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Superfluid field response to edge dislocation motion
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We study the dynamic response of a superfluid field to a moving edge dislocation line to which the field
is minimally coupled. We use a dissipative Gross-Pitaevskii equation, and determine the initial conditions by
solving the equilibrium version of the model. We consider the subsequent time evolution of the field for both
glide and climb dislocation motion and analyze the results for a range of values of the constant speed VD of
the moving dislocation. We find that the type of motion of the dislocation line is very important in determining
the time evolution of the superfluid field distribution associated with it. Climb motion of the dislocation line
induces increasing asymmetry, as function of time, in the field profile, with part of the probability being, as it
were, left behind. On the other hand, glide motion has no effect on the symmetry properties of the superfluid
field distribution. Damping of the superfluid field due to excitations associated with the moving dislocation line
occurs in both cases.
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I. INTRODUCTION

Supersolids represent an exotic state of quantum matter
in which two kinds of order exist simultaneously: crystalline
order associated with the breaking of translational symmetry
and superfluid order associated with the breaking of the
symmetry under a global rotation of the quantum mechanical
phase. The possibility of occurrence of a supersolid phase in
solid 4He was pointed out [1–3] many years ago. More recently,
supersolid phases have been realized in experiments on
ultracold atomic systems. The first experimental observations
of a supersolid phase [4–6] involved the self-organization
of a Bose-Einstein condensate (BEC) in which the discrete
translational symmetry of a preimposed lattice structure was
spontaneously broken. Recent experiments [7,8] have demon-
strated the occurrence of supersolid phases in which the
continuous translational symmetry of space is spontaneously
broken. One of these experiments [7] involves a BEC with
spin-orbit coupling that exhibits a supersolid stripe phase with
density modulation in one direction. The other experiment [8]
involves a BEC dispersively coupled to two optical cavities.
Many other proposals for the occurrence of supersolid phases
in ultracold atomic systems exist in the literature [9–12] and
it is expected that some of these proposals will be realized in
experiments in the near future. Therefore, studies of various
physical properties of quantum solids in the presence of
superfluidity are of much current interest.

Topological defects of crystalline solids are dislocations
which form a network of lines in three-dimensional systems.
There exists a vast literature [13] on the properties of
dislocations in conventional solids. Dislocations play a very

*naseermk@utexas.edu
†otvalls@umn.edu; Also at Minnesota Supercomputer Institute,

University of Minnesota, Minneapolis, Minnesota 55455.
‡cdgupta@iisc.ernet.in; Also at Condensed Matter Theory Unit,

Jawaharlal Nehru Centre for Advanced Scientific Research, Banga-
lore 560064, India.

important role in the mechanical response of crystalline solids.
When a crystalline solid is subjected to an external stress, the
response of the solid is determined to a large extent by the
motion of dislocations induced by the stress. The properties
of dislocations in supersolids is relatively less understood.
The motion of a dislocation line in a supersolid is more
complicated than that in a conventional crystal because of
the presence of superfluidity. The motion of a dislocation line
in a supersolid affects the superfluidity in its vicinity because
the superfluid order parameter is coupled to the strain field
of the dislocation line. This coupling also changes parameters
such as the mobility associated with the motion of dislocation
lines. This interplay between the motion of a dislocation line
and superfluidity in its neighborhood is the subject of our
study. Dislocations in the vortex lattice in a rotating BEC [14]
provide another example of a cold matter system in which this
interplay between crystal defects and superfluidity plays an
important role.

This subject is also important for understanding the low-
temperature properties of solid 4He. Interest in the old
predictions [1–3] of occurrence of supersolidity in 4He was
renewed when Kim and Chan [15] observed a period drop
in torsional oscillator (TO) experiments with solid 4He and
interpreted the observation as evidence for the occurrence
of a supersolid phase in this system at sufficiently low
temperatures. Evidence that structural disorder present in
samples of solid 4He could play an important role became
apparent early on [16–19]: results of TO experiments were
found to depend strongly on sample preparation methods, and
annealing the sample was found to substantially reduce the TO
period drop. Subsequently, it was found [20,21] that an elastic
anomaly with a jump in the shear modulus occurs in solid 4He
at a temperature close to that of the TO period drop. It was
soon realized [22,23] that this elastic anomaly can account for
the TO period change. At present, the emerging consensus
[24–26] seems to be that the anomalous low-temperature
properties of solid 4He can be understood entirely in terms
of the stiffening of the solid, without having to invoke the
occurrence of superfluidity. The elastic anomaly is attributed
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to the pinning of dislocation lines by 3He impurities which
prevent the dislocation lines from gliding along basal planes in
solid 4He. This description accounts for several experimentally
observed features [27–29] in the elastic properties of solid 4He
at low temperatures.

