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We calculate the admittance of two types of Josephson weak links—the first is a one-dimensional
superconducting wire with a local suppression of the order parameter, and the second is a short S-c-S structure,
where S denotes a superconducting reservoir and c is a constriction. The systems of the first type are analyzed
on the basis of time-dependent Ginzburg-Landau equations derived by Gor’kov and Eliashberg for gapless
superconductors with paramagnetic impurities. It is shown that the impedance Z(�) has a maximum as a
function of the frequency �, and the electric field E� is determined by two gauge-invariant quantities. One of
them is the condensate momentum Q� and another is a potential μ related to charge imbalance. The structures
of the second type are studied on the basis of microscopic equations for quasiclassical Green’s functions in the
Keldysh technique. For short S-c-S contacts (the Thouless energy ETh = D/L2 � �), we present a formula
for admittance Y valid frequencies � and temperatures T less than the Thouless energy ETh (h̄�,T � ETh)
but arbitrary with respect to the energy gap �. It is shown that, at low temperatures, the absorption is absent
[Re(Y ) = 0] if the frequency does not exceed the energy gap in the center of the constriction (� < � cos ϕ0,
where 2ϕ0 is the phase difference between the S reservoirs). The absorption gradually increases with increasing
the difference (� − � cos ϕ0) if 2ϕ0 is less than the phase difference 2ϕc corresponding to the critical Josephson
current. In the interval 2ϕc < 2ϕ0 < π , the absorption has a maximum. This interval of the phase difference is
achievable in phase-biased Josephson junctions. Close to Tc the admittance has a maximum at low �, which is
described by an analytical formula.

DOI: 10.1103/PhysRevB.95.134518

I. INTRODUCTION

The study of dynamic effects in superconductors began
soon after the appearance of microscopic BCS theory of
superconductivity [1]. Using the BCS theory, Mattis and
Bardeen have calculated the admittance of a superconductor
Y (�,q) [2]. Later, Abrikosov, Gor’kov, and Khalatnikov have
obtained the admittance for pure superconductors by using the
Green’s function technique [3]. This technique was applied
by Abrikosov and Gor’kov to calculate the linear response
of superconductors with impurities [4]. In more detail, the
theory of admittance has been later developed by Nam [5].
In these papers, it has been shown that at low temperatures,
absorption is absent if the frequency of electromagnetic
field � is less than 2�. This means that the real part of
admittance Re[Y (�)] ≡ Y ′(�) equals zero in the limit T → 0
and � < 2�/h̄. If frequency � exceeds 2�, Y ′(�) increases
with increasing the difference (� − 2�).

On the other hand, the intensive study of dynamic collective
modes in superconductors, both in low- and high-Tc ones, is
carried out in the last decade. A special attention is paid to the
amplitude mode (AM), which is called often in literature the
Higgs mode [6]. This mode has been studied theoretically long
ago [7–29], but only recently it was observed in experiments
[30,31]. A superconductor (Nb1−xTixN) was driven out of the
equilibrium by a short laser pulse (teraherz frequency range)
and the temporal evolution of the deviation δ�(t) from the
equilibrium value � was detected by a weak probe signal in
picosecond time interval. This evolution can be qualitatively
described by the equation [7]

δ�(t) ∝ δ�(0)
cos(2�t/h̄)√

2�t/h̄
. (1)

A weak incident electric field E(t) = E� cos(�t) obviously
can not lead to a perturbation of the order parameter � because

it is a scalar so that δ�(t) can be proportional only to even
orders of E2n(t). However, as we have shown recently [32],
the situation changes in the presence of the condensate flow.
In this case, even a weak ac field E(t) leads to a perturbation
of �, δ�� ∝ Q�Q0, where Q0 = mv0 is the condensate
momentum, v0 is the velocity of the condensate, and Q� is
the ac condensate momentum induced by the electric field E�

according to the expression

−i�h̄Q� = eE� . (2)

If the frequency of the external electric field � coincides
with the frequency of the AM 2�/h̄, a resonance absorption
of the incident electromagnetic field E� takes place and the
real part Y ′(�) ≡ Re[Y (�)] of admittance has a sharp peak at
� = 2�/h̄.

A similar peak was obtained in Ref. [33], where linear
response of a superconductor with a finite-momentum pairing
was calculated. As the authors of Ref. [33] claim, their
results can be applied to high-Tc superconductors with a
pair density wave or to superconductors in the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [34,35]. In both cases, the
superconducting order parameter depends on coordinate, �(r),
turning to zero at some points or lines.

High frequency properties of superconductors are important
not only from the point of view of fundamental physics, but
also of applications. In particular, the use of superconducting
devices in qubits and in highly sensitive detectors requires the
knowledge of the admittance Y (�) [36–39]. The systems used
in practical devices often include Josephson junctions (JJ), for
example, S-c-S or S-n -S weak links of different types, where
c denotes a constriction and n stands for a normal metal. The
study of ac properties of JJs has began long ago (see references
in Refs. [40,41] ). The admittance Y (�) of a short JJ of the
S-c -S type has been calculated by Artemenko et al. on the
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basis of Keldysh technique for quasiclassical Green’s functions
[42]. It was assumed that the Thouless energy ETh = D/L2

is much larger than Tc. In particular, it was shown that at
low frequencies � and close to the critical temperature Tc the
admittance has the form (see Eq. (31) in Ref. [42])

Y (�) = 2eIc(νin + i�)

h̄
(
�2 + ν2

in

) P (2ϕ0) + 1

R
, (3)

where Ic = π�2/(4eT R) is the critical current of this JJ near
Tc, R is the resistance in the normal state and νin is inelastic
scattering time [43]. The function P (2ϕ0) is a function of the
phase difference 2ϕ0. The form of P (ϕ0) is displayed in Fig. 5.
Equation (3) shows that the reactive part of admittance has
a sharp peak at a small frequency � 	 νin since νin � �.
An anomalous behavior of the admittance Y (�) was obtained
also in Ref. [44] where also a short JJ was studied by another
method (tunnel Hamiltonian method and subsequent averaging
via the Dorokhov’s procedure) [45].

Lempitski analyzed nonstationary behavior of long
(ETh � �) S-n-S junctions and has shown that, in this case,
inelastic scattering rate also plays an essential role [46]. Such
ac properties of S-n-S JJs as fluctuations of voltage and
impedance at currents less than the critical one were analyzed
in Ref. [47]. The admittance of long S -n-S junctions in the
frequency range � � ETh/h̄ has been calculated in recent
papers [48,49], where an expression for Y (�) similar to Eq. (3)
has been obtained. This equation shows an anomalous behavior
of the admittance at low frequencies where the maximal value
of the admittance is determined by the energy relaxation
rate νin.

