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Stability of the boundary zero modes in one-dimensional topological superconductors

K. V. Samokhin and B. P. Truong
Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada

(Received 16 January 2017; published 24 April 2017)

We calculate the spectrum of the Andreev bound states in a one-dimensional superconductor with a strong
Rashba spin-orbit coupling. We focus on the fate of the zero-energy Andreev modes in the presence of time
reversal symmetry breaking perturbations, both at the boundary and in the bulk. It is shown that the zero modes
are destroyed by time reversal symmetry breaking fluctuations, even if the mean-field state of the system is
time-reversal invariant and topologically nontrivial.
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I. INTRODUCTION

For more than three decades, topological quantum systems
have remained at the center of attention in condensed matter
physics [1]. These diverse systems, from a two-dimensional
(2D) electron gas exhibiting the integer quantum Hall effect
[2], to chiral p-wave superconductors and superfluids [3],
to topological band insulators [4,5], all share one common
feature: the quantum states in the bulk fall into distinct
classes characterized by various topological invariants, which
are robust under sufficiently small perturbations. The choice
of the bulk invariant is determined by the symmetry and
dimensionality of the system, with a particularly important
role played by time-reversal symmetry (TRS). According
to Ref. [6], for single-particle Hamiltonians the topolog-
ical invariant either takes an integer value or is a Z2

quantity, although this may be significantly modified by
interactions [7].

There is a widely held belief that a nontrivial topology of
the bulk manifests itself in the presence of protected gapless
quasiparticle states localized near the boundary of the system,
which is known as the bulk-boundary correspondence [3].
Archetypal examples include the current-carrying chiral edge
states in the quantum Hall [8] or topological band insulators
[4] and also the Andreev bound states (ABS) in the chiral
p-wave [9] and the nodal d-wave superconductors [10]. In
some cases, it is possible to obtain an explicit analytical
relation between the number of the zero-energy modes and
a certain topological invariant in the bulk [11]. For instance,
the quantum-Hall edge states are related to the first Chern
number of the 2D Brillouin zone, which is also known as
the TKNN integer, after Ref. [2], while the dispersionless
surface ABS in TR-invariant unconventional superconductors
are controlled by the phase winding number of the determinant
of the off-diagonal Bogoliubov–de Gennes (BdG) Hamiltonian
[12]. Note, however, that there are some recent results [13]
that call into question the universality of the bulk-boundary
correspondence, at least in the Z2 case.

The extent to which the zero modes are “protected”,
i.e., insensitive to the boundary details, is one of the less-
understood aspects of the bulk-boundary correspondence.
Given the crucial role played by TRS, of particular interest
here is the fate of the zero modes in the situations when
the bulk is TR invariant, while the boundary is not. The
goal of this paper is to study the effects on the ABS of (i)
the magnetic boundary scattering and (ii) an intrinsic TRS

breaking in the superconducting state, both at the mean-field
level and also including fluctuations. One can capture the
essential physics by looking at a half-infinite one-dimensional
(1D) superconductor in contact with a ferromagnetic in-
sulator. In contrast to previous works, see Ref. [14], we
do not consider the TRS breaking by an applied magnetic
field.

The 1D (or rather, quasi-1D) superconductivity can be
realized in a metallic quantum wire on a substrate. The pairing
interaction can be either intrinsic to the wire or extrinsic,
i.e., induced by the substrate. Inversion symmetry is absent
in this system and a crucial role is played by the Rashba
spin-orbit (SO) coupling of the electrons in the wire with
the asymmetric substrate potential; see Refs. [15,16] and the
references therein. The Rashba SO coupling lifts the spin
degeneracy of the electron states, producing nondegenerate
Bloch bands labeled by “helicity”, with the wave functions
characterized by a nontrivial momentum-space topology.
Its profound consequences for superconductivity have been
extensively studied in the last decade; see Refs. [17–19] for
reviews.

The paper is organized as follows. The structure of the
single-electron bands and the superconducting pairing in a
1D Rashba wire are discussed in Sec. II. In Sec. III, we
present the semiclassical derivation of the ABS spectrum,
which is expressed in terms of the boundary scattering matrix.
The latter is calculated in Sec. IV. Stability of the ABS
zero modes against TRS-breaking perturbations is studied
in Sec. V. Throughout the paper we use the units in which
h̄ = kB = 1, neglecting, in particular, the difference between
the quasiparticle momentum and wave vector.