There are, however, several experimental and theoretical
results that suggest that the occurrence of superfluidity in
the vicinity of defects such as dislocation lines and grain
boundaries in solid 4He may play an important role in
the low-temperature properties of solid 4He. Experimental
observations [30,31] of mass flow through solid 4He have
been attributed to flow of atoms through superfluid dislocation
cores. It has been suggested [32] that mass flow through
superfluid cores of edge dislocations can lead to “superclimb”
that would provide an explanation of the large isochoric
compressibility observed in Ref. [30]. Results of experiments
[33] on the effects of dc rotation on the TO period drop
also suggest the occurrence of superfluidity. There are reports
[34–36] of the occurrence of an elastic anomaly in ultrapure
samples of solid 4He in which the spacing between 3He
impurities is expected to be of the order of or larger than
the size of the sample. The stiffening of the solid in these
samples cannot be attributed to the pinning of dislocation
lines by 3He impurities. It has been shown recently [37]
that the onset of superfluidity in and around the cores of
dislocation lines can lead to an increase of the shear modulus
of the solid by decreasing the mobility of the dislocation lines.
Quantum Monte Carlo calculations [38–40] have shown that
superfluidity can occur in the vicinity of structural defects such
as dislocations and grain boundaries in solid 4He. Theoretical
studies [41,42] indicate that a generic coupling between the
superfluid field and the elastic strain field associated with
a dislocation line in a phenomenological Landau theory of
superfluidity leads to superfluidity in the vicinity of a stationary
edge dislocation line. Theoretical studies [41–44] have also
shown that bulk superfluidity can occur in solid 4He from
superfluidity along a network of crystal defects. It is clear
from these results that studies of superfluidity near dislocation
lines in solid 4He are important, even if bulk superfluidity does
not occur in this system.

In this paper we make the assumption that superfluidity
occurs near a dislocation line in a quantum crystal and examine
the effect of motion of the dislocation line on superfluidity in
its vicinity. Previous studies [39–43] of superfluidity near a
dislocation line focused on the case where it is quenched or
stationary. Many physical effects, such as the “giant plasticity”
of solid 4He, attributed to nearly free gliding motion of edge
dislocations along the basal planes, involve moving dislocation
lines. Therefore, it is important to understand the effects of
the motion of a dislocation line on the superfluidity near
its core. Dislocation lines are dynamic objects that execute
a variety of motions. Dislocation line segments can undergo
roughening [45] and can execute two basic types of motion
in response to an applied stress: climb or glide motion. These
two different types of motion are illustrated in Fig. 1. When
a dislocation line moves along the surface that contains both
itself and the Burgers vector associated with it, the motion is
called glide. Movement out of the glide surface in a direction
perpendicular to the Burgers vector is referred to as climb.
Glide and “superclimb,” i.e., climb assisted by superfluidity in

FIG. 1. Top panel: An edge dislocation is illustrated executing
climb motion. The arrow indicates the direction of climb. The bottom
panel illustrates the glide motion of an edge dislocation.

the dislocation cores in solid 4He, were studied previously [46]
in the context of elastic effects such as dislocation line tension
and compressibility. Dislocation lines can glide freely along
basal planes in solid 4He at relatively high speeds compared
to other crystals. This is thought to be a quantum effect which
causes the Peierls barrier to dislocation motion to be negligible
[27].

Our main interest in the present study is to investigate
whether the motion of a dislocation line modifies (e.g.,
enhances, suppresses, or distorts) the associated superfluid
field. It has been suggested [47] that transverse motion of
a dislocation line reduces the degree of superfluid ordering in
its vicinity. A study [48] of a toy model of Ising spins residing
on the links of a random network shows that motion of the
links leads to a reduction in the ordering temperature of the
spins. A similar effect is expected for superfluidity along a
network of dislocation lines. Thus, we study here the effect of
the dynamics of a dislocation line on the superfluid field at the
microscopic quantum level. We have analyzed the response of
the superfluid field near an edge dislocation line, assumed to be
driven at constant velocity �VD , for both climb and glide motion.
Focusing on small length and time scales, we have taken into
account fluctuations in both the amplitude and the phase of
the superfluid order parameter. Fluctuations in the amplitude
were not included in the coarse-grained models studied earlier,
because the amplitude is not a hydrodynamic variable.