In the current paper, we calculate and analyze the admit-
tance of short JJs of two configurations. In Sec. II, we present
basic equations for quasiclassical Green’s functions which will
be used in Sec. III, where we consider a superconducting wire
or film in which the superconducting order parameter � is
suppressed locally so that the amplitude |�(x)| has a dip at
x = 0. At strong suppression, one can speak of a weak link.
This model has much in common with the so-called phase-slip
centers [50,51] or FFLO state in superconductors [34,35]. Far
away from the weak point x = 0, the ac condensate momentum
Q� is connected with an ac field E� via Eq. (2). Near this
point, the momentum Q� depends on coordinate, Q�(x), and
the gauge-invariant potential μ�(x) related to electron-hole
branch imbalance arises [52–55]. In this case, the electric
field is determined both by the gauge-invariant vector Q and
by the gradient of the potential ∇μ�(x) (see, for example,
Refs. [55,56]),

h̄
∂Q
∂t

= eE + ∇μ . (4)

The gauge-invariant quantities Q and μ are defined in terms
of the vector potential A and scalar electric potential V :

Q = 1

2
(∇χ − 2πA/�0) , (5)

μ = 1

2

(
h̄

∂χ

∂t
+ 2eV

)
, (6)

where χ is the phase of the order parameter and �0 = hc/2e is
the magnetic flux quantum. Substituting Eqs. (5) and (6) into
Eq. (4), we obtain the standard definition of the electric field
E in terms of potentials A and V , E = −(1/c)∂tA − ∇V .

On the basis of time-dependent Ginzburg-Landau equations
derived by Gor’kov and Eliashberg for gapless superconduc-
tors [57], we find both quantities Q�(x) and μ�(x), and
calculate the admittance of the system. We will show that
the last term at the right is comparable with the first one
and therefore can not be neglected as it was done in some
papers.

In Sec. IV, we consider a short S-c-S contact. By using a
rather general formula for admittance derived in Ref. [42], we
analyze the admittance of this JJ. (The authors of Ref. [42]
provided the expression Eq. (3) without considering arbitrary
frequencies and temperatures.) In this case, the electric field
E� is connected with the phase difference ϕ� in supercon-
ducting reservoirs S which are assumed to be in equilibrium.
We present the dependence Y (�) for different values of
constant phase difference 2ϕ0 and arbitrary frequencies. We
show that an interesting peculiarity in this dependence arises
near the point ϕ0 	 π/4 corresponding to the critical current
I c. Whereas the real part of admittance Y ′(�) = Re[Y (�)]
increases smoothly with increasing � at 2ϕ0 < π/2, it
has a maximum if the phase difference 2ϕ0 exceeds π/2.
Although the latter case corresponds to unstable points on
the curve IJ(ϕ0) in current-biased JJs, it can be realized
in phase-biased JJs making the predicted effect observable
[58,59].

In Conclusion, we discuss the possibilities to study ac
properties of the considered JJs experimentally. Note that a
hump in the real part of admittance Y ′(�) at high temperatures
and low � is much broader than the peak in Y ′(�) caused by
a resonance excitation of the AM in uniform superconductors
and is due to another mechanism [32].

II. BASIC EQUATIONS

In this section, we present basic equations for quasiclassical
Green’s functions including the Keldysh function which
is needed in a nonstationary case. These equations were
employed in our previous work for analysis of a uniform
case [32] and will be used for calculating the admittance
of a nonuniform superconductor, i.e., a short S -c-S JJ. We
have shown earlier that the AM can be excited even by a
weak ac field E(t) in the presence of a condensate flow. In
addition, it was shown that the resonance excitation of the AM
contributes to the admittance Y (�) of such a superconductor.
Unlike the experiments in terahertz frequency region [30,31],
the absorption of microwave ac field in superconductors was
measured long ago by Martin and Tinkham [60] and later on
by Budzinski et al. [61]. It was found that a peak near the
frequency � = 2�/h̄ arises by applying a magnetic field.
The formula describing correctly this peak was obtained
by the method of analytical continuation in Ref. [62], the
authors of which explained the maximum in the absorption
with a singularity in the density of states but did not relate
it with the resonance excitation of the amplitude (Higgs)
mode.
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Like in Ref. [32], we consider the diffusive limit in one-
dimensional geometry so that Q = (Q,0,0) . The current I�

and the gap perturbation δ�� are found from nonstationary
equations for matrix quasiclassical Green’s functions ǧ. These
equations, in the absence of a magnetic field, have the form
[55,63–67]

−iD∂x(ǧ∂xǧ) + i(τ̌3 · ∂t ǧ + ∂t ′ ǧ · τ̌3) + [
̌ ,ǧ]

= V (t)ǧ − ǧV (t ′) . (7)

The diagonal matrix elements of the matrix ǧ are the retarded
(advanced) Green’s functions ĝR(A), and the off-diagonal
element is the Keldysh function ĝ,

ǧ =
(

ĝR ĝ

0 ĝA

)
. (8)

The functions ĝR(A) and ĝ are 2 × 2 matrices in the
particle-hole space. All the functions depend on two times
t and t ′. The diagonal matrix 
̌ consists of matrices

̂R(A) = �iτ̂2 + iγ̂ R(A), where � is the superconducting gap
and γ̂ is a damping matrix. The matrix ǧ(t,t ′) obeys the
normalization condition

ǧ · ǧ ≡
∫

dt1ǧ(t,t1) · ǧ(t1,t
′) = 1̌δ(t − t ′) . (9)

The current in the diffusive limit is determined by the
expression

I(t) = −πσ

4e

∫
dt1Tr{τ̌3ǧ(t,t1)∇ǧ(t1,t)}K , (10)

where σ is the conductivity.
In equilibrium and in absence of a dc current, the Green’s

functions ĝR(A) and ĝ have the form

ĝR(A)
eq = [gτ̂3 + f iτ̂2]R(A) , (11)

ĝeq = (ĝR − ĝA) tanh(εβ) , (12)

where gR(A)
eq = (ε/�)f R(A)

eq = ε/ζR(A)(ε), β = 1/2T and

ζR(A)(ε) =
√

(ε ± iγ )2 − �2 . (13)

The matrices τ̂i are the Pauli matrices operating in the
particle-hole space. We calculate the impedance and the
gauge-invariant quantities Q and μ in the next section where
nonstationary Ginzburg-Landau equations [57] will be used
instead of more complicated Eqs. (7)–(9).

