

where θ (∈ [0,π ]) is the parameter of the deformation. In fact,
we have

g(2)
α (θ = 0,φ) = eiφSα,3 eiφSα,3 = g1,d (φ), (19)

g(2)
α (θ = π,φ) = e−iπSα,2 eiφSα,3 eiπSα,2 eiφSα,3

= e−iφSα,3 eiφSα,3 = e, (20)

where the last equality in Eq. (19) follows from the definition
(7) of Sα,3, and the second line in Eq. (20) is derived from
e−iπSα,2Sα,3eiπSα,2 = −Sα,3. It is worthwhile to mention that
π1(G) is Abelian, which follows from the fact that LG is
Abelian and the fact that a quotient group of an Abelian group
is Abelian [47].

134520-3



SHO HIGASHIKAWA AND MASAHITO UEDA PHYSICAL REVIEW B 95, 134520 (2017)

FIG. 2. Schematic illustration of the symmetry transformation
g(3)

α (ψ,θ,φ) defined in Eq. (23). The red arrow indicates the
generalized su(2)-spin vector parallel to the unit vector r̂(θ,φ) :=
(sin θ cos φ, sin θ sin φ, cos θ ) and g(3)

α (ψ,θ,φ) describes the spin
rotation about r̂(θ,φ) through angle 2ψ .

The second homotopy group of a compact Lie group is
known to vanish identically [41,42,48]:

π2(G) � 0. (21)

We now discuss the third homotopy group. It is known that the
Lie algebra g of a compact Lie group G can be decomposed
into the direct sum of one-dimensional Lie algebras u(1) and
a set of compact simple Lie algebras {gi}ai=1 [42]:

g = u(1)a
′ ⊕

a⊕
i=1

gi , (22)

where a and a′ are the integers which are uniquely determined
from g, and u(1) is the Lie algebra of U(1), the unitary group
of degree one. Let αi , αc

i , and Sαi
be one of the root vectors in

gi with the longest length, the corresponding coroot, and the
corresponding generalized su(2)-spin vector defined in Eq. (7),
respectively. We define g

(3)
αi

: S3 → G for Sαi
by

g(3)
αi

(ψ,θ,φ) := exp
[
2iψ Sαi

· r̂(θ,φ)
]
, (23)

where r̂(θ,φ) is a unit vector on S2 defined by r̂(θ,φ) :=
(sin θ cos φ, sin θ sin φ, cos θ ), with ψ,θ , and φ being the polar
coordinates of the three-dimensional sphere S3:

S3 = {(sin ψ sin θ cos φ, sin ψ sin θ sin φ, sin ψ cos θ, cos ψ)

|ψ ∈ [0,π ],θ ∈ [0,π ],φ ∈ [0,2π ]}. (24)

Since Sαi
· r̂(θ,φ) is the projection of the generalized su(2)-

spin vector in the direction of r̂(θ,φ), g
(3)
αi

(ψ,θ,φ) describes
the rotation of Sαi

about r̂(θ,φ) through angle 2ψ (see Fig. 2).
For example, g

(3)
αi

(ψ,θ,φ) for G = SO(3) describes a rotation
in three dimensions about a vector r̂(θ,φ) through angle 2ψ .
Let [f ]M be the homotopy class of f on a manifold M , which
is the set of those maps to M that can continuously transform
into f , where f is referred to as a representative element.
Then, the following lemma holds.

Lemma 1. The third homotopy group of G is generated by
the set {[g(3)

αi
]G}a

i=1:

π3(G) �
{

a∑
i=1

mi

[
g(3)

αi

]
G

∣∣∣∣∣mi ∈ Z

}
� Za, (25)

where we denote the product on π3(G) as the sum since π3(G)
is Abelian.

The proof of Lemma 1 is given in Appendix A. We note that
the homotopy class [g(3)

αi
]G does not depend on the choice of the

root vector αi since g
(3)
αi

and g
(3)
α′

i
can continuously transform

into each other if the corresponding root vectors αi and α′
i in

gi both have the longest length [49].

B. Homotopy groups of the order parameter manifold G/H

1. Two types of textures on G/H

Let Dm be the surface and the inner region of an m-
dimensional sphere Sm with radius π :

Dm := {x ∈ Rm|‖x‖ � π}, (26)

and consider a topological excitation without a defect charac-
terized by πm(G/H ), such as two-dimensional (m = 2) and
three-dimensional (m = 3) skyrmions. Assuming that it is
localized in Dm, we may regard its texture O(x) as a map
from Dm to the G/H subject to the boundary condition

O(x) = O0 for ‖x‖ = π, (27)

where O0 is a fixed value of the order parameter called the
reference order parameter and ‖x‖ denotes the modulus of x.
We note that a map O : Dm → G/H subject to the boundary
condition (27) can represent a texture of a topological
excitation with a defect through the replacement of Dm by
an m-dimensional sphere Sm enclosing the defect. A crucial
point for obtaining πm(G/H ) is to express the texture O(x)
in terms of a symmetry transformation g(x) depending on the
space coordinate x as follows:

O(x) = g(x)O0, (28)

where gO0 for g (∈ G) denotes the action of g on O0. The
expression (28) relates a texture O(x) on G/H to a texture g(x)
on G and πm(G/H ) to πm(G) and πm(H ). Although O(x) is
continuous on Dm, g(x) may not be continuous because g(x)
and g(x)h(x) for any discontinuous function h with h(x) ∈ H

give the same texture O(x) in Eq. (28). As we will see below,
two cases arise depending on whether or not g(x) is continuous
on the entire region of Dm.

Given a subgroup H of G, we can define the inclusion map
i : H → G by i(h) := h [see Fig. 3(a)]. Then, a texture on H ,
i.e., a map g from Dm to H , can also be regarded as a texture on
G, and we define a map i∗m : πm(H ) → πm(G) between the
homotopy groups as i∗m([f ]H ) = [i ◦ f ]G, where ◦ denotes
the composition of two maps. We construct textures G/H in
two ways from two groups Coker i∗m and Ker i∗m−1 which are
defined as follows:

Coker i∗m := Coker{i∗m : πm(H ) → πm(G)}
:= πm(G)

Im{i∗m : πm(H ) → πm(G)} , (29)
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FIG. 3. (a) Schematic illustration of an inclusion map i : H →
G. Given a map g from Dm to H , the composition i ◦ g gives a
map from Dm to G, where Dm is an m-dimensional disk defined in
(26). (b) Schematic illustration of the cokernel Coker i∗m, the kernel
Ker i∗m, and the image Im i∗m of i∗,m. The kernel Ker i∗m−1 is a
subgroup of πm−1(H ), whose elements are mapped to the identity
element e of πm−1(G). The image Im i∗m is a subgroup of πm(G),
whose elements are obtained through i∗m. The cokernel Coker i∗m is
the quotient group πm(G)/Im i∗m, representing the elements in πm(G)
that cannot be obtained through i∗m.

Ker i∗m−1 := Ker{i∗m−1 : πm−1(H ) → πm−1(G)}
:= {O ∈ πm−1(H )|i∗m−1(O) = e}, (30)

where Im F := {F (g)|g ∈ G} and Coker F for F : G → G′
is defined by Coker F := G′/Im F [see Fig. 3(b)]. An element
of Ker i∗m−1 represents a nontrivial texture on H that is trivial
as a texture on G. While an element of Im i∗m represents a
nontrivial texture on G that can be represented as a texture
on H , that of Coker i∗m represents a nontrivial texture on G

that cannot be represented as a texture on H . We denote the
element of Coker i∗m corresponding to a ∈ πm(G) by [a] and
call a the representative element of [a].

Let us construct the texture O[a] on G/H from [a] ∈
Coker i∗m. Since a is a texture of G, we can define the texture
O[a] through the action of a on O0:

O[a](x) := a(x)O0 for x ∈ Dm. (31)

Equation (31) implies that a nontrivial texture on G/H can be
obtained from a nontrivial texture on G [see Fig. 4(a)]. From
the boundary condition for a, i.e.,

a(x) = e for ‖x‖ = π, (32)

we see that O[a](x) satisfies the boundary condition (27). It
is worth mentioning two things. First, Coker i∗m is Abelian
for m � 1 because the numerator on the right-hand side of
Eq. (29), i.e., πm(G), is Abelian. This follows from the fact
that π1(G) is Abelian and from the commutativity of higher-
dimensional homotopy groups [50]. Second, we must consider
the quotient space Coker i∗m instead of πm(G), which is the
numerator on the right-hand side of Eq. (29), because the
denominator Im i∗m gives a uniform texture through Eq. (31).

FIG. 4. (a) Construction of the texture O [a] from the map a

defined in Eq. (31) for m = 2, where a is a map from a two-
dimensional disk D2 to G that maps the boundary (red dashed line)
of D2 to the identity element e. The texture O [a] is a map from D2 to
G/H that maps the boundary (blue dotted line) of D2 to the reference
order parameter O0. (b) Construction of the texture Ob from the map
b defined in Eq. (37) for m = 2. Here b is a map from a circle S1 to
H and bs is a continuous deformation from b to the uniform texture e

subject to the condition (36), where the points on the red dashed line
are mapped to e. The texture Ob is a map from D2 to G/H which
maps the points on the blue dotted line to O0.