A mathematical framework that has been used extensively
for describing superfluidity in 4He is the Gross-Pitaevskii
equation (GPE) [49,50]. The GPE, also referred to as the
nonlinear Schrödinger equation, has been quite successful in
helping understand the equilibrium and dynamic behavior of
low-temperature superfluids and Bose-Einstein condensates
(BEC) [51]. However, the GPE does not provide a description
of damping and can only be used to study dissipationless fields.
As we are interested in exploring what quantum models predict
for the damping of the superfluid field near a dislocation line
due to its motion, a method to include dissipation in the GPE
is necessary. With this purpose in mind, an approach similar
to that used in Ref. [52] to study damping of superfluidity
near the λ point is used in our study. The modification of the
GPE in order to capture the effects associated with damping is
referred to as the dissipative Gross-Pitaevskii equation (DGPE)
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[53]. Based on the DGPE formalism and a well-studied model
[41,42] for the coupling of the superfluid field with the strain
field of a dislocation line, we present in this work a study of
how the excitations associated with a moving dislocation line
in solid 4He affects the superfluid field near it. Both GPE and
DGPE approaches have been used previously [54,55] to study
the effects of moving a line object in a superfluid. Our work is
similar in spirit to these earlier studies.

We find that the motion of the dislocation line plays an
important role in determining the superfluid field distribution
near it. During climb motion, a part of the superfluid field asso-
ciated with a stationary dislocation line is “left behind.” Climb
induces more asymmetry in the distribution of the superfluid
field near the dislocation line. No effect on the symmetry
properties of the superfluid wave function is observed for
glide motion. Decay of the superfluid field amplitude during
climb and glide is observed, but the magnitude of the decay is
very small for experimentally realistic values of the dissipation
parameter.

The rest of this paper is organized as follows: Introduction
of the DGPE formalism and details of the parameter values
used are presented in Sec. II. We also provide in that section
the details of how the elastic strain field due to the dislocation
is coupled to the superfluid order parameter. Results of our
study of the effects of the motion of a single edge dislocation
line on the superfluid field are presented in Sec. III. The main
conclusions of our study are summarized in Sec. IV.

II. METHODS

A. Dissipative Gross-Pitaevskii equation

We consider in this study a single long, straight edge
dislocation line running along the z axis. The Burgers vector
for the edge dislocation is taken to be in the x direction. The
dislocation line is assumed to be long and straight so that
one can neglect edge effects and define the problem in the
two-dimensional (2D) x-y plane orthogonal to it. The standard
GPE which describes the motion of a field, ψ , is of the form

ih̄
∂ψ

∂t
= −h̄2

2m
∇2

x,yψ + v(x,y; t)ψ + g|ψ |2ψ, (1)

where ∇2
x,y = ∂2

∂x2 + ∂2

∂y2 , m is the mass of an atom, v(x,y; t) is
the potential (the time dependence arises from the dislocation
motion), and g is the superfluid interaction parameter. On the
right-hand side, the first two terms are the kinetic and potential
energy and the third, nonlinear term describes the interaction
energy between superfluid atoms. This interaction is repulsive,
g > 0. It is given by [9,56]

g = 4πh̄2asN

mL
. (2)

Here as is the microscopic s-wave scattering length, N is the
number of superfluid atoms, and L is the size of the trap.

In the problem under study, the complex field ψ is the
superfluid wave function, and the coupling between ψ and
the dislocation strain potential is introduced via the term
v(x,y; t)ψ [41]. For an edge dislocation along the z axis the

strain potential is of the form [41]

v(x,y) = A√
x2 + y2

cos φ, (3)

where φ = arctan(x/y) is an azimuthal angle defined in the x-y
plane with respect to the y axis. The parameter A, a positive
quantity, denotes the strength of the dislocation potential and
depends on the lattice and elastic constants of the solid. For
A > 0, this potential is attractive for y < 0 thereby allowing
for bound states. For y > 0 the potential is repulsive. The
potential is symmetric along the x axis (i.e., along the direction
of the Burgers vector). These characteristics of the potential
should be reflected on the wave function ψ as well.

The solution of the nonlinear equation noted above is
complicated due to the noncentral nature of the potential [57].
The equilibrium steady state of the superfluid field at very low
temperatures, T → 0, is described by the time independent
GPE:

− h̄2

2m
∇2

x,yψ + v(x,y)ψ + g|ψ |2ψ = μψ, (4)

where μ is the chemical potential. For the equilibrium solution,
the wave function is normalized according to

N =
∫ +∞

−∞

∫ +∞

−∞
|ψ |2 dxdy = 1. (5)

The standard GPE [Eq. (1)] contains no dissipative terms.
The motion of the dislocation line is actually dissipative
as a result of the various damping mechanisms within the
crystal mentioned below. To account for dissipation in the GP
formalism we introduce into the GPE a dimensionless damping
factor γ , as in Ref. [53]. The resulting dissipative GPE (DGPE)
is of the form

ih̄
∂ψ

∂t
= (1 − iγ )

[
− h̄2

2m
∇2

x,yψ + v(x,y)ψ + g|ψ |2ψ − μψ

]
,

(6)

where the positive damping factor γ is phenomenologically
introduced in a way similar to that in Ref. [52]. The right-
hand side terms in the square bracket represent the change
from the equilibrium state of the superfluid wave function
due to dynamics, in our case the moving dislocation line. The
damping factor γ is inversely proportional to a relaxation time
and due to it neither the energy nor N are conserved in Eq. (6).
In the original study by Pitaevskii [52], γ was expressed in
terms of the second viscosity coefficients of superfluid helium.
A similar equation with the factor (1 − iγ ) was used in the
study of soliton decay and damping of vortices [58,59].