III. SUPERCONDUCTING WIRE WITH A LOCAL GAP
SUPPRESSION

We consider a one-dimensional superconducting wire or
film in which the superconducting order parameter � ∝ �

is locally suppressed, see Fig. 1(a). Our aim is to calculate
the impedance (or admittance) of this system. We describe
the system under consideration on the basis of nonstationary
Ginzburg-Landau equations that have been derived by Gor’kov
and Eliashberg [57] and were used in many papers. These
equations are valid for gapless superconductors with a high
concentration of paramagnetic impurities. In the normalized

FIG. 1. Schematic view of the system under consideration.
(a) The general suppression of the order parameter in a junction
and a general setup of a weak link of the length 2L � ξs and (b) a
short weak link (2L � ξs) with corresponding phases of the order
parameters in the superconductors forming the junction.

form they have the form

∂tf = ∂2
xxf + f [a(x) − f 2] − Q2f , (14)

νf 2μ = −∂xE , (15)

I = Qf 2 + E , (16)

∂tQ = E + ∂xμ . (17)

Here, f = |�|/|�∞| is the dimensionless modulus of the
order parameter �, where |�∞| = π

√
(T 2

c − T 2). The length
and time are measured in the units ξsf = √

12Dt0 and
t0 = h̄2/(2τsf�

2), where τsf is the spin-flip relaxation time.
The current I and the voltage V are measured in units of
σV0/ξsf and V0 = h̄/2et0. The gauge-invariant quantities Q
and μ are defined in Eqs. (5) and (6).

The magnitude of the relaxation rate ν of the normalized
potential μ depends on the choice of the model. In the model
of a gapless superconductor with paramagnetic impurities
considered in Ref. [57], ν = 12. The value of ν in conventional
BCS superconductors is much smaller [55]. The coefficient
a(x) describes a suppression of |�|, respectively, f . We
consider the simplest model when a(x) has the form

a(x) = 1 − a0δ(x) , (18)

where the parameter a0 can be either small (weak suppression
of f ) or large (strong suppression of f ). The reasons for the

134518-3



ANDREAS MOOR AND ANATOLY F. VOLKOV PHYSICAL REVIEW B 95, 134518 (2017)

suppression of � can be different. For example, a locally
enhanced concentration of paramagnetic impurities leads to
such a suppression. Note that the stationary and nonstationary
Josephson effects for large a0 have been studied in Ref. [68].
From Eq. (18), we find the matching condition

2∂xf (x)|x=0 = a0f (0) . (19)

In this section, we consider the case when only ac current
flows through the system. From Eqs. (14)–(18), one needs to
find a spatial dependence f0(x) in a stationary case and then
to determine the linear response to the ac current Iac(t) in the
system. Consider first the stationary case.

A. Stationary case

In absence of a constant current (I0 = 0), we need to find
a stationary solution only for Eq. (14) complemented by the
boundary condition Eq. (19) because the functions Q0, μ and
E vanish. The solution is

f0(x) = tanh X (20)

with X = κ0(|x| + x0) and κ2
0 = 1/2. The integration constant

X0 ≡ κ0x0 is found from the matching condition Eq. (19),

sinh(2X0) = 4κ0

a0
. (21)

In the case of weak (a0 � 1), respectively, strong (a0 � 1)
suppression, the constant X0 = κ0x0 is

X0 =
{

2−1 ln(8κ0/a0) , a0 � 1 ,

2κ0/a0 , a0 � 1 .
(22)

The dependence f0(x) is shown schematically in Fig. 1(a).
Next, we consider the nonstationary case.

B. Nonstationary case

Having determined the stationary function f0(x), we can
find the linear response, i.e., the functions Q�, μ�, and E� in
the presence of a weak ac current

Iac(t) = I� cos(�t) . (23)

We can linearize Eqs. (14)–(17). Far away from the point
x = 0, where the normalized order parameter f (x) → 1, we
obtain

E∞ = −i�

1 − i�
I� , (24)

Q∞ = 1

1 − i�
I� . (25)

Deviations from these values, δE� = E� − E∞ and
δQ� = Q� − Q∞, arise due to a local suppression of super-
conductivity at x = 0. We introduce a function E�(x) which is
connected with δE�(x) via the relation δE� = f0(x)E�. The
function E� obeys the equation (see Appendix A)[

−∂2
xx + ν(tanh2 X − i�) + 1

sinh2 X

]
E�

= −2iI��ν

(1 − i�) sinh(2X)
. (26)

The boundary condition at x = 0 for the function E� is

2∂xE�|0+ = −a0E�(0) . (27)

We need to solve Eq. (26) and to find an even function
E�(x) decaying to zero at x → ∞. The ac voltage δV� across
the junction is expressed through E� via

δV� = 2
∫ ∞

0
dx f0(x)E�(x) . (28)

The complex impedance of the system consists of two parts
Z� = Z�L + δZ�, where the first term is the impedance in
the absence of the weak link (a0 = 0) and the second term is
related to the presence of the local suppression

Z�L = −i�

1 − i�
2L , (29)

δZ� = δV�

I�

. (30)

Note that for small a0 the problem can be solved analytically.
Consider first this case.

1. Weak local suppression

As follows from Eq. (21), for small a0, we have
sinh X 	 exp[(|x| + x0)/

√
2] � 1. In the main approxima-

tion, Eq. (26) can be written in the form

− ∂2
xxE� + E�κ2

� = −4i�I�

ν exp[−√
2(|x| + x0)]

1 − i�
,

(31)

where κ2
� = ν(1 − i�). In the case of a small parameter a0, a

solution with continuous functions E�(x) and ∂xE�(x) is

E�(x) = −4ia0�νI�

(1 − i�)
(
κ2

� − 2
)

×
[

−
√

2

κ�

exp(−κ�|x|) + exp(−
√

2|x|)
]

× exp(−
√

2|x0|) . (32)

For the voltage δV� and the impedance δZ�, we obtain

δV� = a0
−i�I�

(1 − i�)2
(33)

and

δZ� = a0
−i�

(1 − i�)2
, (34)

respectively. Therefore the impedance variation
δZ� = δZ′

� + iδZ′′
� is given by

δZ′
� ≡ δR(�) = a0

2�2

(1 + �2)2
, (35)

δZ′′
� = −a0

�(1 − �2)

(1 + �2)2
. (36)
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The total resistance and the reactive part of the impedance of
the wire is

R(�) ≡ Z′(�) = �2

(1 + �2)

[
2L + 2a0

(1 + �2)

]
, (37)

Z′′(�) = − �

(1 + �2)

[
2L + a0(1 − �2)

(1 + �2)

]
. (38)

One can see that the active part of the impedance increases
due to a suppression of the order parameter f at x = 0. The
reactive part increases at � � 1 and decreases at � � 1, that
is, the variation of the reactive part δZ′′

� changes sign at � = 1.
It is of interest to find also the admittance Y (�) ≡ 1/Z(�)

. From Eqs. (30), (35), and (36) in the main approximation in
the parameter a0, we obtain

Y (�) = 1

2L

(
1 − 1 − a0/2L

i�

)
. (39)

This expression shows that the considered system can be
modelled as a conductance and an inductance connected in
parallel. The small gap suppression causes a small increase in
the inductance L = 2L/(1 − a0/2L) and does not change the
real part of the conductance.