Indeed, for ah := i∗m(aH ) ∈ Im i∗m, we have

O[ah](x) := ah(x)O0 = [i(aH )](x)O0

= aH (x)O0 = O0 for ∀x ∈ Dm, (33)

where we use the invariance of O0 under the transformation
in H in obtaining the last equality. The simplest example of
the construction (31) is an integer-quantum vortex in a scalar
BEC. Let � be the mean-field wave function of the condensate.
Then, the texture �(φ) around a vortex with a unit winding
number is given by

�(φ) = exp(iφ)�0, (34)

where φ and �0 are the azimuth angle around the vortex and
the value of the mean-field wave function at φ = 0. Thus the
nontrivial texture �(φ) of the vortex is expressed in terms
of the nontrivial winding exp(iφ) on the symmetry group
G = U(1). Another example of the construction (31) is a
three-dimensional skyrmion in a ferromagnet called a knot
soliton [51], whose texture M(r,θ,φ) of the spin is written as

M(r,θ,φ) := exp [2iψ(r)S · r̂(θ,mφ)]M0, (35)

where (r,θ,φ) is the three-dimensional polar coordinates and
m ∈ Z denotes the topological charge of the knot soliton. Here,
M0 := (0,0,1) and ψ(r) is a function that satisfies ψ(0) = 0
and ψ(∞) = π . One can see from Eq. (23) that the nontrivial
texture (35) is expressed in terms of a nontrivial winding
exp [2iψ(r)S · r̂(θ,φ)] on a symmetry group SO(3) of spin
rotation.

To construct the texture Ob on G/H from b ∈ Ker i∗m−1, we
regard b as a map from Sm−1. Since b is a trivial texture on G

from its definition (30), there exists a continuous deformation
bs from bs=0 = b to the uniform texture bs=π = e subject to
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the boundary condition

bs(x̂0) = O0 for ∀s ∈ [0,π ], (36)

where x̂0 is a point on Sm−1 and s is the parameter of the
deformation. Hence we define Ob as

Ob(x) := bs=‖x‖(x̂)O0 for x ∈ Dm, (37)

where x̂ is the unit vector parallel to x [see Fig. 4(b)]. We note
that bs=‖x‖(x̂) in the construction (37) is not continuous at the
origin x = 0. From the comparison of Eq. (28) with Eq. (31)
[Eq. (37)], a texture on G/H is expressed by a texture on G

that is (not) continuous on Dm, and is described by an element
of Coker i∗m (Ker i∗m−1). Examples of the construction (37)
include a half-vortex in a uniaxial nematic liquid crystal and a
monopole in a ferromagnet. The order parameter of a uniaxial
nematic liquid crystal is the orientation d of molecules. The
texture d(φ) around a half-vortex is given by

d(φ) := exp(φL2/2)d0, (38)

where d0 := (0,0,1), and φ and L2 are the azimuth angle
around the vortex and a generator of rotation about the y

axis, respectively. The nontrivial texture d(φ) is expressed not
by a loop on G = SO(3) but by a path from e to exp(πL2)
on SO(3). Due to the discrete π -rotational symmetry d →
−d, the start point d0 and the end point exp(πL2)d0 = −d0

should be identified, where the texture (38) is continuous at
φ = 0 (φ = 2π ). The texture M(θ,φ) of a monopole in a
ferromagnet is described by a hedgehog configuration of the
spin, i.e., M(θ,φ) = r̂(θ,φ), which can be rewritten in terms
of the su(2)-spin vector S as follows:

M(θ,φ) := exp(iφS3) exp(iθS2)M0, (39)

where θ and φ denote the polar angle and the azimuth
angle around the monopole, respectively, M0 := (0,0,1),
and S2 (S3) is a generator of the rotation about the y

axis (z axis). As shown in Fig. 5, the hedgehog texture
is obtained by the successive applications of spin rotation
exp(iθS2) about the y axis followed by spin rotation exp(iφS3)
about the z axis. Under continuous deformation Mu(θ,φ) =
exp(−iuθS2) exp(iφS3) exp(iθS2)M0, with u (∈ [0,1]) being
the parameter of the deformation, Mu=0(θ,φ) = M(θ,φ)
transforms into

Mu=1(θ,φ) = exp(−iθS2) exp(iφS3) exp(iθS2)M0

= exp(−iθS2) exp(iφS3) exp(iθS2) exp(iφS3)M0

= g(2)(θ,φ)M0, (40)

where in the second equality we use the invariance of
M0 under the rotation about the z axis, and g(2)(θ,φ) :=
exp(−iθS2) exp(iφS3) exp(iθS2) exp(iφS3) is the map (18)
with Sα replaced by S. The expression g(2)(θ,φ)M0 gives the
texture of a monopole in the form of Eq. (28). Indeed, since

FIG. 5. Schematic illustration of a monopole in a ferromagnet
with topological charge m = +1. Each arrow indicates the direction
of the spin. The texture of the monopole is described by a
hedgehog configuration of the spin, which is obtained from successive
applications of spin rotation exp(iθS2) about the y axis through angle
θ followed by spin rotation exp(iφS3) about the z axis through angle φ,
where θ and φ are the polar angle and the azimuth angle, respectively.

we have

g(2)(θ = 0,φ) = exp(2iφS3), (41)

g(2)(θ = π,φ) = e−iπS2 eiφS3 eiπS2 eiφS3

= e−iφS3 eiφS3 = e, (42)

g(2)(θ,φ = 0) = e, (43)

where g(2)(θ,φ) is a continuous deformation from the loop
g(2)(θ = 0,φ) = exp(2iφS3) on H = SO(2) to the trivial loop
g(2)(θ = π,φ) = e subject to the boundary condition (36).

Finally, we define the map

f : Ker i∗m−1 × Ker i∗m−1 → Coker i∗m, (44)

which is used in Theorem 1 below. As shown in Sec. III, f

vanishes for m = 2 and 3, so long as we focus on the first,
second, and third homotopy groups. We therefore first define
f for m = 1 and then define it for an arbitrary dimension m.
For m = 1, we have the following isomorphism:

Ker i0∗ � π0(H ∩ G0), (45)

where G0 is a Lie group constituted from the connected
component in G. This follows from the fact that [h] ∈ Ker i0∗
implies that h, a representative element of [h], is connected
to e by a path on G, which implies h ∈ G0, and from the
fact that [h] ∈ π0(H ∩ G0) describes a common element of
π0(H ) and π0(G). Let [σ ] and [τ ] be elements of π0(H ∩ G0)
with representative elements σ (∈ H ∩ G0) and τ (∈ H ∩ G0),
respectively. Since they are connected with the identity
element e, there exist paths γσ ,γτ , and γστ from σ,τ , and
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FIG. 6. Schematic illustration of the map f defined in Eq. (46).
The entire region shows the connected component G0 of G and the
white regions represent the connected components of H , where H0

shows the connected component including the identity element e,
and σ , τ , and στ denote the elements of G0 in different connected
components in H . The map f is obtained from the composition
γσ γτ (γστ )−1 of the three paths γσ , γτ , and γστ .

στ , respectively, to e. Then, the composition γσ γτ (γστ )−1 is a
loop from e to itself (see Fig. 6). We define f as

f ([σ ],[τ ]) := γσγτ (γστ )−1O0. (46)

Let b and b′ be elements of Ker i∗m−1. Then, there exist
continuous deformations bs , b′

s , and (bb′)s from b, b′, and bb′,
respectively, to a trivial map subject to the boundary condition
(36). We fix the parameter s, consider bs and b′

s to be elements
of πm−1(G), and denote their composition as bs ◦ b′

s . Then, we
define f (b,b′) by

[f (b,b′)](x) := [f̃ (b,b′)](x)O0, (47)

[f̃ (b,b′)](x)

:=
{

(bb′)s=π−2‖x‖(x̂) for 0 � ‖x‖ � π
2 ;

(bs=2‖x‖−π ◦ b′
s=2‖x‖−π )(x̂) for π

2 � ‖x‖ � π.

(48)

Since f̃ satisfies the boundary condition (32), which gives
f̃ ∈ πm(G), f is indeed a map to Coker i∗m. The map f does
not depend on the choices of the representative elements of
b and b′. Let B and B̄ be two representative elements of b,
and Bs (B̄s) be the continuous deformations from B (B̄) to
the trivial homotopy class. Since B and B̄ transform into each
other through continuous deformation on H , so do Bs and B̄s .
Therefore the map f in Eq. (48) defined from B and Bs and that
defined from B̄ and B̄s transform into each other continuously.

2. A decomposition formula for πm(G/H)

Let us define the product ×f on the product set Coker i∗m ×
Ker i∗m−1 by

([a],b) ×f ([a′],b′) := ([a] + [a′] + f (b,b′),bb′), (49)

where f : Ker i∗m−1 × Ker i∗m−1 → Coker i∗m is the map
defined in Eq. (48) and we denote the product in Coker i∗m

as the sum since Coker i∗m is Abelian. Then the following
theorem holds.

Theorem 1. Under the product defined in Eq. (49),
Coker i∗m × Ker i∗m−1 becomes a group. This group denoted
by Coker i∗m ×f Ker i∗m−1 is isomorphic to the mth homotopy
group of G/H :

πm(G/H ) � Coker i∗m ×f Ker i∗m−1. (50)

Any topological charge ([a],b) in πm(G/H ) can be uniquely
decomposed into the product of an element of Coker i∗m and
that of Ker i∗m−1:

([a],b) = ([a],e) ×f (e,b). (51)

Furthermore, the texture O[a] (Ob) of a topological excitation
with topological charge ([a],e) ((e,b)) is given by Eq. (31)
[Eq. (37)].