The dynamics of the ψ field and its damping due to
elementary excitations from a moving dislocation line can now
be studied within the framework of Eq. (6). By numerically
solving the two-dimensional (2D) time dependent DGPE with
a moving dislocation line (either climb or glide motion), the
response of the superfluid order parameter ψ can now be
evaluated. We consider the scenario where the dislocation line
executes glide or climb at a constant velocity �VD due to external
forces.

Prior to presenting the details of the numerical calculation,
we need to give an overview of the units used. It is convenient to
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rescale the length and time in terms of natural units. We choose
for our unit of length the elastic correlation length ξel defined
by equating the kinetic energy of the superfluid to the potential
energy due to the dislocation line h̄2/2mξ 2

el = A/ξel. Similarly,
we rescale time by the characteristic frequency ωel ≡ h̄/2mξ 2

el.
Rescaling the wave function, the Cartesian coordinates x,y

as defined above, and the time via the definitions t̄ ≡ ωelt ,
ψ̄ ≡ ψξel, x̄ ≡ x/ξel (similarly for ȳ), v̄ ≡ v/h̄ωel, ḡ|ψ̄ |2 ≡
g|ψ |2/h̄ωel, and μ̄ ≡ μ/h̄ωel one obtains

i
∂ψ̄

∂t̄
= (1 − iγ )

[−∇̄2
x̄,ȳ + v̄(x̄,ȳ; t̄) + ḡ|ψ̄ |2 − μ̄

]
ψ̄. (7)

The coefficient of the nonlinear term is ḡ ≡ 2mg/h̄2 and the
strength of the dislocation potential A is rescaled such that
Ā = A/h̄ωelξel = 1, consistent with the definition of ξel and
ωel.

B. Numerical parameters and initial condition

We now discuss the numerical values of the parameters
used in solving Eq. (7). The time dependent strain potential
v(x,y; t) in the DGPE depends upon whether the dislocation
line is climbing or gliding. For climb motion, along the positive
y axis (perpendicular to the Burgers vector), the dislocation
potential depends on the speed VD via

v(x,y; t) = A√
x2 + (y − VDt)2

cos φ. (8)

When the dislocation is caused to move in the direction of the
Burgers vector along the x axis, i.e., with the corresponding
potential being

v(x,y; t) = A√
(x − VDt)2 + y2

cos φ, (9)

it executes glide motion. Climb and glide motion of the
dislocation line are considered separately in this study.

The magnitude of the climb and glide velocity in classical
crystals is expected to be small especially at low temperatures.
In a quantum crystal such as solid 4He, however, the possibility
of superclimb and glide assisted by superfluidity [46] requires
one to include larger values of the velocity. Glide velocities up
to 0.01 m/s are considered in an experimental study [28] of
dislocation velocities in solid 4He. We take VD near its upper
range to be better able to numerically observe its effects. To
estimate the order of magnitude of ξel, the strength of the
dislocation potential A [see Eq. (3)], a characteristic quantity
with dimensions of energy × length, is needed. The magnitude
of the parameter A depends on the energy per unit length of
an edge dislocation line Eel = Gb2, where G is the shear
modulus of the material and b is the magnitude of the Burgers
vector [13]. For A = Eelbξel and using the definition of ξel =
h̄2/2mA, for G ∼ 60 bars and b ∼ 10−10 m appropriate to
solid 4He [29], one obtains ξel ∼ 10−9 m. This turns out to
be roughly of the same order as the healing length [60] ξSF.
Using the definition of ωel ≡ h̄/2mξ 2

el, we obtain ∼1010 Hz.
Hence, ξelωel ∼ 10 m/s. The magnitudes of the quantities ξel

and ωel set the scale for length and time dimensions in the
simulation, respectively. The natural units for VD are ξelωel.
Dimensionless values for the magnitude of VD ranging from
5 × 10−4 to 1.5 × 10−3 (i.e., between 0.005 and 0.015 m/s,

consistent with the experimental [28] range) are used for both
climb and glide motion in our computations. These are much
smaller than the speed of sound, which is on the order of 102