2. Strong local suppression

At strong suppression (a0 � 1), the solution of Eq. (26),
which looks like the “Schroedinger” equation with a complex
potential, can be found numerically. In Figs. 2(a) and 2(b), we
plot the frequency dependence of the changes in the real and
imaginary parts of the impedance δZ′

� and δZ′′
� for different

values of a0. For small a0, the results of numerical calculations
and the analytical expressions given by Eqs. (35) and (36)
coincide.

We see that the resistance due to the weak link δR(�) is
positive and has a broad maximum at frequencies �m that
are slightly less than 1 (at small a0). The position of the
maximum shifts towards smaller �m with increasing a0 (when
a0 remains less than ≈2.5). The reactive part of the impedance
δZ′′

� changes sign at approximately the same frequencies.
At a0 � 2.5, the maximum value of δR(�) decreases with
further increase of a0, whereas the frequency �m increases
[see Fig. 2(a)]. The behavior of the reactive part δZ′′

� also
changes. It is worth noting that in the considered model of a
gapless superconductor, the parameter |�| is the amplitude of
the superconducting order parameter, but not the gap.

In Figs. 3(a) and 3(b), we display the spatial dependence
of the dimensionless electric field δE�(x) = f0(x)E�(x) and
compare it to the magnitude of the spatial derivative of
the gauge-invariant potential ∂xμ�(x) for two values of a0,
i.e., for a0 = 0.5 (weak suppression) and a0 = 2.4 (strong
suppression). One can see that these quantities may be
comparable in their values. This means that the electric field
E� is not determined only by the condensate momentum Q�

[see Eq. (2) which is valid in a uniform case] and that in
order to find the linear response of a superconductor with a
nonhomogeneous order parameter f (x), the potential μ�(x)
has to be calculated also along side with Q� if the ac electric
field E� is directed parallel to x axis. This statement is true,
for instance, for the case of the FFLO state (compare it with

FIG. 2. (a) Frequency dependence of the resistance variation
due to a superconductivity suppression. The numbers on the curves
denote, correspondingly, the values for a0, i.e., (1) a0 = 0.5, (2) 1.0,
(3) 2.0, and (4) 5.0. (b) Frequency dependence of the variation of the
reactive part of impedance due to a superconductivity suppression.
The numbers on the curves denote, correspondingly, the values for
a0, i.e., (1) a0 = 0.5, (2) 1.0, (3) 2.2, (4) 2.4, (5) 2.6, and (6) 2.8. The
inset shows the enlarged part of Im(Z) at � � �.

Ref. [33], where the optical conductance of a nonhomogeneous
superconductor was calculated in the gauge with A 
= 0 and
V = 0 so that μ = 0).

IV. S-c-S CONTACT

In this section, we consider short Josephson junctions of the
S-c -S or S-n-S types in the dirty limit, i.e., in the limit τTc � 1,
where τ is the momentum relaxation time. We also assume that
there are no barriers at the S -c interfaces. In the considered
model, two superconducting reservoirs S are connected by a
narrow constriction. Since the length of the constriction 2L is
assumed to be less than the coherence length ξS 	 √

D/Tc,
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FIG. 3. Frequency dependence of the electric field variation
δE�(x) = f0(x)E�(x) and the derivative ∂xμ�(x) as well as their ratio
for (a) a0 = 0.5 and (b) 2.4. In both cases, the frequency � = 0.8�.
All quantities are correspondingly normalized, see Eqs. (14)–(17).

that is, the Thouless energy is large (D/L2 � Tc), it does not
matter whether the constriction is normal or superconducting.

Formula for the impedance Z(�) in this case has been ob-
tained by one of the authors (in collaboration with Artemenko
and Zaitsev) in 1979 [42] on the basis of microscopic theory of
the Josephson effects in these JJs, but it has not been analyzed
in detail. Here, we reproduce the main steps of the derivation
of this expression, correct typos in Ref. [42] and analyze the
admittance of the short S-c-S JJs in more detail. (The signs
in Eq. (29) of Ref. [42] should be changed in such a way
that expressions in the curly brackets in Eqs. (27) and (29)
coincide with each other if the functions gA(ε−) in Eq. (27)
are replaced by gR(ε−). The imaginary unit i in front of the
right-hand side of Eq. (29) has to be dropped. The last term
in Eq. (31) should have the form h̄iωϕω/2eR. Note that ω

in Ref. [42] corresponds to −�.) Note that the admittance
of a similar S-c -S contact has been calculated and analyzed
in a recent paper [44], where another model and method of
calculations were used.

The microscopic theory developed in Ref. [42] is based on
the generalized Usadel equation, Eq. (7), which describes the
spatial dependence of the Green’s functions ǧ(x,t,t ′) in the
constriction. These functions are assumed to be continuous
at the S-c and c-S interfaces (no potential barriers at these
interfaces).

In the considered limit of a short junction, one can neglect
all the terms in Eq. (7) except the first one and we obtain for
the “anisotropic” part

ǎ = −lǧ∂xǧ = const . (40)

That is, the matrix ǎ does not depend on the coordinate x. The
current I through the considered JJ is expressed through the
anisotropic part of the Keldysh function â as follows

I (t) = −πσ

4e

∫
dt1Tr{τ̂3ĝ∂x ĝ}K . (41)

A formal solution of Eq. (40) is (for brevity we drop the
temporal indices t and t ′)

ǧ(x) = ǧ(0) exp(−ǎx/ l) . (42)

As follows from Eq. (9), the matrices ǎ and ǧ(0) anti-
commute and ǧ(0) · ǧ(0) = 1̌. Thus, introducing the matrices
Ǧ(±) ≡ [Ǧ(L) ± Ǧ(−L)]/2 and using Eq. (42), we obtain

Ǧ(+) = ǧ(0) cosh(ǎL/l) , (43)

Ǧ(−) = ǧ(0) sinh(ǎL/l) , (44)

where Ǧ(±L) ≡ Ǧ(±) are the known matrix Green’s functions
in the reservoirs. From this equation, we find

ǎ = − l

2L
arsinh[2Ǧ(+) · Ǧ(−)] . (45)

In particular,

âR(A) = −(l/2L)arsinh[2Ĝ(+) · Ĝ(−)]R(A) . (46)

The matrices [ĝ(±)]R(A) are expressed in terms of the
retarded (advanced) Green’s functions in the reservoirs
ĝR(A)(±L) ≡ ĜR(A) that are known and have the form

ĜR(A)(±L) = Ŝ(t,±L) · Ĝ
R(A)
0 (t − t ′) · Ŝ†(t ′,±L) . (47)

Here, we introduce the transformation matrix
Ŝ(t,±L) = exp(iτ̂3ϕ(t,±L)/2) in order to take into account
the presence of the phase of the superconducting order
parameter in the banks ϕ(t,±L) = ±[ϕ0 + ϕac(t)]. The
Green’s functions Ĝ

R(A)
0 (ε) in reservoirs in the absence of

phase difference coincide with the matrices ĝR(A)
eq defined in

Eq. (11). Consider first the stationary case.