The proof of Theorem 1 is given in Appendix B. Equation
(50) implies that there are two distinct types of topological
excitations expressed by either Coker i∗m or Ker i∗m−1. One
can see from Eq. (51) that any topological excitation can be
written as a composition of these two types. The presence
of f in Eq. (49) implies that these two types of topological
excitations are, in general, not independent: the composition of
two topological excitations described by Ker i∗m−1 can produce
a topological excitation described by Coker i∗m, because we
have

(e,b) ×f (e,b′) = (f (b,b′),bb′)

= (f (b,b′),e) ×f (e,bb′), (52)

and f (b,b′) �= e in general. The group Coker i∗m ×f Ker i∗m−1

is referred to as the group extension of Coker i∗m by Ker i∗m−1

with the factor set f [47] (see Appendix B 1 or Ref. [47] for
detail).

III. FORMULAS FOR HOMOTOPY GROUPS FOR
LOW-DIMENSIONAL TOPOLOGICAL EXCITATIONS

A. First homotopy group: vortices

Since Coker i∗1 is a quotient group of π1(G) from Eq. (29)
and π1(G) is a quotient group of LG from Eq. (9), we write an
element of Coker i∗1 as [Ht ] where Ht ∈ LG. Let us define the
product ×f on Coker i∗1 × π0(H ∩ G0) by

([Ht ],[σ ]) ×f ([Hs],[τ ])

:= ([Ht ] + [Hs] + f ([σ ],[τ ]),[σ ][τ ]), (53)

where f is the map defined in Eq. (46). Then the following
corollary holds.

Corollary 1. Under the product defined in Eq. (53),
Coker i∗1 ×f π0(H ∩ G0) is isomorphic to the first homotopy
group of G/H :

π1(G/H ) � Coker i∗1 ×f π0(H ∩ G0). (54)

Any topological charge ([Ht ],[σ ]) in π1(G/H ) can be
uniquely decomposed into the product of an element of
Coker i∗1 and that of π0(H ∩ G0):

([Ht ],[σ ]) = ([Ht ],e) ×f (e,[σ ]). (55)

Let φ and O0 be the azimuth angle around a vortex and the ref-
erence order parameter, respectively. The texture O([Ht ],e)(φ)
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of a vortex with topological charge ([Ht ],e) is given by

O([Ht ],e)(φ) = exp(iφHt )O0, (56)

while the texture O(e,[σ ])(φ) of a vortex with topological charge
(e,[σ ]) is given by

O(e,[σ ])(φ) = γσ (φ)O0, (57)

where γσ (φ) is a path from σ (∈ H ∩ G0) to the identity
element e.

Proof. Due to the isomorphism Ker i0∗ � π0(H ∩ G0) in
Eq. (45), we have Eqs. (54) and (55) from Eqs. (50) and (51),
respectively. Then, it is sufficient to show Eqs. (56) and (57)
to prove Corollary 1. From Eq. (31), the texture of a vortex
with topological charge ([Ht ],e) is given by O([Ht ],e)(φ) =
a(φ)O0, where a(φ) is a loop on G. From Eqs. (16) and (17),
we have a(φ) = exp(iφHt ) and hence Eq. (56). For a vortex
with topological charge (e,[σ ]), Eq. (37) can be expressed
as O(e,[σ ])(φ) = bφO0, where b is a path from bs=0 = σ to
bs=π = e. Defining a path γσ by γσ (φ) := bs=φ/2, we obtain
Eq. (57), which completes the proof of Corollary 1.

Equation (54) implies that there are two types of vortices
expressed by either Coker i∗1 or π0(H ∩ G0), and it follows
from Eq. (55) that any vortex can be written as their
composition. Examples of the former include an integer-
quantum vortex (34), which is obtained from Eq. (57) through
substitution of exp(iφHt ) and O([Ht ],e)(φ) with exp(iφ) and
�(φ), respectively. The latter term π0(H ∩ G0) describes a
vortex associated with a discrete symmetry of the state such as
a half-vortex (38) in a uniaxial nematic liquid crystal, where
the discrete symmetry is the π -rotational symmetry of the
orientation d. One can reproduce from Eq. (54) the formula
π1(G/H ) � π0(H̃ ) based on the lift method [38], where G

and H are lifted to a simply connected group G̃ and the
corresponding subgroup H̃ , respectively. Since π0(G̃) � 0 and
π1(G̃) � 0, we have Coker i∗1 � 0 and π0(H̃ ∩ G̃0) � π0(H̃ ).
We thus obtain Eq. (54). In contrast to the lift method, we
find the distinction between vortices represented by Coker i∗1
and π0(H ∩ G0). In Sec. IV A, this distinction is shown to
be crucial since only the latter can be a cause of nontrivial
topological influence.

B. Second homotopy group: monopoles and skyrmions

We generalize the texture (39) of a monopole in a ferromag-
net through the replacement of S by a generalized su(2)-spin
vector. Provided that Sα,3 is an unbroken generator, we define
the mapping Oαc

: S2 → G/H for a coroot αc by

Oαc

(θ,φ) := g(2)
α (θ,φ)O0, (58)

g(2)
α (θ,φ) := exp(iφSα,3) exp(iθSα,2). (59)

Comparing Eqs. (58) and (59) with Eq. (39), we find
that Eq. (58) describes the hedgehog configuration of the
generalized su(2)-spin vector Sα . More precisely, Oαc

(θ,φ)
is invariant under spin rotations generated by the generalized

su(2)-spin vector parallel to r̂(θ,φ):

exp [iψ Sα · r̂(θ,φ)]Oαc

(θ,φ) = Oαc

(θ,φ) for ∀ψ ∈ R.

(60)

This follows from the assumption that O0 is in-
variant under unitary transformations generated by
Sα,3 and from the decomposition exp [iψ Sα · r̂(θ,φ)] =
g

(2)
α (θ,φ)eiψSα,3 [g(2)

α (θ,φ)]
†
, which is derived directly from the

commutation relations (8).
The following Corollary 2 shows that the topological charge

and the texture of a general monopole are described by coroots
and the hedgehog configuration of the generalized su(2)-spin
vector, respectively. Reflecting the fact that a general compact
Lie algebra includes more than one su(2)-Lie algebra in
contrast to su(2), the topological charge should be described
by a set of coroots. The connection with the coroots and the
generalized su(2)-spin vectors are pointed out in Refs. [52,53],
where non-Abelian gauge theories are considered and H is
assumed to include a maximal Abelian subgroup of G [41,42].
We here generalize their results to arbitrary systems with
arbitrary patterns of symmetry breaking.

Corollary 2. Let LH and Lc
H (Lc

G) be the integral lattice of
H and the coroot lattice of H (G), respectively. Then, Lc

H is
an Abelian subgroup of LH ∩ Lc

G, and the quotient space of
LH ∩ Lc

G by Lc
H is isomorphic to π2(G/H ):

π2(G/H ) � (LH ∩ Lc
G

)
/Lc

H . (61)

Therefore the topological charge n of a monopole can be
expressed in terms of the coroots corresponding to the simple
roots as

n =
r∑

j=1

mjα
c
j , (62)

where {mj }rj=1 is the set of integers, and its texture O(θ,φ) is
given by

O(θ,φ) = g(2)
α1

(θ,m1φ)g(2)
α2

(θ,m2φ) · · · g(2)
αr

(θ,mrφ)O0.

(63)

The proof of Corollary 2 is given in Appendix C. One
can reproduce from Eq. (61) the formula π2(G/H ) � π1(H̃ )
based on the lift method [38]. Indeed, we have π1(G̃) � 0
and hence LG̃ � Lc

G̃
. Then, we obtain π2(G/H ) � π1(H̃ ).

However, the texture of each topological excitation is described
by a deformable loop on G̃; in Ref. [38] the existence of
the texture is shown but no explicit form is given. We here
explicitly determine the texture as shown in Eq. (63).

C. Third homotopy group: three-dimensional skyrmions

Two prototypical examples of three-dimensional skyrmions
are a Shankar skyrmion and a knot soliton, which are charac-
terized by the homotopy groups π3(S3) � Z and π3(S2) � Z,
respectively. Both of their textures are expressed in terms of
the su(2)-spin vector S as

O(ψ,θ,φ) = exp [2iψ S · r̂(θ,mφ)]O0, (64)

where (ψ,θ,φ) is the polar coordinates (24) on S3 and m ∈
Z denotes the topological charge of the three-dimensional
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TABLE I. Two types of topological excitations and their exam-
ples. Coker i∗m and Ker i∗m−1 are the cokernel of i∗m and the kernel of
i∗m−1 defined in Eqs. (29) and (30), respectively. The entry “absent”
means the absence of examples.

Coker i∗m Ker i∗m−1

m = 1 integer-quantum vortex half-vortex
m = 2 absent monopole
m = 3 knot soliton absent

Shanker skyrmion

skyrmion. This unified description is based on the iso-
morphism π3(S3) � π3(S2) derived from the Hopf fibra-
tion [41,50,54]. When all of the generators in S are broken,
Eq. (64) describes a Shankar skyrmion [2,55]; otherwise it
describes a knot soliton [33,56]. We generalize the texture (64)
through the replacement of S by Sα , and define the mapping
Oαc

: S3 → G/H for coroot αc by

Oαc

(ψ,θ,φ) := g(3)
α (ψ,θ,φ)O0, (65)

g(3)
α (ψ,θ,φ) := exp [2iψ Sα · r̂(θ,φ)], (66)

where g
(3)
α is defined in Eq. (23).

The following two corollaries show that a general three-
dimensional skyrmion may be regarded as the composition of
several different types of three-dimensional skyrmions whose
topological charges and textures are described by coroots and
the corresponding textures (65), respectively.

Corollary 3. The third homotopy group π3(G/H ) is given
as follows:

π3(G/H ) � Coker{i∗3 : π3(H ) → π3(G)}. (67)

Proof. Since any subgroup H of a compact Lie group G is
compact, π2(H ) vanishes. Therefore we obtain Ker i∗2 � 0 and
hence Eq. (67) from Theorem 1, which completes the proof of
Corollary 3.