m/s.
The strength of the interaction coefficient can be rewritten

as ḡ ≡ 8πasρ2Dξel given ḡ ≡ 2mg/h̄2 and Eq. (2). Here the
number density of superfluid atoms in 2D is ρ2D = N/ξ 2

el.
The atomic number density of solid 4He is ρ3D = 1028/m3

[61]. For the spacing between atomic planes at ∼3 × 10−10

m [62], the number density in 2D (i.e., per atomic plane) is
3 × 1018/m2. The scattering length as for 4He atoms is �10−10

m [60]. The strength of the nonlinear interaction parameter
thus obtained is ḡ ∼ 7.5. Since we focus on the superfluid
condensate density near a dislocation line, the above value
for ρ2D would greatly overestimate the condensate density.
Assuming that a small percentage of atoms of order 1%
condense into the superfluid state [40,63] near the dislocations,
a smaller value for ḡ ∼ 0.075 is obtained. This is the value of
ḡ we use throughout this study.

In order to solve Eq. (7), the value of the chemical potential
μ̄ is needed. To obtain μ̄, the steady state GPE [see Eq. (4)]
is numerically solved using a relaxation method under the
condition that ψ satisfies Eq. (5). The accuracy of this method
was tested using the two-dimensional Coulomb potential, the
solutions of which are well known [57]. Length and time units
were properly rescaled in terms of the units in Ref. [57] for
these purposes. Using this procedure, the value μ̄ = −0.13
was obtained for our system, consistent with other calculations
[57] of the same parameter for a two-dimensional Schrödinger
equation with a nonmoving dislocation line potential.

The value of the dimensionless damping parameter γ is also
needed in order to solve the DGPE. In Ref. [53], the magnitude
of γ was found to depend on the rate at which thermal particles
above the Bose-Einstein condensate band enter the condensate.
This rate, compared to the relevant trap frequency, sets the
order of magnitude of γ . Using a similar approach, comparing
the energy dissipated by a moving dislocation line to the energy
scale h̄ωel, an estimate for γ appropriate for the problem
under consideration can be obtained. The energy dissipated
during dislocation motion is roughly FDLDb where FD is
the force per unit length applied on a dislocation, LD is the
typical length of a dislocation line, and b is the magnitude of
Burgers vector. The orders of magnitude of these quantities for
a dislocation line in solid 4He were obtained from Ref. [29]
where FD ∼ 10−12–10−13 N/m and LD ∼ 10−4 m. The value
of the parameter γ ∼ FDLDb/h̄ωel thus obtained is ∼10−3. In
our calculations, we set γ = 10−3, unless stated otherwise.

Next, we need to discuss the initial conditions chosen
and the numerical method used in our computations. The
equilibrium solution obtained from the time independent GPE
[Eq. (4)] is set as the initial condition for ψ in solving
the time dependent Eq. (7). At t̄ = 0 the dislocation line is
stationary and the superfluid distribution around it corresponds
to the equilibrium case. As the dislocation line starts to
move, the superfluid field ψ near it reacts. The response
of the superfluid field is studied for both glide and climb
motion separately. Equation (7) is solved using a split-step
Crank-Nicolson method as presented in Ref. [64]. For the
simulation, a 1200 × 1200 square grid system with the size
of each grid being 0.05ξel is used. We use fixed boundary
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conditions with ψ ≡ 0 at the boundaries of the computational
grid. A time step of δt̄ = 0.01 turns out to be adequate. A
small cutoff of 0.005 for x̄ and ȳ is used in order to avoid
the singularity associated with the dislocation potential at the
origin. To avoid the possibility of an abrupt reaction of the
superfluid field when �VD is switched on suddenly, we turn on
the velocity of the dislocation line gradually over a time t̄0,
short compared with the maximum simulation time, starting
at zero and ending at the desired value of �VD. In the course
of this initialization, the nonlinearity parameter Ā is slowly
incremented to its value. The value t̄0 ∼ 100 is used. The
results have been verified to be independent of the small cutoff
and insensitive to the precise value of t̄0.

The scenarios considered here can easily be related to
experimental situations. Applying a stress on 4He crystal
causes the dislocation line to move. The contribution of factors
such as thermal phonons or other impurities present in the
crystal to damping of dislocation motion was discussed in
Ref. [29]. The parameter γ takes into account the effect on the
superfluid field due to such excitations, as they may be induced
by the dissipative motion of a dislocation line. In the results
presented below, we investigate how climb and glide motion
affects the superfluid field in its vicinity.