A. Stationary case

In the equilibrium case [ϕac(t) = 0], the Keldysh function
â depends only on the time difference (t − t ′) and its Fourier
component is

â(ε) = [
âR

0 (ε) − âA
0 (ε)

]
tanh(εβ) , (48)
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where β = 1/2T . The matrices âR(A)(ε) are found from
Eqs. (46) and (47),

â
R(A)
0 (ε) = − l

L
[� cos ϕ0τ̂3 + εiτ̂2]bR(A)(ε) (49)

with

bR(ε) = i

ζ̃ R(ε)
arsinh

[
� sin ϕ0

ζR(ε)

]
(50)

and ζ̃ R(ε) =
√

(ε + iγ )2 − �2 cos2 ϕ0. The function ζR(ε) is
defined in Eq. (13).

In obtaining Eq. (49), we used the relation

arsinh

[
2�ζ̃R(ε) sin ϕ0

[ζR(ε)]2

]
= 2arsinh

[
� sin ϕ0

ζR(ε)

]
, (51)

and the expressions for {Ĝ(+)}R(A) and {Ĝ(−)}R(A), which
directly follow from Eq. (47),

{Ĝ(+)}R(A) = {G(ε)τ̂3 + F (ε)iτ̂2 cos ϕ0}R(A) , (52)

{Ĝ(−)}R(A) = {F (ε)iτ̂1 sin ϕ0}R(A) . (53)

Thus the Josephson dc current IJ can be easily found from
Eqs. (41) and (48). The integration over energy ε can be
transformed to the summation over Matsubara frequencies
ω > 0 for the first term in Eq. (48) and over negative ω for the
second term. As a result we obtain

IJ = Ic(ϕ0) sin(2ϕ0) , (54)

where the critical current Ic also depends on the phase
difference 2ϕ0 and is determined by the expression [43]

Ic(ϕ0) = 2πT

eR

∑
ω>0

�

ζ̃ω(ϕ0) sin ϕ0
arcsin

(
� sin ϕ0

ζω

)
, (55)

where R−1 = σS/2L with the cross section area of the
junction S.

One can see that near Tc, when
arcsin(� sin ϕ0/ζω) 	 � sin ϕ0/ω and ζ̃ω(ϕ0) 	 ω, the
critical current does not depend on the phase difference
2ϕ0 and is equal to Ic = (π/4)(�2/eT R) [43]. At low
temperatures, the phase dependence of the Josephson current
deviates from the sinusoidal one.

B. Nonstationary case

In this section, we find a linear response of the system to
ac phase variation ϕ�. To do this, we need to find a deviation
of the Keldysh component δâ = â − â0 due to variation ϕ�. It
can be written in the form

δâ = δâR tanh(ε−β) − tanh(ε+β)δâA + âan . (56)

The first two terms represent a regular part, which is an
analytical function in the upper (lower) half-plane, and the
last term is a nonanalytical “anomalous” part [55,57].

Therefore the current I through the S-c-S JJ can be written
in the form

I� = I
reg
� + I an

� , (57)

where

I
reg
� = ϕ�

8eR

∫
d ε̄[jR(ε+,ε−) tanh(ε−β)

− tanh(ε+β)jA(ε+,ε−)] (58)

and

I an
� = ϕ�

8eR

∫
d ε̄j an(ε+,ε−)[tanh(ε−β) − tanh(ε+β)] . (59)

The functions jR and j an(ε) are determined as follows (see
Appendix B):

jR(ε+,ε−)

= [b(ε+)[(G+−G−)ε+−(F+ + F−)� cos2 ϕ0]]R

[F (ε+)−F (ε−) sin ϕ0]R

+ [b(ε−)[(G(ε+)−G(ε−))ε−+(F++F−)� cos2 ϕ0]]R

[F (ε+)−F (ε−) sin ϕ0]R
,

(60)

j an = bR(ε+)[(GR
+ − GA

−)ε+ − (FR
+ + FA

− )� cos2 ϕ0]

[FR(ε+) − FA(ε−) sin ϕ0]

+ bA(ε−)[(GR
+ − GA

−)ε− + (FR
+ + FA

− )� cos2 ϕ0]

[FR(ε+) − FA(ε−) sin ϕ0]
.

(61)

Equations (57)–(61) together with the Josephson relation
(we assume the equilibrium state in the S reservoirs),

V� = (h̄/2e)(−i�)ϕ� , (62)

determine the admittance of the system Y� = I�/V�.
One can see that at low frequencies and temperatures

Re[Y (�)] is zero. Indeed, one can represent tanh(ε±β) in the
form tanh(ε±β) 	 tanh(ε̄β) ± (�/2) cosh−2(ε̄β). Taking into
account that at |ε̄| � � cos(ϕ0) ζ̃ R = ζ̃ A = i

√
�̃2 − ε2 and

ζR = ζA = i
√

�2 − ε2 coincide, we obtain that GR = GA

and FR = FA. This means that the part of the regular “cur-
rents” −(jR + jA)(�/2) cosh−2(ε̄β) cancels the anomalous
“current” j an(�/2) cosh−2(ε̄β). The remaining part of the
regular “current,” (jR − jA) tanh(ε̄β), contribute only to the
imaginary part of the admittance Im[Y (�)].