We next analyze a topological charge and a texture. Let αc
i

be a coroot of the Lie algebra gi defined in Eq. (22). Since
the numerator π3(G) of Eq. (67) is generated by {[g(3)

αc
i
]}a

i=1
from Lemma 1, the quotient space π3(G/H ) is generated by
{[Oαc

i ]G/H }ā
i=1 for a suitable choice of the subset {αk}āk=1 of

{αi}ai=1. Thus we obtain the following corollary.
Corollary 4. The topological charge n of a three-

dimensional skyrmion can be written in terms of coroots as

n =
ā∑

k=1

mk

[
αc

k

]
, (68)

where {mk}rk=1 is a set of integers and [αc] represents the
topological charge of the texture Oαc

defined in Eq. (65). The
results of this section are summarized in Table I.

IV. GENERAL CONDITIONS FOR THE PRESENCE OF
TOPOLOGICAL INFLUENCE

A. Topological influence on a general topological excitation

When a topological excitation with topological charge
n ∈ πm(G/H ) makes a complete circuit of a vortex with

TABLE II. Topological influence in four combinations of topo-
logical excitations and vortices. Here πm(G/H ) and π0(H ∩ G0)
are the mth and zeroth homotopy groups of the order parameter
manifold G/H and H ∩ G0, respectively; i∗m : πm(H ) → πm(G) is a
homomorphism induced by the inclusion map i : H → G; Coker i∗m

and Ker i∗m−1 are the cokernel of i∗m and the kernel of i∗m−1 defined in
Eqs. (29) and (30), respectively. The entry “may appear” (“absent”)
means that topological influence may exist (does not exist).

topological excitation
πm(G/H )

Coker i∗m Ker i∗m−1

vortex Coker i∗
1 absent absent

π1(G/H ) π0(H ∩ G0) absent may appear

topological charge l ∈ π1(G/H ), the resulting topological
charge λl

m(n) is given by the action of l on n, where the
corresponding texture Oλl

m(n)(x) is defined as follows [36,57]:

Oλl
m(n)(x) :=

{
On(2x) for 0 � ‖x‖ � π

2 ;
Ol(4‖x‖ − 2π ) for π

2 � ‖x‖ � π,
(69)

where x ∈ Dm and On : Dm → G/H (Ol : [0,2π ] → G/H )
is the texture of a topological excitation (vortex) with topo-
logical charge n (l). We can express the topological charges n

and l as n = ([a],b) and l = ([Ht ],[σ ]) from Theorem 1 and
Corollary 1, respectively, Then, the following theorem holds.

Theorem 2. The topological charge λl
m(n) is given by

λl
m(n) = ([a],σ−1bσ ), (70)

where the homotopy class σ−1bσ is defined as [σ−1bσ ](x) :=
σ−1b(x)σO0 for x ∈ Dm−1.

The proof of Theorem 2 is given in Appendix D. The
result of Theorem 2 is summarized in Table II. As shown
in Table II, only vortices characterized by discrete symmetries
can have nontrivial topological influence. To understand this,
let us consider a situation in which a topological excitation
with texture O(x) makes a complete circuit of a vortex with
texture O(e,[σ ])(φ) = γσ (φ)O0, where γσ (φ)σ−1 describes a
path from e to σ−1. When the former goes around the latter by
angle φ, it undergoes a nontrivial texture produced by the latter,
changing its texture from O(x) to γσ (φ)σ−1O(x). The final
texture is given by σ−1O(x). A crucial observation here is that
the final texture σ−1O(x), in general, does not coincide with
the initial one O(x). On the other hand, when the topological
excitation goes around a vortex characterized by Coker i∗1 by
angle φ, its texture changes from O(x) to exp(iφHt )O(x).
Therefore the initial and final textures coincide because we
have exp(2πiHt ) = e from Eq. (9).

B. Topological influence on low-dimensional
topological excitations

1. Topological influence on a vortex

The necessary and sufficient condition for the presence
of topological influence on a vortex is the non-Abelianness
of the first homotopy group [35]. It is known that non-
Abelian vortices behave differently from Abelian ones in the
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collision dynamics [58–60], quantum turbulance [61], and the
coarsening dynamics [62–64] due to the tangling between
vortices. However, the conditions for their appearances are yet
to be understood from a unified point of view. The following
corollary shows that their presence is solely determined by
discrete symmetries, where the non-Abelian property is shown
to emerge only between pairs of vortices characterized by
π0(H ∩ G0).

Corollary 4. The first homotopy group π1(G/H ) is Abelian
if and only if π0(H ∩ G0) is Abelian and f defined in Eq. (46)
satisfies

f ([σ ],[τ ]) = f ([τ ],[σ ]) for ∀[σ ],[τ ] ∈ π0(H ∩ G0). (71)

Proof. Comparing the following two equations:

([a],[σ ]) ×f ([b],[τ ]) = ([a] + [b] + f ([σ ],[τ ]),[σ ][τ ]),

([a],[τ ]) ×f ([a],[σ ]) = ([a] + [b] + f ([τ ],[σ ]),[τ ][σ ]),

(72)

we find that π1(G/H ) is Abelian if and only if

[σ ][τ ] = [τ ][σ ];

f ([σ ],[τ ]) = f ([τ ],[σ ])
for ∀[σ ],[τ ] ∈ π0(H ∩ G0).

(73)

The first equation in Eq. (73) implies that π0(H ∩ G0) is
Abelian and we have Eq. (71) from the second equation of
Eq. (73), which completes the proof of Corollary 5.

2. Topological influence on a monopole, a skyrmion, and a
three-dimensional skyrmion

Since one topological charge changes into another
due to topological influence, λl

2 is an automorphism on
π2(G/H ) [38,57], i.e., a one-to-one map from π2(G/H )
to itself satisfying the homomorphic relation λl

2(nn′) =
λl

2(n)λl
2(n′). Therefore topological influence is characterized

by the action of the automorphism group G2 on π2(G/H )
defined by

G2 := {λl
2

∣∣l ∈ π1(G/H )
}
. (74)

From Corollary 2, π2(G/H ) is described by a coroot lattice Lc
G.

Let us define the Weyl reflection wα : Lc
G → Lc

G for α ∈ R+
by

wα(Ht ) := Ht ′ , t ′ := t − 2(α,t)
(α,α)

α, (75)

where wα describes the reflection across the plane perpendicu-
lar to α. It is known that wα is an automorphism of Lc

G [41,42].
The Weyl group WG of G is defined as the automorphism group
of Lc

G generated by the Weyl reflections:

WG := Gen{wα|α ∈ R+}, (76)

where Gen S for a set S is defined as the group generated by
the elements of S. It is instructive to consider an example
of g = su(2). Since g is constituted from only one su(2)-
subalgebra, its coroot lattice is a one-dimensional lattice Lc

G =
{mHαc |m ∈ Z}. The Weyl reflection acts on Lc

G as its inver-
sion: wα(mHαc ) = −mHαc ; thus, WG � Z2. More generally,
the Weyl group for g = su(N ) is given by WG � SN , where
SN denotes the permutation group of N elements [41,42].

For g = u(1), WG � 0, since u(1) does not have a coroot.
From Corollary 2, we write an element of π2(G/H ) � (LH ∩
Lc

G)/LH by Ht + Lc
H . The following corollary shows that

topological influence is described by a Weyl reflection (75)
and that possible forms of the automorphism group (74) are
restricted from the Weyl group WG.

Corollary 6. For each discrete symmetry [σ ] ∈ π0(H ∩
G0), there exists a Weyl reflection wσ ∈ WG that satisfies

λ
(e,[σ ])
2

(
Ht + Lc

H

) = w[σ ](Ht ) + Lc
H , (77)

and the automorphism group G2 is a subgroup of WG.
The proof of Corollary 6 is given in Appendix B. For all the

examples studied so far, g is u(1),su(2),so(3), or their direct
sum [34,36,37,39,40]. Therefore it follows from Corollary 6
that G2 is either trivial or a direct sum of Z2, where a possible
form of nontrivial topological influence is essentially the sign
change of a topological charge. Since a larger group, in general,
has a larger Weyl group, it is natural to ask whether other forms
appear when we consider a group larger than G = SU(2) or
SO(3). We answer this affirmatively in Sec. V by showing an
example of G2 � S3. Finally, there is no topological influence
for the case of a three-dimensional skyrmion as stated in the
following corollary.

Corollary 7. The topological influence on a three-
dimensional skyrmion is trivial.

Proof. From Corollary 3, we have π3(G/H ) � Coker i∗3 .
Then, Corollary 7 follows directly from Theorem 2.

V. NON-ABELIAN TOPOLOGICAL INFLUENCE ON A
SKYRMION IN AN SU(3)-HEISENBERG MODEL

Since topological influence on a monopole and that on
a skyrmion are the same in that they are characterized by
the action (70) of π1(G/H ) on π2(G/H ) [36], we consider
topological influence on a skyrmion in the two-dimensional
space. We include in G and H the space symmetry and
the lattice symmetry, respectively, because dislocations and
disclinations, which result from the breaking of the space
symmetry, play a vital role in the topological influence
analyzed below.