III. RESULTS

In this section we present the results of our DGPE simula-
tion coupling a moving edge dislocation line to superfluidity.
We analyze the effect of the motion of a dislocation line on
a superfluid field assumed to be associated with its core. The
first part of this section deals with climb and the latter part
with glide motion of the dislocation line. As explained above,
all lengths will be given in units of ξel, time in units of ωel, and
velocity in terms of ξelωel.

To obtain the initial condition, the time independent GPE
[Eq. (4)] is solved to get the equilibrium solution for the
superfluid field |ψ̄ | near an edge dislocation line, using the
stationary potential as given in Eq. (3). Results are shown in
Fig. 2. The absolute value of the dimensionless equilibrium
wave function |ψ̄ |, near an edge dislocation line, is plotted
there. The results are given in the form of 3D plots of the
superfluid distribution. Two different viewing orientations are
shown in that figure, specifically, views along the ȳ axis and x̄

axis are presented in the top and bottom panels, respectively.
It can be seen that a bound state of the superfluid field forms
in the attractive part of the dislocation potential (in the ȳ < 0
region). The dislocation potential is symmetric along the x̄

axis with respect to the origin, and asymmetric along the ȳ

axis. The symmetry characteristics of the potential can be seen
reflected in |ψ̄ |: an asymmetric accumulation of the superfluid
field in the region ȳ < 0 can be observed.

To study the effect of a climbing dislocation on the
superfluid field, we solve the DGPE [Eq. (7)] with the
dislocation potential now taking the form as in Eq. (8) and
the initial condition presented above. Given that a stationary
dislocation line enhances superfluidity [41] in its vicinity,
one naively expects that the motion of the dislocation line
could “smear” the superfluid field over a larger region. This
could then perhaps suppress the effectiveness of the dislocation
line in enhancing superfluidity, as compared to the stationary
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FIG. 2. The absolute value of the equilibrium |ψ̄(x̄,ȳ)| of the
superfluid field. A broad maximum is seen in the attractive region
of the dislocation strain potential. The two plots correspond to
different visual orientations (see text). Results were obtained by
solving Eq. (4).

case. In the results presented in Fig. 3, the dislocation line
is assumed to move along the positive y direction (climb) at
two different speeds namely VD = 5 × 10−4 and 1.5 × 10−3

in our dimensionless units. The value 7.5 × 10−4 was also
studied, yielding intermediate results. The response of the
superfluid field due to this dislocation line motion is illustrated
in Fig. 3 through a plot of |ψ̄(x̄ = 0,ȳ; t̄)| at different times.
At any time t̄ , the dislocation line is displaced in the positive y

direction by a distance VDt̄ . The top panel of Fig. 3 shows
a plot of |ψ̄(x̄ = 0,ȳ; t̄)| at t̄ = 0, 6000, and 14 000 for
VD = 5 × 10−4. The bottom panel shows the same quantity
for VD = 1.5 × 10−3 at three different values of t̄ , t̄ = 0, 4000,
and 6000. For t̄ = 6000 and VD = 1.5 × 10−3 (bottom panel),
the dislocation line has moved a distance of magnitude ∼9,
while the corresponding maximum distance in the top panel
is ∼7. The shift in the superfluid distribution as a result of
dislocation motion at other values of t̄ and VD can be clearly
observed. The plot of |ψ̄(x̄ = 0,ȳ; t̄)| has a maximum at a
location ȳ ≡ ȳmax. At t̄ = 0, ȳmax is at −1.3.

As the dislocation line executes climb motion, it appears
from the figures that the superfluid distribution becomes more
asymmetric in the y direction. This increase in asymmetry,
with a longer tail towards the smaller y region (between
negative values of ȳ till ȳmax), might be thought of as if
some of the superfluid amplitude were “left behind,” i.e.,
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FIG. 3. Plot of the absolute value of the wave function |ψ̄(x̄ =
0,ȳ; t̄)| at different times for a climbing edge dislocation line. The
top panel corresponds to VD = 5 × 10−4 and the bottom panel to
VD = 1.5 × 10−3. The times are indicated in the legend.

as the dislocation line moves it smears the superfluid field
over a wider region. In order to make this more evident, and
to quantify it, we define an asymmetry parameter B. The
B parameter is defined in terms of the integrated norm of
superfluid field in the region ȳ < ȳmax vs in the region ȳ > ȳmax

over the 2D x-y plane, in this way:

B =
∫ +∞
−∞

∫ ȳmax

−∞ |ψ̄ |2 dx̄dȳ − ∫ +∞
−∞

∫ +∞
ȳmax

|ψ̄ |2 dx̄dȳ∫ +∞
−∞

∫ ȳmax

−∞ |ψ̄ |2 dx̄dȳ + ∫ +∞
−∞

∫ +∞
ȳmax

|ψ̄ |2 dx̄dȳ
. (10)