In Fig. 4(a), we displayed the frequency dependence of
the product Y ′(�)� (where � is normalized to 2�) which
is proportional to the kernel Q(�) in Fig. 8 of Ref. [4],
where the kernel Q has been calculated for a uniform
dirty superconductor. In Fig. 4(b), we present the frequency
dependence of the real part of admittance Y ′(�) (normalized
to its value in the normal state) at low temperatures for various
values of the phase difference 2ϕ0. One can see that Y ′(�)
increases with increasing � if the frequency � exceeds a
threshold value �Th which depends on ϕ0. In the absence of the
phase difference (no supercurrent flows through the JJ) we have
�Th = 2�/h̄. The curves correspond to cos(2ϕ0) = 1 (red),
0.87 (black), 1/

√
2 (green), and 0 (blue). At low temperatures,

the real part of the admittance Y ′(�) increases monotonously
with increasing � if the latter exceeds 2� and ϕ0 � ϕc, where
ϕc is the phase difference corresponding to critical current. At
ϕ0 > ϕc, the admittance has a maximum at small �.
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FIG. 4. (a) Frequency dependence of the product Y ′(�) · �,
which corresponds to the kernel Q(�) in Fig. 8 of Ref. [4]. (b)
Frequency dependence of the real part of admittance Y ′(�) at low
temperatures for various values of the phase difference 2ϕ0. One
can see that Y ′(�) increases with increasing � if the frequency �

exceeds a threshold value �Th which depends on ϕ0. In the absence
of the phase difference (no supercurrent flows through the JJ), we
have �Th = 2�/h̄. The curves correspond to cos(2ϕ0) = 1 (red), 0.87
(black), 1/

√
2 (green), and 0 (blue). At low temperatures, the real part

of the admittance Y ′(�) increases monotonously with increasing �

if the latter exceeds 2� and ϕ0 � ϕc, where ϕc is the phase difference
corresponding to critical current. At ϕ0 > ϕc, the admittance has a
maximum at small �.

As we noted in Introduction, an interesting behavior of
the admittance takes place at low � and high temperatures
(T � �). The main contribution to the real part Y ′(�) [see
Eq. (57)] stems from j an. Integration over large energies

FIG. 5. The form of the function of P (ϕ0) .

ε (ε � �) gives the second term 1/R at the right hand
side of Eq. (3). In this case, FR(ε+) 	 −FA(ε−) 	 �/ε,
GR(ε+) 	 −GA(ε−) 	 1, and bR 	 bA 	 i� sin ϕ0/ε

2. The
largest contribution occurs due to the first terms in the square
brackets in Eq. (61). Integrating these terms,

I an
1� = iϕ�

4eR

∫
d ε̄[tanh(ε+β) − tanh(ε−β)]

	 i�ϕ�

2eR

∫ ∞

0
d ε̄ cosh−2(ε̄β) = V�

R
, (63)

we obtain the main contribution to the admittance 1/R.
The second important contribution to Y ′(�) stems from the

second term in the square brackets at the right hand side of
Eq. (61) in the energy interval

�̃ = � cos ϕ0 � ε � � . (64)

In this interval, we have
FR(ε+) − FA(ε−) 	 (�/2 + iνin)∂εF

R , ζ̃ R = −ζ̃ A and
arsinh(� sin ϕ0

ζR ) + arsinh(� sin ϕ0

ζA ) = −iπ . Therefore, setting

cosh−2(εβ) ≈ 1, we obtain at T � �

I an
2� = 2eV�

h̄

π�2

2T

γε−i�

γ 2
ε +�2

cos2 ϕ0

sin ϕ0

∫ 1

cos ϕ0

d x
1 − x2

x
√

x2 − cos2 ϕ0

= 2eV�

h̄
Ic

γε − i�

γ 2
ε + �2

P (ϕ0) , (65)

where νin = γε/2. Thus the admittance is given by Eq. (3) with
the function P (ϕ0) equal to

P (ϕ0) = cot(ϕ0)[2ϕ0 − sin(2ϕ0)] . (66)

The function P (ϕ0) is shown in Fig. 5. The integral in
Eq. (63) can be calculated for any temperatures if the factor
cosh−2(εβ) in the integrand is taken into account, i.e., not using
the approximation cosh−2(εβ) ≈ 1. Therefore the deviation
δY ′(�) of the real part of the admittance Y ′(�) from its value
in the normal state (1/R) is

δY ′(�)R = 2eIcR

h̄

γε

γ 2
ε + �2

P (ϕ0) . (67)

The normalized deviation δỸ ′(�) ≡ δY ′(�)R
has a maximum at � = 0 with a magnitude
δỸ ′(�)max 	 2eIcR/h̄νin 	 �2/(T h̄νin) which can be
much larger than 1. The enhancement of the admittance,
Eq. (67), is caused by quasiparticles with energies in the
interval defined by Eq. (64).
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FIG. 6. Density of states as a function of the coordinate x̃ = x/L:
(a) for cos(ϕ0) < E < 1 with the curves corresponding to the values
E = 0.51 (long-dashed orange) and E = 0.9 (solid green); (b) for
E > 1 with the curves corresponding to the values E = 1.05 (long-
dashed red), and E = 1.9 (solid blue). The short-dashed black curve
denotes in both cases the value N = 1. We set cos ϕ0 = 0.5.

It is of interest to calculate the density of states (DOS)
N (ε,x) in the junction and its spatial dependence. Note that this
dependence cannot be found in tunnel Hamiltonian approach.
The function N (ε,x) is zero at energies |ε| � �̃, but is finite
at energies |ε| � �̃. In this energy range, �̃ � |ε| � �, the
DOS N<(ε,x) is given by (see Appendix C and Ref. [69])

N<(ε,x) = |ε|√
ε2 − �̃2

cosh(x̃ ln M<) cos

(
π

2
x̃

)
, (68)

where the function M< is

M< = � sin ϕ0 +
√

ε2 − �2 cos2 ϕ0√
�2 − ε2

. (69)

We plot the DOS N<(ε,x) for different E ≡ ε/� in
Fig. 6(a). As it should be, at x = ±L, the DOS turns to zero.
At energies ε below the gap �̃ (|ε| � �̃) in the center of the
junction, the DOS is also zero. Above the gap � (|ε| � �),
the DOS is

N>(ε,x) = |ε|√
ε2 − �̃2

cosh(x̃ ln M>) , (70)

where

M> = � sin ϕ0 +
√

ε2 − �2 cos2 ϕ0√
ε2 − �2

. (71)

The DOS N>(ε,x) for different E is shown in Fig. 6(b).

FIG. 7. Density of states as a function of the normalized energy
E = ε/� for different values of the coordinate x̃ = x/L, i.e., x̃ = 0
(solid red), 0.5 (dashed blue), and 0.9 (dash-dotted green). We set
cos ϕ0 = 0.5.

In Fig. 7, we plot the dependence of the DOS on the energy
E ≡ ε/� for different values of x̃. In a ballistic case, the
function N (ε) has sharp peaks at energies corresponding to
the positions of Andreev’s levels. In the considered diffusive
case these peaks are smeared out by impurity scattering so that
the dependence N (ε) is a smooth curve having singularities at
the edges, ε = � cos ϕ0 and ε = �.