II. SUPERCONDUCTIVITY IN 1D
NONDEGENERATE BANDS

We consider a quasi-1D electron gas on a xy-plane sub-
strate. Neglecting the lattice periodicity, the three-dimensional
(3D) potential U (x,y,z) affecting the electrons is constant in x

direction, but confining in both y and z directions. This system
is TR invariant in the normal state but lacks an inversion center,
because the substrate breaks the z → −z mirror reflection
symmetry. The momentum space is one-dimensional, labeled
by the wave vector k = kx x̂, where −∞ < kx < ∞.

The simplest Hamiltonian that captures the essential fea-
tures of the electronic band structure in a noncentrosymmetric
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FIG. 1. The 1D helicity bands and the Fermi points.

1D system has the following form:

Ĥ0 =
∑
kx

∑
s,s ′=↑,↓

[ε0(kx)δss ′ + γ (kx)σ ss ′ ]b̂†kx ,s
b̂kx ,s ′ . (1)

This is the 1D version of the well-known Rashba model [15].
The first term describes a single spin-degenerate band, for
which we use the effective mass approximation:

ε0(kx) = k2
x

2m∗ − εF , (2)

where εF = k2
F /2m∗ is the Fermi energy (the difference

between εF and the chemical potential is neglected). The
second term in Eq. (1) is the asymmetric SO coupling, with σ̂

being the Pauli matrices. While the momentum space is 1D,
the spin space is still 3D, so that the asymmetric SO coupling
is described by the 3D pseudovector γ (kx), which is real and
odd in kx due to the TRS. The simplest expression compatible
with both requirements is

γ (kx) = akx, (3)

with a real a. In the absence of additional mirror reflection
symmetries of the confining potential [20], there are no further
constraints on the components of a. Below we will use the
spherical angle parametrization,

a = |a|(sin α cos β, sin α sin β, cos α), (4)

where 0 � α � π and 0 � β < 2π .
The asymmetric SO coupling lifts the spin degeneracy

of the bands almost everywhere in the momentum space.
Diagonalizing Eq. (1), we obtain

ξλ(kx) = k2
x − k2

F

2m∗ + λ|a||kx | = ξλ(−kx). (5)

Here the band index λ = ±, called the helicity, has the meaning
of the spin projection on the direction of motion. Although the
two 1D Fermi “surfaces”, defined by the equations ξ±(kx) = 0,
see Fig. 1, have different sizes,

kF,λ = k̃F − λ	, k̃F =
√

k2
F + 	2, (6)

where 	 = m∗|a|, the Fermi velocities are the same in
both bands and equal to ṽF = k̃F /m∗. The corresponding

eigenstates can be chosen in the following form:

|kx,+〉 = 1√
2ṽF

(
e−iβ/2√1 + sgn kx cos α

eiβ/2 sgn kx

√
1 − sgn kx cos α

)
,

|kx,−〉 = 1√
2ṽF

( −ie−iβ/2√1 − sgn kx cos α

ieiβ/2 sgn kx

√
1 + sgn kx cos α

)
, (7)

normalized to produce the current of unit magnitude.
The TR invariance of the normal state implies that the states

|kx,λ〉 and K|kx,λ〉 have the same energy, forming a Kramers
doublet (recall that the TR operator for spin-1/2 particles is
K = iσ̂2K0, where σ̂2 is the Pauli matrix and K0 is complex
conjugation). Therefore,

K|kx,λ〉 = tλ(kx)|−kx,λ〉, (8)

where tλ is a phase factor [21]. Since K2 = −1 for fermions,
one can show that tλ(−kx) = −tλ(kx). Note that the phase
factors are not gauge invariant, and for the eigenstates given
by Eq. (7) have a particularly simple form:

tλ(kx) = sgn kx. (9)

The helicity bands (5) are nondegenerate at all kx , except the
TR-invariant point kx = 0, where the SO coupling (3) vanishes
and neither the eigenstates nor the TR phase factors are well
defined. In a lattice model taking into account the momentum
space periodicity, there are additional TR-invariant points at
the 1D Brillouin zone boundaries, where the SO coupling also
vanishes.