A. Vortices and skyrmions in a 3-CDW state

1. SU(3)-Heisenberg model and its ground state

The Hamiltonian of the SU(3)-Heisenberg model on a
triangular lattice L is given by

H = J
∑
〈i,j〉

8∑
a=1

Ta,iTa,j , (78)

where 〈i,j 〉 denotes a pair of nearest-neighbor sites i and j ,
and {Ta,i}8

a=1 is a set of the generators of su(3) at site i. On
each site, there are three degenerate states, which we refer to
as red, green, and blue, and write them as

|R〉 = (1,0,0)T , |G〉 = (0,1,0)T , |B〉 = (0,0,1)T . (79)

We call these internal degrees of freedom as color. This
model is expected to be realized in an ultracold atomic gas
of alkaline-earth atoms in an optical lattice [65–68] and can be
regarded as a spin-1 bilinear-biquadratic model with equal
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FIG. 7. Schematic illustration of the three-color density-wave
state on a triangular lattice. The red (R), green (G), and blue (B)
disks show the internal states |R〉,|G〉, and |B〉 defined in Eq. (79),
respectively. The sites in states |R〉, |G〉, and |B〉 constitute the
sublattices LR , LG, and LB , respectively.

bilinear and biquadratic couplings [8,69]. For the case of
an antiferromagnetic interaction (J < 0), the ground state
|�〉GS is described by the three-sublattice ordering with a
periodic alignment of three colors [7,8,43], and known as
the three-color density-wave state (3-CDW state) [43,44] (see
Fig. 7):

|�〉GS =
⊗
i∈LR

|R〉i ⊗
⊗
i∈LG

|G〉i ⊗
⊗
i∈LB

|B〉i , (80)

where LR , LG, and LB denote the three sublattices. For the
triangular lattice, they are given by

LR := {(m1 − m2)a1 + (m1 + 2m2)a2|m1,m2 ∈ Z}, (81)

LG := {x + a2|x ∈ LR}, (82)

LB := {x + a1|x ∈ LR}, (83)

where a1 = (1,0)T and a2 = (1/2,
√

3/2)T are the primitive
vectors of the triangular lattice in units of the lattice constant
a = 1. The 3-CDW state appears as the ground state of
the SU(3)-Heisenberg model on various lattices including
triangular, square, and cubic lattices [7,8,43,70–72].

2. Symmetries of the system and the state

When we include the space symmetry, the symmetry of the
system is given by

G = SU(3) × E(2), (84)

where E(2) := R2
� SO(2) is the two-dimensional Euclidian

group generated by the two-dimensional translation group R2

and the two-dimensional rotational group SO(2), where the
semidirect product on H � N is defined by (h,n) � (h′,n′) :=
(hnh′n−1,nn′). The ground state |�〉GS has the continuous

symmetry H0 generated by diagonal matrices:

H0 =
{

exp

(
i

∑
a=RG,GB,BR

caHαc
a

)∣∣∣∣∣ca ∈ R

}
. (85)

Also, |�〉GS has the discrete symmetries that exchange the
three colors R, G, and B and three sublattices LR,LG, and LB

simultaneously. The permutations of the colors are described
by the symmetry group S3:

S3 � Gen{σRG,σGB,σBR}
� {I3,σRG,σGB,σBR,σRGσGB,σGBσBR}, (86)

where I3 is the identity matrix with size three and the gener-
ators σRG := eiπSRG,1 ,σGB := eiπSGB,1 , and σBR := eiπSBR,1 are
given by

σRG =
⎛⎝0 1 0

1 0 0
0 0 1

⎞⎠, σGB =
⎛⎝1 0 0

0 0 1
0 1 0

⎞⎠,

σBR =
⎛⎝0 0 1

0 1 0
1 0 0

⎞⎠. (87)

The permutations of the sublattices are described by the
symmetry Hlat of the lattice:

Hlat = {(m1a1 + m2a2,R(nπ/3))|
m1,m2 ∈ Z,n = 0,1, · · · 5}, (88)

where m1a1 + m2a2 and R(φ) describe translation and ro-
tation, respectively. The discrete symmetry is isomorphic to
the lattice symmetry: π0(H ∩ G0) � Hlat. Since h (∈ Hlat)
induces a color exchange, we define σh as the corresponding
matrix in S3. From the above discussion, H is generated by
the continuous symmetry H0 and the discrete symmetry Hlat:

H � H0 � Hlat, (89)

where H0 � Hlat is the semidirect product defined by (h0,h) �

(h′
0,h

′) := (h0 σhh
′
0(σh)−1,hh′).

3. Vortices in a 3-CDW state

Vortices and skyrmions in the 3-CDW state are determined
in Ref. [73], where E(2) and its symmetry breaking are not
considered. Here we show that the vortices characterized
by S3 indeed emerge. From Eq. (54), we have π1(G) � Z,
and π0(H ∩ G0) � Hlat. Therefore we obtain Im i∗1 � 0 and
Coker i∗1 � Z and hence

π1(G/H ) � Z ×f Hlat. (90)

For a topological charge (m,h), we refer to σh defined above
as a spin topological charge. For the analysis of topological
influence, only a spin topological charge is necessary for
the two reasons. First, vortices described by Z cannot have
nontrivial topological influence from Theorem 2. Second,
since skyrmions are shown to be described by an SU(3)-spin
texture [see Eqs. (97), (98), and (99)], topological influence is
solely determined by the color exchange σh. When we focus
on spin topological charges, vortices are characterized by S3:

{σh ∈ S3|(m,h) ∈ π1(G/H )} � S3. (91)
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FIG. 8. Schematic illustrations of an RG vortex in the 3-CDW
state for a triangular lattice. It is a disclination with the Frank angle
π/3 around a site belonging to the sublattice LB . Here, the Frank
angle describes the angle over which the lattice sites are missing.
The texture of the RG-vortex described in Eqs. (93), (94), and (95)
is shown in (c), and (a) and (b) illustrate how the RG-spin vortex is
obtained as the Frank angle vanishes. In (a)–(c), each arrow indicates
the expectation value of (SRG,2,SRG,3), where the red dashed (green)
arrows correspond to the sublattice LR (LG). In (d)–(f), the red circle,
green square, and blue triangule at each site indicate the sublattices
LR , LG, and LB , respectively. Across the disclination, the sublattices
LR and LG are exchanged.

We refer to vortices with spin topological charges σRG, σGB ,
and σBR as RG-, GB-, and BR-vortices, respectively, according
to their exchanges of the colors and sublattices. An example
of an RG-vortex is the disclination with the Frank angle π/3
around a site belonging to the sublattice LB , around which
colors R and G and sublattices LR and LG are exchanged
simultaneously. Here the Frank angle is the angle over which
the lattice sites are missing [see Figs. 8(a) and 8(d)]. Let φ

be the azimuth angle around the vortex. Due to the exchange
of the sublattices, there is an ambiguity in the correspondence
between a site and the sublattice it belongs to. We therefore
fix the range of φ to [0,2π ) to assign one sublattice to each
site. We take the reference order parameter as the expectation
value of SRG with respect to |�〉GS in Eq. (80):

〈SRG〉R,0 = (0,0,1), 〈SRG〉G,0 = (0,0, − 1),

〈SRG〉B,0 = (0,0,0), (92)

where 〈A〉X stands for the expectation value of A over sites
of sublattice LX and the subscript 0 indicates the expectation
value with respect to |�〉GS. Then, the texture of a vortex is
obtained by operating exp (iφSRG,1/2) on the reference order
parameter (92):

〈SRG〉R(φ) = 〈
e−i

φ

2 SRG,1 SRGei
φ

2 SRG,1
〉
R,0

=
[

0, sin

(
φ

2

)
, cos

(
φ

2

)]
, (93)

〈SRG〉G(φ) = 〈
e−i

φ

2 SRG,1 SRGei
φ

2 SRG,1
〉
G,0

= −
[

0, sin

(
φ

2

)
, cos

(
φ

2

)]
, (94)

〈SRG〉B(φ) = 〈
e−i

φ

2 SRG,1 SRGei
φ

2 SRG,1
〉
B,0

= (0,0,0). (95)

One can see from Eqs. (93) and (94) that SRG rotates by angle
π around the vortex. We note that Eqs. (93) and (94) indeed
give a continuous map to the OPM because the sublattices LR

and LG are exchanged at φ = 0 and 2π .

4. Skyrmions in a 3-CDW state

Since H does not include su(2)-subalgebras from Eq. (85),
Lc

H vanishes. Hence, from Corollary 2, the second homotopy
group is isomorphic to the triangular lattice, which, in turn, is
isomorphic to the coroot lattice of SU(3):

π2(G/H ) � (LH ∩ Lc
G

)
/Lc

H � LH ∩ Lc
G

�
{ ∑

a=RG,GB,BR

maα
c
a

∣∣∣∣∣ma ∈ Z,
∑

a=RG,GB,BR

αc
a = 0

}
� Lc

SU(3). (96)

Reflecting the triangular geometry of Lc
SU(3) (see Fig. 1), the

3-CDW state has three types of skyrmions [see Fig. 10(c)]. Let
(r,φ) be the polar coordinates inR2, and θ (r) be a real function
that satisfies θ (0) = 0 and θ (∞) = π . From Corollary 2, the
texture of a skyrmion with topological charge αc

RG is obtained
by operating g

(2)
αRG

(θ (r),φ) on the reference order parameter in
Eq. (92):

〈SRG〉R(θ,φ) = 〈[
g(2)

αRG
(θ (r),φ)

]†
SRGg(2)

αRG
(θ (r),φ)

〉
R,0

= r̂(θ (r),φ), (97)

〈SRG〉G(θ,φ) = 〈[
g(2)

αRG
(θ (r),φ)

]†
SRGg(2)

αRG
(θ (r),φ)

〉
G,0

= −r̂(θ (r),φ), (98)

〈SRG〉B(θ,φ) = 〈[
g(2)

αRG
(θ (r),φ)

]†
SRGg(2)

αRG
(θ (r),φ)

〉
B,0

= 0. (99)

Thus this skyrmion is described by a hedgehog configuration
of SRG with winding number +1 (−1) on LR (LG) as shown in
Fig. 9. We refer to this skyrmion as an RG skyrmion. Similarly,
the texture of a skyrmion with topological charge αc

GB is
described by a hedgehog configuration of SGB with winding
number +1 (−1) on LG (LB) and we refer to it as a GB
skyrmion [see Fig. 10(b)]. Also, there exists a skyrmion with
topological charge αc

BR described by a hedgehog configuration
of SBR with winding number +1 (−1) on the sublattice LB

(LR), and we refer to it as a BR skyrmion [see Fig. 10
(c)]. It follows from the relation αc

RG + αc
GB + αc

BR = 0 (see
Fig. 1) that these three skyrmions are not independent; the
composition of all of them results in a trivial texture.