V. CONCLUSIONS

We analyzed the admittance Y (�) of short weak links of
two types. The first one is a one-dimensional superconducting
wire with a local suppression of the superconducting order
parameter |�|. This system resembles a phase-slip cen-
ter or a one-dimensional Larkin-Ovchinnikov-Fulde-Ferrell
structure. We calculated Y and the impedance Z = Y−1

on the basis of nonstationary Ginzburg-Landau equations
[57]. Alternating-current current through this wire induces a
condensate momentum Q� and an inhomogeneity of |�| leads
to branch imbalance nimb and to the appearance of another
gauge-invariant quantity, the potential μ, proportional to nimb.

As we mentioned in Introduction, the branch-imbalance,
i.e., the unequal population of the electron- and holelike
branches of the excitation spectrum, arises in nonuniform
superconductors when a conversion of the supercurrent jS into
the quasiparticle current jN takes place (see Refs. [52–55]).
The typical examples of such a conversion are the passage
of the charge current through the S/N boundary [54,70,71],
or collective phase mode, i.e., Carlson-Goldman mode [72],
in uniform superconductors [55,73–75]. In the latter case,
nonuniform perturbations of the currents jN and jS propagate
with a finite wave vector k converting into each other so that
the total current density j = jN + jS is not perturbed, j = 0.

The electric field E, which arises in the wire (see Fig. 1),
is caused by both quantities, Q� and ∂xμ so that neither of
these quantities can be neglected (compare with a recent paper,
Ref. [33], where only the quantity Q ∝ A was taken into
account). The real part of the impedance Z′ has a maximum
at some frequency �m, which decreases with increasing
suppression of |�|.

We also analyzed ac properties of short Josephson S-c-S
weak links. The admittance Y (�) is described by an expression
that has been obtained on the basis of microscopic equations
for quasiclassical Green’s function in the Keldysh technique
[42]. The obtained dependence Y (�) is valid in a wide range of
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the frequencies � and temperatures T provided the Thouless
energy ETh = D/L2 exceeds �, T , and h̄�.

At low temperatures T , the absorption is absent (Y ′ = 0) if
the energy of photons h̄� is less than the lowest energy gap
in the center of the constriction �̃ = � cos ϕ0. With increas-
ing the difference (h̄� − �̃), the absorption monotonously
increases if the phase difference 2ϕ0 is less than the phase
difference 2ϕc corresponding to a maximum of the Josephson
current IJ = Ic. In the interval 2ϕc < 2ϕ0 < π , the dependence
of Y ′(�) has a maximum.

The hump in the obtained dependence Y ′(�) is much
broader than the peak in absorption in a current-carrying
superconductor [32]. The mechanisms causing these maxima
are different. In the first case, the maximum stems from
excitation of quasiparticles with energy range defined by
Eq. (64). These quasiparticles are bound in a potential well
within the constriction. In the second case, in Ref. [32], the
peak is related to a resonance excitation of the Higgs mode by
an ac field.

The anomalous enhancement of the real part of the
admittance Y ′(�) at low frequencies � described by Eq. (67),
is caused by interference of Cooper pairs and quasiparticles
with energies in the interval determined by Eq. (64). These
quasiparticles experience multiple Andreev reflections. In
the ballistic case, the quasiparticles occupy Andreev’s levels
[76–78]. In the diffusive case, these levels are broadened by
impurity scattering [44,79] so that the peaks in the DOS
N (ε,x) corresponding to Andreev’s levels disappear, and
the function N (ε,x) is a smooth function with singularities
at ε = � cos ϕ0 and ε = �. In the latter case, anomalous
behavior of low-energy quasiparticles results in a singularity
of dc conductance at V → 0 [79].

The enhancement of Y ′(�) at low frequencies results in an
enhancement of the supercurrent noise because the real part
of admittance and spectral function of noise are connected
by the fluctuation-dissipation theorem. The anomalous noise
in Josephson weak links has been studied in detail in many
papers [80–85].

Note an important circumstance. In a current-biased S-c-S
JJ, the states with phase difference 2ϕc < 2ϕ0 are unstable, so
that it is impossible to observe a nonmonotonous dependence
of absorption in these junctions. However, in recent experi-
ments [58,59], it was shown that the phase difference 2ϕ0 in
the interval

2ϕc < 2ϕ0 < π (72)

is reachable. Thus it would be interesting to observe a
nonmonotonous dependence of absorption in such JJs by
appropriate adjustment of the phase difference 2ϕ0 with the
help of an external magnetic field. In these experiments,
the S-c-S Josephson weak link was incorporated into a
superconducting loop. The phase difference is determined by
a magnetic field H0 through this loop,

2ϕ0 = 2π

(
n + �

�0

)
, (73)

where � = H0S + LIJ is the magnetic flux through the loop,
and S respectively L are the area respectively inductance of
the loop.

Therefore, the absorption can be studied in the setup used
in Ref. [59] if the magnetic field contains not only dc but also
an ac component, H (t) = H0 + H� cos(�t). Qualitatively, our
results are applicable to the system studied in Ref. [59] because
the length of the constriction 2L (2L ≈ 160 nm) is comparable
with the coherence length ξS ≈ 100 nm. By varying H0, one
can change the phase ϕ0 using the relation in Eq. (73) and study
the absorption of the ac component H� cos(�t) as a function
of the frequency �.

At high temperatures (T � �), the main contribution
to the admittance Y� occurs due to the anomalous term.
Quasiparticles with large enough energies (ε � �) yield the
admittance Y ′ approximately equal to that in the normal state
Y ′

n = 1/R, whereas quasiparticles with energy range defined
by Eq. (64) lead to an enhanced admittance δY ′ at low �,
which can exceed Y ′

n by �/γin times. The dependence of δY ′
on dc current (or phase difference) is described by an analytical
expression, see Eq. (67).
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APPENDIX A: GINZBURG-LANDAU EQUATION

Linearizing Eqs. (14)–(17), we obtain the set of equations
for the function δE�:

νf 2
0 (x)μ� = −∂xδE� , (A1)

δQ�f 2
0 (x) + Q∞

[
f 2

0 (x) − 1
] = −δE� , (A2)

−i�δQ� = δE� + ∂xμ� . (A3)

Excluding δQ� and μ�, we get

δE�ν
[
f 2

0 (x) − i�
] −

[
∂2
xxδE� − 2

∂xf0(x)

f0(x)
∂xδE�

]

= −i�Q∞ν
[
1 − f 2

0 (x)
]
. (A4)