The procedure implied by this definition is illustrated in
the inset of Fig. 4: the contribution to the first term in the
numerator of B in Eq. (10) is shaded in solid color along
the plane defined by x̄ = 0. Similarly, the contribution to the
second term in the numerator is marked by the hatched region.
Due to the motion of the dislocation line in the positive y

direction, if the superfluid field is left behind, the distribution
of |ψ̄ | in the region ȳ < ȳmax will increase while decreasing
in the region ȳ > ȳmax. The time dependent parameter B can
therefore be used to measure the asymmetry in the distribution
of the superfluid field due to dislocation movement. The
equilibrium solution shown in Fig. 3, i.e., |ψ̄(x̄ = 0,ȳ; t̄ = 0)|,
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FIG. 4. The asymmetry parameter (B − B0)/B0 (see text) during
climb motion is shown as a function of time t̄ in the main plot for three
different values of VD as indicated in the legend. The inset illustrates
the procedure employed to extract B as defined in Eq. (10). The value
for B0 = 0.538.

is asymmetric along the y direction and has a nonzero value of
the asymmetry parameter B(t̄ = 0) = B0. To study the change
in asymmetry due to climb motion, we look at (B − B0)/B0 as
a function of t̄ . A plot of (B − B0)/B0 vs t̄ is presented in the
main part of Fig. 4. Results for the three different values of VD

mentioned above are given. The asymmetry of the superfluid
field near the dislocation line and along the direction of motion
increases due to climb. It is also seen that the rate of increment
of parameter B slows as the dislocation line evolves for longer
times. For higher climb velocities, more of the superfluid field
tends to be left behind: faster moving dislocations leave behind
more of the superfluid field. Examination of the wave function
at ȳ = ȳmax, i.e., |ψ̄(x̄,ȳ = ȳmax; t̄)|, shows that climb has no
effect on the wave function shape in the x direction. No change
in superfluid field distribution is observed perpendicular to the
direction of climb motion.

Next, we consider glide motion of the dislocation line
and the response of the superfluid field to it. We solve
the DGPE with the dislocation potential given in Eq. (9)
for glide along the positive x direction. The top panel of
Fig. 5 shows |ψ̄(x̄,ȳ = ȳmax; t̄)| at t̄ = 0, 2196, and 6590 for
VD = 5 × 10−4. The superfluid field is carried along with the
dislocation line. The maximum of |ψ̄ | at ȳ = ȳmax shifts from
x̄ = 0 to a value corresponding to VDt̄ referred to as x̄max.
After t̄ = 6590, the maximum of |ψ̄ | along ymax is expected
to shift by VDt̄ = 3.3, matching the simulation results. We
look again for evidence of asymmetry developing in the
superfluid distribution due to glide motion. Glide evolution
of |ψ̄ | along the x direction does not alter its symmetry
or its shape at all, as is evident from the bottom panel of
Fig. 5. The ȳ = ȳmax cross section of the equilibrium solution
(t̄ = 0) is shifted by x̄ = 3.308 in order to compare it to
the time evolved wave function |ψ̄(x̄,ȳ = ȳmax; t̄ = 6590)|.
No change in the symmetry characteristics for |ψ̄ | along
ȳ = ȳmax is observed, confirming that glide motion does not
leave behind the superfluid field along the direction of motion.
Similarly, a plot of |ψ̄ | for glide motion along the perpendicular
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FIG. 5. In the top panel, the absolute value of the wave function
|ψ̄(x̄,ȳ = ȳmax; t̄)| is shown for t̄ = 0, 2196, and 6590 during glide.
VD = 5 × 10−4 is used. In the bottom panel, the equilibrium |ψ̄(x̄ =
x̄max,ȳ; t̄ = 0)| is offset by x̄ = 3.308 along the positive x direction
in order to compare it to |ψ̄(x̄,ȳ = ȳmax; t̄ = 6590)|.

direction at x̄ = x̄max, is presented in Fig. 6. We compare there
|ψ̄(x̄ = x̄max,ȳ; t̄)| at t̄ = 0 and 6590. No change in the shape
is observed.