Next, we use the helicity basis to construct the supercon-
ducting Hamiltonian. The only assumption we make is that,
whatever the microscopic pairing mechanism, the SO band
splitting is large enough to suppress the pairing of electrons
from different bands. In the mean-field approximation we have

Ĥ =
∑
kx ,λ

ξλ(kx)ĉ†kx ,λ
ĉkx ,λ

+ 1

2

∑
kx ,λ

[
�λ(kx)ĉ†kx ,λ

ˆ̃c†kx ,λ
+ H.c.

]
, (10)

where the second term represents the intraband Cooper pairing
between the states |kx,λ〉 and K|kx,λ〉. According to Eq. (8),
the electron creation operator in the time-reversed state
K|kx,λ〉 is given by

ˆ̃c†kx ,λ
≡ Kĉ

†
kx ,λ

K−1 = tλ(kx)ĉ†−kx ,λ
. (11)

Substituting this last expression in Ĥ and using the anticom-
mutation of the fermionic creation and annihilation operators,
we obtain

�λ(kx) = �λ(−kx); (12)

therefore the pairing in the helicity representation is neces-
sarily even in momentum. The TR operation acting on the
gap functions is equivalent to the complex conjugation, i.e.,
�λ(kx) → �∗

λ(kx), while under an arbitrary rotation of the
band state phases, |kx,λ〉 → eiθλ(kx )|kx,λ〉, the gap functions
remain invariant.

In a BCS-type model, the gap functions are nonzero
only in the vicinity of the Fermi level, where their kx

134514-2



STABILITY OF THE BOUNDARY ZERO MODES IN ONE- . . . PHYSICAL REVIEW B 95, 134514 (2017)

dependence can be neglected. In our case, the 1D “Fermi
surface” is given by the four Fermi wave vectors ±kF,±,
see Fig. 1, and the superconductivity is described by two
complex order parameters �+ and �−. The stable uniform
states are found by minimizing the Ginzburg-Landau (GL) free
energy. For instance, in the case of a proximity-induced 1D
superconductivity, the GL energy would depend on the pairing
state of the substrate, the tunneling details, the SO coupling,
etc. While it is beyond the scope of our work to investigate a
particular microscopic model, we note that, in addition to the
TR-invariant states, in which the phases of the gap functions
are either 0 or π , there is also a phenomenological possibility
of TRS-breaking states of the form [22]

�+ = |�+|eiχ , �− = |�−|. (13)

Here 0 � χ � π is the interband phase difference. The
quasiparticle spectrum in the bulk of the 1D wire consists of
two electron-hole symmetric branches in each helicity band,
given by ±

√
ξ 2
λ + |�λ|2 , with the energy gap equal to |�λ|.

If the gap functions are real, then our system belongs to the
symmetry class DIII in 1D and, therefore, can be characterized
in the bulk by a Z2 topological invariant [6]. Due to TR
invariance, the boundary zero modes can only come in pairs
[23], and the Z2 invariant is nothing but the parity of the
number of such Kramers pairs. For the Rashba superconductor
with just two bands, this invariant has the following form:

N1D = sgn �+ sgn �−; (14)

see Ref. [24]. The states with N1D = 1 (χ = 0) are topo-
logically trivial, while those with N1D = −1 (χ = π ) are
nontrivial and should have two ABS zero modes. Below, in
Secs. III and V, we examine the validity of this last statement
using an explicit calculation of the ABS energy under general
assumptions about the boundary scattering.

Spin representation

It is instructive to translate the above results about the
superconducting pairing in the helicity representation into the
spin representation. The fermionic creation and annihilation
operators are transformed into the spin basis using the
following relations:

ĉ
†
kx ,λ

=
∑

s=↑,↓
〈kx,s|kx,λ〉b̂†kx ,s

,

ˆ̃c†kx ,λ
=

∑
s=↑,↓

〈kx,λ|kx,s〉 ˆ̃b†kx ,s
,

where ˆ̃b†kx ,s
≡ Kb̂

†
kx ,s

K−1 = (iσ̂2)ss ′ b̂
†
−kx ,s ′ . Substituting these

expressions into the pairing Hamiltonian (10), we obtain

Ĥ =
∑
kx ,ss ′

εss ′ (kx)b̂†kx ,s
b̂kx ,s ′

+ 1

2

∑
kx ,ss ′

[
�ss ′ (kx)b̂†kx ,s

b̂
†
−kx ,s ′ + H.c.