One can exclude the first derivative ∂xδE� via the transfor-
mation δE� = f0(x)E�. Thus an “effective electric field” E�

satisfies the equation

−∂2
xxE�+E�

[
ν
(
f 2

0 (x) − i�
)+2

(
∂xf0(x)

f0(x)

)2

− ∂2
xxf0(x)

f0(x)

]

= −i�I�

ν
[
1 − f 2

0 (x)
]

f0(x)[1 − i�]
. (A5)

Using the expression Eq. (20) for f0(x), we obtain Eq. (26).
At x = 0, the function E� is continuous, while ∂xE� has a

jump. It can be found directly from Eq. (19),

[∂xE�] = 2∂xE�|0+

= −∂xf0(x)

f0(0)
E�(x)|x=0

= −a0E�(0) , (A6)

where [∂xE�] ≡ ∂x(E�|x=0+ − E�|x=0−), see also Eq. (27).
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APPENDIX B: EXPRESSION FOR THE CURRENT

In the first step, it is necessary to find the functions δâR(A).
From the normalization condition Eq. (9), we get

[â · ĝ + ĝ · â]R(A) = 0 . (B1)

Linearizing this equation, we obtain for deviations caused by
the ac perturbation of the phase ϕ�,

[δâ · ĝ + ĝ · δâ]R(A) = −[â0 · δĝ + δĝ · â0]R(A) , (B2)

where the matrices â
R(A)
0 are determined by Eq. (49). We took

into account that neither â0 nor δâ do not depend on the
coordinate x. Then, we subtract Eq. (B2) from itself taken
at different points x = ±L,

[δâ · Ĝ(−)
ϕ + Ĝ(−)

ϕ · δâ]R(A) =−[â0 · δĜ(−) + δĜ(−) · â0]R(A) .

(B3)

The matrix Ĝ(−)
ϕ is defined as

Ĝ(−)
ϕ = [Ĝϕ(L) − Ĝϕ(−L)]R(A)/2 (B4)

with ĜR(A)
ϕ (±L)= [G(ε)τ̂3+F (ε)i(τ̂2 cos ϕ0±τ̂1 sin ϕ0)]R(A),

and, thus, the matrix Ĝ(−) is given by Eq. (53).
The deviation δĜ(−) due to a small phase perturbations ϕ�

is found from Eq. (47),

δĜ(−) = δ[(1 + iτ̂3ϕ�)Ĝ(−)
st (1 − iτ̂3ϕ�)]

= ϕ�i[−τ̂0(G+ − G−) + τ̂1(F+ + F−) cos ϕ0] , (B5)

where G± ≡ G0(ε±), ε± = ε̄ ± �/2. As follows from
Eq. (41), we need to find Tr{τ̂3â}. Thus, multiplying Eq. (56)
by iτ̂2 and calculating the trace, we find

1

2
Tr{τ̂3â}R(A) = lϕ�{(b+ε+ + b−ε−)(G+ − G−) − � cos2 ϕ0(F+ + F−)(b+ − b−)}R(A)

L(F+ − F−)R(A) sin ϕ0
. (B6)

The same equation holds for Tr{τ̂3â
an} if all functions like GR

−
in Eq. (B4) for âR are replaced by GA

−.

APPENDIX C: DENSITY OF STATES IN AN S-c-S
TYPE CONTACT

The density of states is determined by the expression

N (ε) = 1
4 Tr{τ̂3(ĝR(ε,x) − ĝA(ε,x))} , (C1)

where ĝR(A)(ε,x) are determined by Eq. (42), which can be
written in the form (dropping the indices R(A))

ĝ(ε,x) = ĝ(ε,0){cosh[l−1xâ(ε)] − sinh[l−1xâ(ε)]} , (C2)

where the functions cosh[l−1xâ(ε)] and sinh[l−1xâ(ε)] can be
presented as follows:

cosh[l−1xâ(ε)] = cosh

(
x

L
A

)
, (C3)

sinh[l−1xâ(ε)] = m̂

iζ̃ (ε)
sinh

(
x

L
A

)
, (C4)

where we defined A = arsinh[ζ−1(ε)� sin ϕ0] = ln M with
M = ζ−1(ε)[� sin ϕ0 + ζ̃ (ε)], and m̂ = �̃τ̂3 + εiτ̂2. We used
the expression for the matrix â from Ref. [42],

â = − il

Lζ̃ (ε)
m̂A . (C5)

The matrix ĝ(ε,0) is found from Eq. (44),

ĝ(ε,0) = Ĝ(+)

cosh A
. (C6)

Therefore, Eq. (C2) can be written in the form

ĝ(ε,x) = Ĝ+
cosh A

[
cosh(x̃A) + m̂

iζ̃ (ε)
sinh(x̃A)

]
. (C7)

Using Eq. (C1), we obtain for the density of states

N (ε,x) = 1

2

{[
g(ε)

cosh(x̃ ln M)

cosh(ln M)

]R

−
[
g(ε)

cosh(x̃ ln M)

cosh(ln M)

]A}
. (C8)

One can easily show that cosh(ln M) = ζ̃ (ε)ζ−1(ε). Therefore
the density of states N (ε,x) for |ε| � � when ζ̃ R(ε) = −ζ̃ A(ε)
can be written as follows:

N (ε,x) = |ε|
2ζ̃ (ε)

{[cosh(x̃ ln M)]R + [cosh(x̃ ln M)]A
}
.

(C9)

Consider two cases.
(1) |ε| � �. In this case, MR = [MA]−1 ≡ M>, where

M> = ζ−1
> (ε)[� sin ϕ0 + ζ̃>(ε)] with ζ̃>(ε) =

√
ε2 − �̃2, and

ζ>(ε) = √
ε2 − �2. We obtain

N (ε,x) = |ε|
ζ̃ (ε)

cosh(x̃ ln M>)

= |ε|
2ζ̃ (ε)

[Mx̃
> + M−x̃

> ] . (C10)

(2) �̃�|ε|��. In this case, MR= − iζ−1
< (ε)[� sin ϕ0 +

ζ̃>(ε)] ≡ −iM< and MA = −iζ−1
< (ε)[� sin ϕ0 − ζ̃>(ε)], and

one can write the sum in Eq. (C9) in the form

[cosh(x̃ ln M)]R + [cosh(x̃ ln M)]A

= 2 cosh

[
x̃

2
(MR + MA)

]
cosh

[
x̃

2
(MR − MA)

]
(C11)

= 2 cos

(
πx̃

2

)
cosh[x̃ ln M<] . (C12)

Combining Eqs. (C9)–(C11), we obtain Eq. (68).
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