B. Topological influence in a 3-CDW state

From Eq. (96) and Fig. 1, π2(G/H ) is isomorphic to
the triangular lattice and π1(G/H ) is isomorphic to S3 as
far as the spin topological charge is considered. We will
see below that G2 defined in Eq. (74) is isomorphic to S3,
where three skyrmions with αRG, αGB , and αBR together
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FIG. 9. Schematic illustrations of an RG skyrmion. Each arrow
shows the expectation value of the generalized su(2)-spin vec-
tor 〈SRG〉(θ,φ), where the color represents the third component
〈SRG,3〉(θ,φ). The absence of an arrow on a site indicates that the
expectation value vanishes there. When the two-dimensional plane is
compactified into a sphere, in which the points at infinity are mapped
onto the north pole, the texture on the sublattice LR (LG) describes a
hedgehog texture of 〈SRG〉 with winding number +1 (−1).

with their antiskyrmions with −αRG, − αGB , and −αBR

are exchanged through topological influence, reflecting the
S3 symmetry of the triangular lattice. From Theorem 2, the
topological influence of a vortex with spin topological charge
σ on a skyrmion with topological charge n is described by the
conjugation by σ :

λσ
2 (n) := σ−1nσ. (100)

FIG. 10. Three types of skyrmions in a 3-CDW state. (a) An RG
skyrmion has topological charge α = αc

RG and a hedgehog texture of
SRG with winding number +1 (−1) on the sublattice LR (LG). (b) A
GB skyrmion has topological charge α = αc

GB and a hedgehog texture
of SGB with winding number +1 (−1) on the sublattice LG (LB ). (c)
A BR skyrmion has topological charge α = αc

BR and a hedgehog
texture of SBR with winding number +1 (−1) on the sublattice LB

(LR).

FIG. 11. Topological charges of skyrmions (a)–(c) before and
(d)–(f) after making a complete circuit of the RG, GB, and BR
vortices, respectively. The RG, GB, and GR vortices act on skyrmions
by inverting them about the line perpendicular to αRG, αGB , and αBR ,
respectively.

For example, for σ = σRG and n = αRG, αGB , and αBR .
Direct calculations of the matrices in Eqs. (11) and (87) give

λσ
2 (αRG) = −αRG, λσ

2 (αGB) = −αBR,

λσ
2 (αBR) = −αGB. (101)

A crucial observation here is that this vortex acts on the
triangular lattice, inverting it about the line perpendicular
to αRG [see Figs. 11(a) and 11(d)]. Similarly, a vortex with
topological charge σGB (σBR) acts on the triangular lattice
inverting it about the line perpendicular to αGB (αRG) as shown
in Figs. 11(b) and 11(e) [Figs. 11(c) and 11(f)]. Since S3 is
generated by σRG, σGB , and σBR , we have G2 � S3.

The non-Abelian property of G2 emerges when we consider
topological influence of two vortices. Let σ and τ be the
topological charges of the vortices and n be that of a skyrmion.
Suppose that the skyrmion goes around the vortex with σ

clockwise, goes around the vortex with τ clockwise, goes
around the vortex with σ anticlockwise, and finally goes
around the vortex with τ anticlockwise (see Fig. 12). Since
the third (fourth) process is the inverse process of the first
(second) one, the change in the topological charge is given by

λτ−1

2

(
λσ−1

2

{
λτ

2

[
λσ

2 (n)
]}) = λ

ρ

2 (n) for ρ = τ−1σ−1τσ. (102)

While the final topological charge coincides with the initial
one for an Abelian G2 because we have ρ = e for any pair of
vortices, it does not for a non-Abelian G2 because ρ �= e in
general. For the case of σ = σRG,τ = σGB , and n = αRG, we
have ρ = σBRσGB and λ

ρ

2 (αRG) = αGB �= αRG.

VI. CONCLUSION AND DISCUSSION

In the present paper, we have developed a general method
to determine the homotopy group πm(G/H ) of the order
parameter manifold G/H by deriving the formula (50) which
expresses πm(G/H ) in terms of πm(G) and πm(H ). Since the
homotopy group of a Lie group and each texture on it can be
calculated systematically by means of the Cartan canonical
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FIG. 12. Topological influence of two vortices with spin topo-
logical charges σ and τ on a skyrmion with topological charge n.
The skyrmion goes around the vortex with σ clockwise (a), then
around the vortex with τ clockwise (b), then around the vortex with σ

anticlockwise (c), and finally around the vortex with τ anticlockwise
(d). Through these processes, the topological charge of a skyrmion
changes from n to λ

ρ

2 (n) with ρ = τ−1σ−1τσ .

forms (3) and the lattices defined in Eqs. (9) and (10), the ob-
tained formulas allow us to calculate πm(G/H ) and the texture
O of each topological excitation systematically. We find that
the textures of a monopole and that of a three-dimensional
skyrmion are obtained by the replacement of the su(2)-spin
vector S by the generalized su(2)-spin vector Sα defined in
Eq. (7), and that their topological charges are described by a
set of coroots, reflecting the fact that a Lie algebra g, in general,
includes multiple su(2) subalgebras. We have also shown the
necessity of a discrete symmetry π0(H ∩ G0) for the presence
of nontrivial topological influence. Moreover, we derive the
necessary and sufficient condition for the presence of non-
Abelian vortices and prove the absence of topological influence
on a three-dimensional skyrmion. As for topological influence
on a monopole or a skyrmion, we prove that the automorphism
group G2 of topological influence is a subgroup of the Weyl
group WG, clarifying why only one type of topological
influence is known so far. Seeking for other types, we find
that topological influence characterized by a non-Abelian
group S3 emerges in the three-color density-wave state of the
SU(3)-Heigenberg model, where three types of skyrmions and
vortices characterized by S3 appear. These skyrmions change
their types through the topological influence, giving G2 = S3.

Finally, we raise three problems for future study. First, the
dynamical stability of the textures of topological excitations
derived in Sec. II needs to be clarified. These textures and their
variations have widely been used as candidates for dynamically
stable textures of topological excitations [1,50,54,74–76]. In
fact, the dynamically stability has been demonstrated in a
number of examples [54,73,77–81]. The texture O(θ,φ) :=
g

(2)
α (θ,φ)O0 and its variation O(r,φ) := g

(2)
α [θ (r),φ]O0 are

widely used as candidates for the textures of a monopole
and that of a skyrmion, respectively [1,50,54,74–76], where
θ (r) is a function subject to the boundary conditions θ (0) =
0 and θ (∞) = π . Moreover, they indeed give stable tex-
tures [54,73,77–82] for an appropriate choice of θ (r). It merits
further study to clarify their dynamical stability. Second, we
represent in Corollary 5 the necessary and sufficient condition

for non-Abelian vortices in terms of the map f defined
in Eq. (46). However, its physical implication is yet to be
clarified. Considering the growing interest in the dynamics of
non-Abelian vortices [59,61–64], it is of interest to understand
whether we can simplify the condition (73). Third, analogous
concepts of topological influence in topological insulators
and superconductors have recently been discussed in specific
examples [83–85], where the domain Sm of πm(G/H ) and the
order parameter manifold G/H are replaced by a Brillouin
zone and a space of Hamiltonians, respectively. When a
lower-dimensional topological invariant is nontrivial, one
can change a higher-dimensional topological invariant under
continuous deformation of a Hamiltonian. It is worthwhile to
analyze general conditions for nontrivial topological influence
in topological insulators and superconductors and clarify its
difference from topological influence in topological excita-
tions by using the general formulas developed in the present
paper.
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APPENDIX A: PROOF OF LEMMA 1

Lemma 1 follows from the following theorem on the third
homotopy group of a simple compact Lie group [49].

Theorem 3. Let G and Sα be a simple compact Lie group
and the generalized su(2)-spin vector for the coroot αc with
shortest length in G, respectively. Then, we have

π3(G) � {m[g(3)
α

]
G

∣∣m ∈ Z
}
, (A1)

where [g(3)
α ]G denotes the homotopy class of G with repre-

sentative element g
(3)
α defined in Eq. (23). The isomorphism

in Eq. (A1) is given by i∗3 : π3(H ) → π3(G/H ), where
H ′ = SU(2) or SO(3) is the subgroup of G generated by Sα .
The right-hand side of Eq. (A1) does not depend of the choice
of the coroot since [g(3)

α1 ]G = [g(3)
α2 ]G for two coroots αc

1 and αc
2

with the shortest length.
Proof of Lemma 1. Let Eq. (22) and αc

i be the decomposition
of the Lie algebra g of G and a coroot in gi , respectively. If we
denote the universal covering group of G′ by G̃′, G̃ is given
by Ra′ × G̃1 × · · · × G̃a and hence we obtain

π3(G) � π3(Ra′ × G̃1 × · · · × G̃a) �
a⊕

i=1

π3(G̃k)

�
{

a∑
i=1

mi

[
g(3)

αi

]∣∣∣∣∣mi ∈ Z

}
, (A2)
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where the first isomorphism follows from the relation
πm(G′) � πm(G̃′) for ∀m � 2, the second one from the
relation πm(X × Y ) � πm(X) ⊕ πm(Y ), and the third one from
Theorem 3, which completes the proof of Lemma 1.