]
. (15)

The normal-state energy and the gap function become 2 × 2
spin matrices:

ε̂(kx) =
∑

λ

ξλ(kx)�̂λ(kx),

�̂(kx) =
∑

λ

�λ(kx)�̂λ(kx)(iσ̂2), (16)

where �̂λ(kx) = |kx,λ〉〈kx,λ| is the projection operator onto
the λth band.

From Eq. (7) we obtain the following expression for the
projection operator:

�̂λ(kx) = 1 + λγ̂ (kx)σ̂

2
,

where γ̂ = γ /|γ | = â sgn kx ; see Eq. (3). Then, taking into
account Eq. (5), the normal-state energy matrix in Eq. (16)
reproduces the Rashba Hamiltonian (1), while the gap function
in the spin representation takes the form

�̂(kx) = �s(iσ̂2) + �t γ̂ (kx)(iσ̂ σ̂2). (17)

Here

�s = �+ + �−
2

, �t = �+ − �−
2

,

and we neglected the momentum dependence of �±. The
expression (17) describes a mixture of spin-singlet (�s) and
spin-triplet (�t ) pairing. The latter, which is characterized
by the spin vector d(kx) = �t γ̂ (kx), is protected against the
pair-breaking effect of the Rashba SO band splitting [17].

In a purely triplet superconducting state with �+ =
−�− = �, we have �̂(kx) = �γ̂ (kx)(iσ̂ σ̂2). Assuming for
simplicity that a ‖ ŷ in Eq. (3), which is required by sym-
metry for some 1D point groups [20], we obtain �̂(kx) =
i� sgn kxσ̂0. This gap function describes an odd in kx (“p
wave”) pairing state, which is TR invariant (because one
can make the gaps real by a gauge transformation) and
topologically nontrivial in the bulk, with two zero-energy
ABS at the boundary [25], in agreement with the classification
based on the invariant (14). This state can also be viewed
as two coupled Kitaev chains; see Ref. [26]. Since each
chain contributes one zero-energy ABS, there are two zero
modes at the end of the wire, corresponding to two Majorana
quasiparticles [27]. The stability of the Majorana states in the
Kitaev chain and similar models against perturbations, such as
interactions or disorder, has been investigated in a number of
works; see Refs. [7,28].

III. SPECTRUM OF THE BOUNDARY MODES

We consider a half-infinite superconductor at x � 0. The
Bogoliubov quasiparticle wave function in each band is
a two-component (electron-hole) spinor. In the vicinity of
the Fermi point rkF,λ, where r = ±, it can be represented
in the semiclassical approximation as eirkF,λxψλ,r (x). The
“envelope” function ψλ,r varies slowly on the scale of the
Fermi wavelength k−1

F,λ and satisfies the Andreev equation [29]:(
−ivλ,r

d
dx

�λ

�∗
λ ivλ,r

d
dx

)
ψλ,r = Eψλ,r . (18)
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Here vλ,r = rṽF is the group velocity and �λ ≡ �λ(kF,λ) =
�λ(−kF,λ) is the gap function affecting the quasiparticles near
the Fermi point rkF,λ. To make analytical progress, we neglect
self-consistency and assume that the gap functions do not
depend on x.

We focus on the bound-state solutions of Eq. (18) localized
near x = 0. The semiclassical approximation breaks down
near the boundary due to a rapid variation of the potential,
which leads to the mixing of the states corresponding to
different Fermi wave vectors ±kF,±. As a result, the general
wave function of the subgap states away from the boundary is
given by a superposition of four semiclassical solutions:

�(x) =
∑
λ=±

∑
r=±

φ(rkF,λ)e−�λx/ṽF eirkF,λx, (19)

where �λ =
√

|�λ|2 − E2 and the Andreev amplitudes have
the form

φ(rkF,λ) = C(rkF,λ)

(
�λ

E−i�λ sgn vλ,r

1

)
. (20)

The ABS energy satisfies |E| < min(|�−|,|�+|).
Depending on the sign of the group velocity, the Fermi

wave vectors in the wave function (19) are classified as either
incident, kin

λ = −kF,λ, or reflected, kout
λ = kF,λ. According to

Eq. (20), the corresponding Andreev amplitudes are given by

φ
(
k

in(out)
λ

) = C
(
k

in(out)
λ

)( �λ

E±i�λ

1

)
. (21)

The boundary condition for the wave function (19) cannot be
derived using the semiclassical approximation. As shown in
Ref. [30], it can be written as a relation between the Andreev
amplitudes for the reflected and incident states:

φ
(
kout
λ

) =
∑
λ′

Sλλ′φ
(
kin
λ′
)
. (22)

Here the coefficients Sλλ′ form a unitary 2 × 2 matrix (S
matrix), which is an electron-hole scalar, determined by the
microscopic details of the boundary scattering at the Fermi
level in the normal state. Inserting the expressions (21) into
Eq. (22), we obtain the general form of the ABS energy
equation, valid for any mechanism of the boundary scattering:

E2 − |�−||�+| cos χ√
(|�−|2 − E2)(|�+|2 − E2)

= R, (23)

where

R = 1 − 2
S−−S++
S−+S+−

= 1 + 2
|S−−|2
|S−+|2 (24)

(the second equality here follows from the unitarity of the S

matrix). As evident from Eq. (23), the ABS spectrum consists
of symmetrical pairs ±|E|; therefore the zero-energy states, if
they exist, are twofold degenerate.

At χ = 0, the Z2 invariant (14) is equal to +1, placing
this bulk state into the topologically trivial class, without any
stable zero modes. Indeed, in this case the left-hand side of
Eq. (23) is negative, while the right-hand side is positive, which
means that there are no subgap ABS solutions, zero-energy

or not, regardless of the boundary details. In the other TR-
invariant superconducting state, corresponding to χ = π , we
have N1D = −1. However, it follows from Eqs. (23) and (24)
that the zero-energy solution at χ = π exists only if R = 1.
This last condition is equivalent to the requirement that S−− =
S++ = 0; i.e., there is no backscattering into the same band.
Thus we see that the zero modes are sensitive to the form
of the boundary scattering matrix, even if the bulk state is
topologically nontrivial.

IV. THE S MATRIX

In this section, we study the structure of the S matrix in
the presence of the TRS-breaking boundary scattering. Since
the S matrix is an electron-hole scalar, one can neglect the
superconductivity and consider a normal metal in contact
with a ferromagnetic insulator, the latter occupying the x < 0
half space. The ferromagnetism is modeled by the exchange
splitting h of the potentials affecting the two spin channels:

ÛFM = Uσ̂0 + hσ̂3. (25)

We assume that U ± h > εF . The mismatch between the ef-
fective masses of quasiparticles on the metallic and insulating
sides is neglected for analytical simplicity.

The normal-state Hamiltonian, naively written as Ĥ =
ε0(k̂x)σ̂0 + θ (x)γ (k̂x)σ̂ + θ (−x)ÛFM , where k̂x = −i∇x , is
not Hermitian due to the SO coupling term. To restore its
Hermiticity, we use the following revised form:

Ĥ = ε0(k̂x)σ̂0 + 1
2 {γ (k̂x),θ (x)}σ̂ + θ (−x)ÛFM,

where {...} denotes the anticommutator and ÛFM is given by
Eq. (25). In the case of the 1D Rashba expression for the SO
coupling, see Eq. (3), the Hamiltonian becomes

Ĥ = ε0(k̂x)σ̂0 + θ (−x)ÛFM + θ (x)(aσ̂ )k̂x

+ i

2
(aσ̂ )δ(x). (26)

The additional delta-function term leads to a modification of
the boundary conditions for the spinor wave functions:

ψ(+0) = ψ(−0) = ψ(0),

ψ ′(+0) − ψ ′(−0) = −i	
(aσ̂ )

|a| ψ(0), (27)

where 	 = m∗|a| characterizes the SO coupling strength.
The Fermi-level eigenstates of the Hamiltonian (26) are

given by the evanescent waves on the insulating side (x < 0):

ψ(x) = C↑

(
1
0

)
eκ↑x + C↓

(
0
1

)
eκ↓x, (28)

with κ↑(↓) = √
2m∗(U ± h − εF ), and by a superposition of

four propagating waves on the metallic side (x > 0):

ψ(x) =
∑
λ=±

(
Aλχ

in
λ e−ikF,λx + Bλχ

out
λ eikF,λx

)
, (29)
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with the Fermi wave vectors defined by Eq. (6). The spinor components of the propagating waves are obtained from Eq. (7):

χ in
− = −iχout

+ = − i√
ṽF

(
e−iβ/2 cos α

2

eiβ/2 sin α
2

)
,

χout
− = −iχ in

+ = − i√
ṽF

(
e−iβ/2 sin α

2

−eiβ/2 cos α
2

)
,

where we used the spherical angle parametrization of the SO coupling; see Eq. (4).
Substituting Eqs. (28) and (29) into the boundary conditions (27), we can express the amplitudes of the reflected waves in

terms of the amplitudes of the incident waves:

Bλ =
∑
λ′

Sλλ′Aλ′ . (30)

The scattering matrix here is given by

Ŝ = − i

(1 + iρ)2 + ρ2
m

(
2ρm sin α −1 − ρ2 + ρ2

m − 2iρm cos α

1 + ρ2 − ρ2
m − 2iρm cos α 2ρm sin α

)
, (31)

where

ρ = κ↑ + κ↓
2k̃F

, ρm = κ↑ − κ↓
2k̃F

are the dimensionless measures of the TRS-preserving and
TRS-breaking boundary scattering, respectively, satisfying the
condition |ρm| < ρ.

If the boundary is nonmagnetic, i.e., h = 0 and ρm = 0,
then Eq. (31) takes the form

Ŝ = 1 − iρ0

1 + iρ0

(
0 i

−i 0

)
, (32)

where ρ0 = √
2m∗(U − εF )/k̃F . In particular, in the case of

an infinitely strong boundary potential, U → ∞, we have
Ŝ = σ̂2 (note the difference from the dimensional reduction
of the S matrix for the 2D Rashba model [31], which is due
to the different phase choice for the helicity eigenstates). The
vanishing of the diagonal matrix elements in Eq. (32) means
that the backscattering into the same helicity band is forbidden
by the TRS. This property does not in fact depend on the
particular model of the boundary, as long as it is nonmagnetic;
see the Appendix.

If the boundary is magnetic, then there are no symmetry
reasons for S−− and S++ to vanish, but it can happen by
accident. For instance, regardless of the value of ρm, the
diagonal elements in Eq. (31) are equal to zero if sin α = 0,
which corresponds to γ ‖ ẑ. However, one can show that
such a configuration of the SO coupling is not protected
by the point-group symmetry [20] and is unstable under a
small perturbation of the confining potential. Therefore, for
the parameter R, which controls the boundary effects on the
ABS spectrum, see Eq. (24), we obtain that R = 1 if and only if
the boundary is nonmagnetic, otherwise R > 1. In particular,
for the boundary model (26), the S matrix is given by Eq. (31)
and we obtain

R = 1 + 8ρ2
m sin2 α(

1 + ρ2 − ρ2
m

)2 + 4ρ2
m cos2 α

. (33)

To summarize, the twofold-degenerate ABS zero modes
exist only if (i) the bulk superconducting state is real and

topologically nontrivial, i.e., χ = π , and (ii) the boundary is
nonmagnetic, i.e., S−− = S++ = 0. Violation of either of these
two conditions results in the gapping of the ABS.

V. STABILITY OF THE ZERO MODES

To illustrate the effects of the TRS-breaking pertur-
bations on the ABS zero modes, we assume equal gap
magnitudes in both helicity bands: |�−| = |�+| = �, and
obtain from Eq. (23) the following expression: E =
±�

√
(R + cos χ )/(R + 1), where R is given by Eq. (33).

If the bulk is TR invariant, with χ = π , but the boundary
scattering is not, then the ABS split and move to nonzero
energies, as shown in Fig. 2. Any deviation of the interband
phase difference from π produces the same effect; see Fig. 3.

We see that the ABS are pushed apart and away from
the zero energy if the mean-field state breaks TRS. It is
then natural to ask whether the zero modes are stable under
TRS-breaking fluctuations. We consider the superconducting
state with arbitrary gap magnitudes, in which h = 0 and χ = π

at the mean-field level. However, both the exchange field
(or magnetization) and the interband phase difference now

-0.8 -0.4 0 0.4 0.8
 ρm

-1

-0.5

0

0.5

1

 Ε
/Δ

 χ = π

FIG. 2. The ABS energy as a function of the TRS-breaking
boundary scattering, for |�+| = |�−| = �, ρ = 1, and α = π/2.
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0  π/2  π
 χ

-1

-0.5
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0.5

1
 Ε

/Δ
ρm= 0

FIG. 3. The ABS energy as a function of the interband phase
difference, for a nonmagnetic boundary and |�+| = |�−| = �.

experience classical thermal fluctuations:

h → δh(x), χ → π + δχ (x).

Here δh and δχ are Gaussian-distributed random fields with
zero average in the left and right half spaces, respectively.

For long-wavelength fluctuations, the ABS is affected only
by the local values of the fluctuating fields at the boundary,
δh(0) and δχ (0). Then, it follows from Eqs. (33) and (23) that
R = 1 + δR and

E2 = 2|�−|2|�+|2
(|�−| + |�+|)2

[
δR + 1

2
δχ2(0)

]
, (34)

where

δR = 2C2 δh2(0)

ε2
F

, C = sin α

ρ0(1 + ρ2
0 )

(
kF

k̃F

)2

.

Introducing the renormalized fluctuating fields

m(x) = C
δh(x)

εF

, ϕ(x) = δχ (x)

2
,

and also the dimensionless energy

ε = E

�̃
, �̃ = 2|�−||�+|

|�−| + |�+| ,

we obtain from Eq. (34)

ε = ±
√

m2(0) + ϕ2(0). (35)

This form of the ABS energy dependence on the TRS-breaking
perturbations is rather generic and can be understood as
follows.

The Bogoliubov quasiparticle spectrum is found by diag-
onalizing the BdG Hamiltonian H, which incorporates the
boundary potential and can be written as H = HTRI + δH.
The first term here is the TR-invariant part, corresponding
to h = 0 and χ = 0 or π in the model considered above. Its
diagonalization in a topologically nontrivial state (χ = π ) pro-
duces two zero-energy ABS at each end of the superconducting
wire. The δH term contains all TRS-breaking contributions,
both from the bulk superconducting state and from the external
fields, including a magnetic boundary. These contributions are
assumed to be small and can therefore be treated by standard
means of the degenerate perturbation theory. In the subspace

of the zero modes localized near x = 0, the TRS-breaking
Hamiltonian is represented by a Hermitian 2 × 2 matrix bτ̂ ,
where b is real and τ̂ are the Pauli matrices, the unit matrix
being absent due to the BdG electron-hole symmetry. The
ABS energies are given by ±|b|; i.e., the zero-mode energy
splitting has a nonanalytical, conical, dependence on the
TRS-breaking perturbations, in agreement with the explicit
model calculation; see Eq. (35).

ABS density of states

The main quantity of interest for us is the fluctuation-
averaged density of states (DOS) of the ABS, which is given
by the following expression:

NABS(ε) = 〈δ[ε −
√

m2(0) + ϕ2(0)]〉,
at ε � 0, while NABS(−ε) = NABS(ε). Introducing the notation
m(0) = m0 and ϕ(0) = ϕ0, we obtain

NABS(ε) =
∫∫ ∞

−∞
dm0 dϕ0 Pm(m0)Pϕ(ϕ0)

× δ
(
ε −

√
m2

0 + ϕ2
0

)
. (36)

For analytical simplicity one can assume the Gaussian distri-
butions of the local fluctuating fields:

Pm(m0) = 1√
2π�m

e−m2
0/2�m,

Pϕ(ϕ0) = 1√
2π�ϕ

e−ϕ2
0/2�ϕ , (37)

where �m = 〈m2(0)〉 and �ϕ = 〈ϕ2(0)〉 characterize the mag-
nitudes of the magnetic and the superconducting phase
fluctuations, respectively.

In the absence of fluctuations, i.e., at �m = �ϕ = 0, we
have Pm = δ(m0) and Pϕ = δ(ϕ0), and Eq. (36) yields

NABS(ε) = δ(ε). (38)

If only one fluctuation channel is present, for instance, �m = 0
but �ϕ = 0, then

NABS(ε) = 1√
2π�m

e−ε2/2�m ; (39)

i.e., the delta-function peak in the DOS at zero energy is
broadened.

In the general case, with both fluctuation channels taken
into account, we obtain from Eq. (36)

NABS(ε) = ε√
�m�ϕ

exp

[
−ε2

4

(
1

�m

+ 1

�ϕ

)]

× I0

(
ε2

4

∣∣∣∣ 1

�m

− 1

�ϕ

∣∣∣∣
)

, (40)

where I0(z) is the modified Bessel function. Instead of the zero-
energy peak, see Eqs. (38) and (39), the DOS now has a dip
at low energies, with NABS(ε) � ε/

√
�m�ϕ at ε → 0, and two

maxima symmetrically located at ε ∼ √
�m�ϕ/(�m + �ϕ); see
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FIG. 4. The fluctuation-averaged ABS density of states, for
�m = 0.02 and �ϕ = 0.01.