APPENDIX B: PROOF OF THEOREM 1

Theorem 1 is proved by applying the theory of a group
extension with an Abelian kernel [47].

1. Group extension with an Abelian kernel

Definition 1: Group extension. (a) Let Q and N be two
groups. Then G is a group extension of Q by N if N is a
normal subgroup of G and Q is a quotient group of G by N ,
i.e., Q = G/N . In particular, if N is Abelian, G is referred to
as a group extension of Q by an Abelian kernel N . Let G and
G′ be group extensions of Q by N . We denote the projection
from G (G′) to Q as T (T ′). If there exists an isomorphism
F : G → G′ such that T ′ ◦ F = T , the two group extensions
G and G′ are regarded as equivalent.

Let G, N , and Q be a group, a normal subgroup of G,
and the quotient group of G by N , respectively, and consider
a situation in which we know N and Q but do not know G.
The problem of constructing G from N and Q is referred to
as an group extension problem. As we will see below, there is
a general theory to solve the group extension problem if N is
Abelian.

Let T be the projection from G to Q. A map s : Q → G

that satisfies T ◦ s = idQ is referred to as a section of T , where
idQ denotes the identity map on Q. We assume that N is
Abelian and that a section s of T is given. We define the map
f : Q × Q → N referred to as the factor set of G associated
with s by

f (q,q ′) := s(q)s(q ′)s(qq ′)−1. (B1)

Since T [f (q,q ′)] = e and hence f (q,q ′) ∈ N , f is indeed a
map to N . Since N is a normal subgroup of G, N is invariant
under the inner isomorphism g′ �→ gg′g−1. Moreover, the
inner isomorphisms of N acts on N trivially because N is
Abelian. Therefore the inner isomorphism of g ∈ G depends
only on the quotient element q = T (g). We define the map
θq : N → N for q by θq(n) := gng−1, where g ∈ G satisfies
q = T (g). Then, the following theorem holds [47].

Theorem 4. (a) Let the product ×f on the product set N × Q

be defined by

(n,q) ×f (n′,q ′) := (n + θq(n′) + f (q,q ′),qq ′), (B2)

where we write the product on N by the sum because N is
Abelian. Then, N × Q becomes a group, where the identity
element is given by (f (e,e)−1,e) and the inverse of (n,q)
is given by (n−1 + f (q,q−1)−1,q−1). This group denoted by
N ×f Q is a group extension of Q by N and isomorphic to G

under this product. (b) Let s̄ and f̄ be another section of T and
the factor set associated with s̄, respectively. If there exists a
map α : Q → N that satisfies s̄(q) = α(q)s(q), the two group
extensions N ×f Q and N ×f̄ Q are equivalent.

2. Proof of Theorem 1

We start from the relation derived in Ref. [46]:

πm(G/H )

Coker i∗m

� Ker i∗m−1, (B3)

which follows from the homotopy exact sequence [46,86].
From the homotopy lifting theorem [86], any homotopy class
O of G/H can be written as

O(x) = g(x)O0 for ∀x ∈ Dm, (B4)

where g is a map from Dm to G subject to the boundary
condition

g(x) = e for ‖x‖ = π. (B5)

Then, the projection map T : πm(G/H ) → Ker i∗m−1 in
Eq. (B3) is given by

[T (O)](x̂) := lim
r→0

gO(r x̂) for x̂ ∈ Sm−1, (B6)

where T (O) is a map from Sm−1.
We first prove that the inner isomorphism of πm(G/H ) on

Coker i∗m is trivial:

n[a]n−1 = [a] for ∀n ∈ πm(G/H ),∀[a] ∈ Coker i∗m. (B7)

For m � 2, Eq. (B7) follows from the commutativity of higher-
dimensional homotopy groups. For m = 1, from Eq. (B4),
we can express the loop ln (l[a]) corresponding n ([a]) as
ln(φ) = γn(φ)O0 (l[a](φ) = a(φ)O0), where γn is a path from
γn(0) = σn to γn(2π ) = e and a is a loop on G. Then, defining
as(φ) for s,φ ∈ [0,2π ] by

as(φ) :=

⎧⎪⎨⎪⎩
γn(2π − 3φ)O0 0 � φ � s

3 ;

a
(

π(3φ−s)
3π−s

)
γn(2π − s)O0

s
3 � φ � 2π − s

3 ;

γn(3φ − 4π )O0 2π − s
3 � s � 2π,

(B8)

we find that as is a continuous deformation from as=0 = [a]
to as=2π = n[a]n−1, which completes the proof of Eq. (B7).

We next apply Theorem 4 to derive Eqs. (49)–(51). Let
b and [Ob]G/H be an element of Ker i∗m−1 and that of
πm(G/H ) defined in Eq. (37), respectively. When we define
S : Ker i∗m−1 → πm(G/H ) by S(b) := [Ob]G/H , it is a section
of T since

{[T ◦ S](b)}(x) = [T ([Ob]G/H )](x) = bs=0(x̂)

= b(x) for x ∈ Sm−1. (B9)

We define f : Ker i∗m−1 × Ker i∗m−1 → Coker i∗m by Eq. (B1)
with substitution of S for s. Since Coker i∗m is Abelian for any
m, Theorem 4 gives the isomorphism

πm(G/H ) � Coker i∗m ×f Ker i∗m−1, (B10)

where the product on the right-hand side of Eq. (B10) is defined
by

([a],b) ×f ([a′],b) := ([a] + θb([a′]) + f (b,b′),bb′). (B11)

From Eq. (B7), the inner isomorphism of πm(G/H ) on
Coker i∗m is trivial: θb([a′]) := b[a′]b−1 = [a′], which gives
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Eqs. (49) and (50). Since we take the section of the iden-
tity element as S(e) := [Oe]G/H = e, we obtain f (e,b) =
S(e)S(b)[S(eb)]−1 = e and hence Eq. (51).

We finally prove that any choice of the section gives an
equivalent group extension. Let [Ob]G/H be another element
of πm(G/H ) corresponding to another deformation b̄s of b ∈
Ker i∗m−1 to the trivial homotopy class. Then, the map S̄ : b �→
[Ōb]G/H provides another section. From the relation

[(Ob)−1Ōb](x) =
{

bs=π−2‖x‖(x̂)O0 for 0 � ‖x‖ � π
2 ;

b̄s=2‖x‖−π (x̂)O0 for π
2 � ‖x‖ � π,

(B12)

we have

b̄s=2‖x‖−π (x̂) = e for ‖x‖ = π, (B13)

b̄s=π−2‖x‖(x̂) = e for ‖x‖ = 0, (B14)

and hence ([Ob]G/H )−1[Ōb]G/H ∈ Coker i∗m. Therefore,
defining the map α : Ker i∗m−1 → Coker i∗m by α(b) :=
[S(b)]−1S̄(b), we find from Theorem 4(b) that the two sections
S and S̄ give the equivalent group extensions, which completes
the proof of Theorem 1.

APPENDIX C: PROOF OF COROLLARY 2

Since π2(G) vanishes from Eq. (21), Coker i∗2 vanishes. It
follows from Theorem 1 that

π2(G/H ) � Ker{i∗1 : π1(H ) → π1(G)}. (C1)

Since an element of Lc
H describes a trivial loop on H , it is trivial

as a loop on G, which indicates Lc
H ⊂ Lc

G. Since Lc
H ⊂ LH ,

Lc
H is an Abelian subgroup of LH ∩ Lc

H . Let us write elements
of π1(H ) � LH/Lc

H as Ht + Lc
H (Ht ∈ LH ) and those of

π1(G) � LG/Lc
G as Ht ∈ LG (Ht + Lc

G). For an element
Ht + Lc

H of π2(G/H ) � Ker i∗1 , we have i∗1 (Ht + Lc
H ) = e,

and hence Ht + Lc
H ∈ Lc

G. We thus obtain Eqs. (61) and (62):

π2(G/H ) � {
Ht + Lc

H

∣∣Ht ∈ LH,Ht + Lc
H ∈ Lc

G

}
� {

Ht + Lc
H

∣∣Ht ∈ LH ∩ Lc
G

}
� (

LH ∩ Lc
G

)/
Lc

H . (C2)

We next derive the texture (63) for the topological charge n

given in Eq. (62), which can be done straightforwardly from
the construction (37) and Theorem 1. The right-hand side of
Eq. (62) describes the loop

gn(φ) = exp

⎛⎝iφ

r∑
j=1

mjHαc
j

⎞⎠, (C3)

which can continuously transform into a trivial one through
the continuous deformation g(θ,φ) defined by

g(θ,φ) := e−iθSα1 ,2g(2)
α1

(θ,m1φ)e−iθSα2 ,2g(2)
α2

(θ,m2φ)

× · · · × e−iθSαr ,2g(2)
αr

(θ,mrφ) exp

⎛⎝iφ

r∑
j=1

mjSαj ,3

⎞⎠,

(C4)

where θ (∈ [0,π ]) is the parameter of the deformation. In fact,
since

g
(2)
αj ,1

(0,mjφ) = eiφmj Sαj ,3 , (C5)

e−iπSαj ,2g(2)
αj

(π,mjφ) = e−iπSαj ,2 eiφmj Sαj ,3 eiπSαj ,2

= e−iφmj Sαj ,3 , (C6)

we obtain g(θ = 0,φ) = gn(φ) and g(θ = π,φ) = e. Thus the
texture Õ(θ,φ) is given by

Õ(θ,φ) = e−iθSα1 ,2g(2)
α1

(θ,m1φ)e−iθSα2 ,2g(2)
α2

(θ,m2φ)

× · · · × e−iθSαr ,2g(2)
αr

(θ,mrφ)O0. (C7)

Let us define

Õu(θ,φ) = gu,1(θ,φ)gu,2(θ,φ) · · · gu,r (θ,φ)O0, (C8)

where gu,b(θ,φ) := e−iθ(1−u)Sαj ,2g
(2)
αj

(θ,mjφ) and u ∈ [0,1].
Equation (C8) gives a continuous deformation from Ou=0 =
Õ to Ou=1 = O, because gu,b is a continuous deforma-
tion from gu=0,b(θ,φ) = e−iθSαj ,2g

(2)
αj

(θ,mjφ) to gu=1,b(θ,φ) =
g

(2)
αj

(θ,mjφ), which completes the proof of Corollary 2.