Fig. 4. The most remarkable feature of the expression (40) is
that

NABS(ε = 0) = 0, (41)

which means that the ABS zero modes are completely
destroyed by the TRS-breaking fluctuations.

It is easy to see that the result (41) holds true regardless of
the details of the fluctuation distribution, as long as the latter is
nonsingular. Indeed, at low energy one can replace the distribu-
tion functions in Eq. (36) by their values at m0 = 0 and ϕ0 = 0
and obtain NABS(ε → 0) = Pm(0)Pϕ(0)

∫∫
dm0 dϕ0 δ(ε −√

m2
0 + ϕ2

0 ) ∝ ε.

VI. CONCLUSIONS

We have calculated the spectrum of the Andreev boundary
modes in a half-infinite superconducting wire on a substrate.
This system is intrinsically noncentrosymmetric, which means
that both the electron band structure and the Cooper pairing are
strongly affected by the SO coupling of the Rashba type. We
focused on the effects of two types of TR symmetry-breaking
perturbations on the ABS spectrum. While the external
magnetic field is assumed to be zero, TRS can still be broken,
either by a magnetic boundary scattering or intrinsically in the
superconducting bulk, if the interband phase difference is not
an integer multiple of π . We put the wire in contact with a
ferromagnetic insulator and described the boundary scattering
of the Andreev wave functions by the semiclassical S matrix.

We have shown that the symmetry and topology of the
bulk Hamiltonian alone do not determine the number of
the zero-energy ABS. Even if the Z2 topological invariant
in the bulk points to the presence of a Kramers pair of the zero
modes, the magnetic boundary scattering splits them. Thus
the bulk-boundary correspondence, understood as a relation

between the number of the zero modes and some topological
characteristics of the bulk Hamiltonian, can break down if the
symmetry of the boundary is lower than that of the bulk.

We have found that the zero modes are very sensitive to a
“virtual” breaking of TRS. Even if the mean-field supercon-
ducting state is TR invariant and topologically nontrivial and
the boundary is nonmagnetic, the TRS-breaking fluctuations
lead to a complete vanishing of the fluctuation-averaged
ABS DOS at zero energy. The overall shape of the DOS is
qualitatively changed by the fluctuations, with a “pseudogap”
minimum developing at low energies.
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APPENDIX: TRS OF THE S MATRIX

To prove that the helicity is reversed by a nonmagnetic
boundary scattering, we write the wave function away from
the boundary on the metallic side in the form

|ψ〉 =
∑
λ=±

(
Aλ

∣∣kin
λ ,λ

〉 + Bλ

∣∣kout
λ ,λ

〉)
, (A1)

cf. Eq. (29), where |k,λ〉 is the spinor Bloch state correspond-
ing to the wave vector kin

λ = −kF,λ or kout
λ = kF,λ. The S matrix

is defined by Eq. (30). Applying the TR operation to the wave
function (A1) and using Eq. (8), we obtain

K|ψ〉 =
∑

λ

[
B∗

λ tλ
(
kout
λ

)∣∣kin
λ ,λ

〉 + A∗
λtλ

(
kin
λ

)∣∣kout
λ ,λ

〉]
,

with the “in” and “out” states interchanged by time reversal.
Since the normal-state bulk Hamiltonian and the boundary are
both nonmagnetic, one can expect the same S-matrix relations
between the incident and reflected states in |ψ〉 and K|ψ〉;
therefore

A∗
λtλ

(
kin
λ

) =
∑
λ′

Sλλ′B∗
λ′ tλ′

(
kout
λ′

)
. (A2)

Comparing Eqs. (30) and (A2) and using the S-matrix unitarity,
we arrive at the following constraint:

Sλ′λ = t∗λ
(
kin
λ

)
Sλλ′ tλ′

(
kout
λ′

)
. (A3)

Setting here λ = λ′ and using the property tλ(−kx) = −tλ(kx),
we obtain Sλλ = 0, regardless of the microscopic boundary
details.

Note that the S matrix in 1D can be made antisymmetric
by a suitable choice of the helicity eigenstates. Indeed, in
the basis (7) the TR phase factors have the form (9); therefore,
tλ(kin

λ ) = −1 and tλ(kout
λ ) = +1. Then, it follows from Eq. (A3)

that Sλ′λ′ = −Sλλ′ .
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