APPENDIX D: PROOF OF THEOREM 2

It follows from Eq. (49) that the action of ([Ht ],[σ ]) can be
decomposed into the action of ([Ht ],e) and that of (e,[σ ]) as
follows:

λl
m(n) = λ(e,[σ ])

m

{
λ([Ht ],e)

m [([a],b)]
}
. (D1)

From Eq. (56), we can write the texture O1(φ) of a vortex
with topological charge ([Ht ],e) as O1(φ) := g1(φ)O0, where
g1(φ) := exp(iφHt ) and φ (∈ [0,2π ]) is the azimuth angle
around the vortex. Let O([a],b)(x) be the texture of a topological
excitation with topological charge ([a],b) and let us define λs

for s ∈ [0,2π ] by

λs(x) :=
{
g1(s)O([a],b)

[(
π

π
2 + s

4

)
x
]

for 0 � ‖x‖ � π
2 + s

4 ;

g1(4‖x‖ − 2π )O0 for π
2 + s

4 � ‖x‖ � π.

(D2)

Since g1(2π ) = e, λs is a continuous deformation from
λs=0(x) = λ([Ht ],e)

m ([a],b) to

λs=2π (x) = O([a],b)(x) = O([a],b)(x), (D3)

subject to the boundary condition (27). We thus have
λ([Ht ],e)

m [([a],b)] = ([a],b). Then, Eq. (D1) reduces to

λ([Ht ],[σ ])
m [([a],b)]

= λ(e,[σ ])
m [([a],b)] = λ(e,[σ ])

m [([a],e) ×f (e,b)]

= λ(e,[σ ])
m [([a],e)] ×f λ(e,[σ ])

m [(e,b)], (D4)

where we use the homomorphic property of λl
m in the third

equality. Let γσ be a path from γσ (0) = σ to γσ (2π ) = e and
we write the texture of a topological excitation with topological
charge ([a],e) [(e,b)] by O ′(x) = g(x)O0 with g(x) = a(x)
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[g(x) = b‖x‖(x̂)]. Let us define λ′
s for s ∈ [0,2π ] by

λ′
s(x) :=

{
γσ (s)σ−1O ′[( π

π
2 + s

4

)
x
]

for 0 � ‖x‖ � π
2 + s

4 ;

γσ (4 ‖x‖ − 2π )O0 for π
2 + s

4 � ‖x‖ � π.

(D5)

Then, λ′
s is a continuous deformation from λ′

s=0(x) =
λ(e,[σ ])

m (x) to

λ′
s=2π (x) = σ−1O ′(x) = σ−1g(x)σO0 = [σ−1gσ ](x),

(D6)

where we use σ ∈ H ∩ G0 and hence σO0 = O0 in the
second equality in Eq. (D6). When the topological charge is
([a],e), [γσ (s)]−1aγσ (s) for s ∈ [0,2π ] describes a continuous
deformation from σ−1aσ to a subject to the boundary
condition (27). We therefore have λ(e,[σ ])

m [([a],e)] = ([a],e)
and hence Eq. (70):

λ(e,[σ ])
m [([a],e)] ×f λ(e,[σ ])

m [(e,b)]

= ([a],e) ×f (e,σ−1bσ ) = ([a],σ−1bσ ), (D7)

which completes the proof of Theorem 2.

APPENDIX E: PROOF OF COROLLARY 6

Let gC be the Cartan subalgebra of G and we define two
subalgebras of g by

h⊥
C := {

Hu ∈ gC |(u,t) = 0 for ∀Ht ∈ LH ∩ Lc
G

}
,

h⊥ := h⊥
C ⊕ Span

{
ER

α ,EI
α

∣∣α ∈ R+,

(α,t) = 0 for ∀Ht ∈ LH ∩ Lc
G

}
, (E1)

where SpanS denotes the vector space spanned by the elements
of S.

We first prove that h⊥ is a subalgebra of g that commutes
with LH ∩ Lc

G. From the commutation relations of the Cartan
canonical form, the commutators among Hu ∈ h⊥

C and ER,I
α ∈

h⊥ are spanned by Hu and ER,I
α that satisfy (u,t) = (α,t) =

0 for ∀Ht ∈ LH ∩ Lc
G. Therefore h⊥ forms a subalgebra of

g. Since both h⊥
C and LH ∩ Lc

G are generated by the Cartan
generators, h⊥

C commutes with LH ∩ Lc
G. For Ht ∈ LH ∩ Lc

G

and ER
α ,EI

α ∈ h⊥, we have [Ht ,E
R,I
α ] = ±i(α,t)EI,R

α = 0
from Eq. (E1), indicating that LH ∩ Lc

G commutes with h⊥.
Let σ be a representative element of [σ ] ∈ π0(H ∩ G0). We

next prove Ad(σ )h⊥
C ⊂ h⊥, where Ad(g) : g → g for g ∈ G is

defined by [Ad(g)](X) := gXg−1 for X ∈ g. For Hu ∈ h⊥
C , we

expand Ad(σ )Hu in terms of the Cartan canonical form as

Ad(σ )Hu = Hu′ +
∑
α∈R+

(
cαER

α + dαEI
α

)
, (E2)

where cα and dα are real numbers. Let Ht be an element of
LH ∩ Lc

G. Since Ad(σ ) is an automorphism on (LH ∩ Lc
G)/Lc

H

from Theorem 2, we have Ad(σ−1)Ht ∈ LH ∩ Lc
G and hence

it can be written as Ht = Ad(σ )Ht ′ for some Ht ′ ∈ LH ∩ Lc
G.

From Eq. (E1), we have

(t,u′) = Tr[HtHu′] = Tr[Ad(σ )Ht ′Ad(σ )Hu]

= (t ′,u) = 0. (E3)

Hence we obtain Hu′ ∈ h⊥
C . Also, it follows from Eq. (E1) that

0 = Ad(σ )[Ht ,Hu]

=
⎡⎣Ht ′ ,Hu′ +

∑
α∈R+

(
cαER

α + dαEI
α

)⎤⎦
=
∑
α∈R+

i(α,t ′)
(
cαEI

α − dαER
α

)
. (E4)

This gives cα = dα = 0 if α satisfies (α,t ′) �= 0 for some t ′ ∈
LH ∩ Lc

G, resulting in Ad(σ )Hu ∈ h⊥, which completes the
proof of Ad(σ )h⊥

C ⊂ h⊥.
Let TG be a maximum Abelian group of G. Let H⊥ be the

connected Lie group generated by h⊥ including the identity
element. Since Ad(σ )h⊥

C ⊂ h⊥, h⊥
C and Ad(σ )h⊥

C are maximum
Abelian subgroups of H⊥. Since any two maximum Abelian
subgroups are conjugate to each other [41,42], there exists
an element h⊥

σ of H⊥ such that Ad(h⊥
σ )[Ad(σ )h⊥

C ] = h⊥
C . On

the other hand, Ad(h⊥
σ ) acts on LH ∩ Lc

G trivially from the
commutativity between h⊥ and LH ∩ Lc

G. We therefore have
Ad(h⊥

σ )Ad(σ )LH ∩ Lc
G = LH ∩ Lc

G. Since gC is generated by
LH ∩ Lc

G and h⊥
C , we have

h⊥
σ σ ∈ NW := {g ∈ G|Ad(g)X ∈ gC for ∀X ∈ gC}.

(E5)

It is known that TG is a normal subgroup of NW and that the
quotient group NW/TG is isomorphic to WG [41,42]. We define
w[σ ] ∈ WG as the projection of h⊥

σ σ ∈ NW to WG � NW/TG.
From Theorem 2, the action of ([Ht ],[σ ]) ∈ π1(G/H ) on Ht +
Lc

H ∈ π2(G/H ) can be written as

λ
([Ht ],[σ ])
2

(
Ht + Lc

H

) = λ
(e,[σ ])
2

(
Ht + Lc

H

) = Ad(σ )(Ht ) + Lc
H

= w[σ ](Ht ) + Lc
H . (E6)

We note that the right-hand side does not depend on the choice
of a representative element since Ad(σ ) acts on Lc

H trivially.
Thus we have

G2 � {
λ

([Ht ],[σ ])
2

∣∣([Ht ],[σ ]) ∈ π1(G/H )
}

� {w[σ ] ∈ WG|[σ ] ∈ π0(H ∩ G0)}. (E7)

Since the right-hand side is a subgroup of WG, G2 is also a
subgroup of WG, which completes the proof of Corollary 6.
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