We have also studied the time dependence of the total
normalization of the wave function [N see Eq. (5)]. As noted
earlier, the damping factor γ in the DGPE implies thatN is not
conserved. N for the superfluid field is observed to decrease
for both climb and glide motion. Plots of N vs t̄ for climb and
glide motion at three different values of γ are presented in the
top panel of Fig. 7. The decay in N as a result of glide motion
at VD = 5 × 10−4 for γ = 10−3 is too small to be seen and
unimportant. An artificially larger value of γ = 10−1 is used to
amplify any possible decay effect. This results in a ∼5% decay
in N over a time interval of 800 for glide. Climb motion also
results in the damping of superfluidity near an edge dislocation
line. At γ = 10−3, again, the decay in N is minute. Using a
larger value of γ = 10−1 the decay effect is much more visible.
Approximately a 30% decay in N can now be observed over
a time interval of 800. Overall, in comparing climb and glide
motion, the decay inN is much more pronounced due to climb.
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FIG. 6. Plot of |ψ̄(x̄ = x̄max,ȳ; t̄)| at t̄ = 0 and t̄ = 6590 during
glide for VD = 5 × 10−4. No change in the shape |ψ̄ | along x̄ = x̄max

is observed.
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The physical origin of the decay in N can be roughly
understood from the following arguments. Rewriting the
DGPE in Eq. (6) as

ih̄
∂ψ

∂t
= (1 − iγ )[H − μ]ψ, (11)

where H = − h̄2

2m
∇2

x,y + v(x,y) + g|ψ |2 it can be seen from
Eq. (4) that Hψ = μ̃(t)ψ . By rescaling t in the equation above
to t ′ = (1 − iγ )t a solution of the form ψ = ψ0e

−(i/h̄)�μ̃(t)t ′

is obtained where �μ̃(t) ≡ μ̃(t) − μ is the change in the
effective chemical potential. This implies that

ψ = ψ0e
−(i/h̄)[μ̃(t)−μ]t e−(γ /h̄)[μ̃(t)−μ]t , (12)

where the damping contribution to ψ can be seen to depend on
γ and μ̃(t) − μ. At γ = 0 no decay inN is observed consistent
with what is expected from Eq. (12). The quantity μ̃(t) − μ in
dimensionless units turns out to be roughly of order VD . The
faster the motion of the dislocation line, the larger the change
�μ̃(t).

In the bottom panel of Fig. 7 we study the effect of climb
velocity (we have already seen that glide is less effective) on
the damping of the superfluid field near the dislocation line
at γ = 10−3 and an intermediate value γ = 10−2. At VD = 0
and γ = 10−3, the decay in N is too small to be seen. For
larger values of VD , the decay in the superfluid field is larger.
This can be understood by considering that motion of the
dislocation line introduces excitations into the system thereby
raising the μ̃(t). The excitations are responsible for the decay
in the superfluid field amplitude. We see then that for realistic
values of γ the effect on the overall normalization is quite
small for either climb or glide motion.

IV. CONCLUSION

In this paper we have studied, at the microscopic level, the
dynamic response of a superfluid field associated with an edge
dislocation line which is moving at a constant speed VD . Both
types of dislocation motion (climb and glide) are analyzed, for
several values of VD . We use the dissipative Gross-Pitaevskii
equation: damping of the superfluid field due to dislocation
motion is taken into account via a damping factor γ , as seen
in Eq. (7). We use a split-step Crank-Nicolson method [64]
to solve the DGPE. The results provide insight into how the
dislocation motion influences the evolution of the superfluid
distribution and its damping.

We determine our initial conditions by solving the equi-
librium GPE for the superfluid field minimally coupled
to a stationary dislocation line. This solution shows the
enhancement of superfluidity near the dislocation line—the
dislocation strain potential acts as a trap for the superfluid
field. Hence the equilibrium wave function |ψ̄(x̄,ȳ; t̄ = 0)|
reflects the symmetry characteristics of the strain potential: it is
symmetric in x (the direction of the Burgers vector) at fixed y,

e.g., ȳ = ȳmax, and asymmetric in y at fixed x, e.g., x̄ = 0. We
then solve for the time dependent field when the dislocation
moves. We find that the superfluid field response to climb
shows evidence of superfluidity being left behind the moving
dislocation: the superfluid distribution becomes increasingly
asymmetric along the direction of climb. We introduce [see
Eq. (10) and Fig. 4] an asymmetry parameter B to quantify
how the superfluid field is being left behind. The parameter B

increases as a function of time: it rises quickly at shorter times
and flattens as the dislocation line evolves over a longer time.
This is consistent with earlier proposals [47] that fluctuations
associated with a dislocation line can be expected to suppress
the associated superfluid field, possibly by smearing it over
a wider region. The magnitude of the asymmetry parameter
B increases as the dislocation line moves faster. At higher
speeds, the superfluid field is smeared or left behind over a
larger area. Therefore, a sudden change in the position of the
dislocation line makes it more difficult for the superfluid field
to be trapped in the dislocation potential. For glide motion,
we have also analyzed the symmetry characteristics of the
wave function at fixed x̄ = x̄max and at fixed ȳ = ȳmax. In this
case, as opposed to what occurs for climb motion, no change
in the superfluid distribution symmetry characteristics are
noted along the glide direction. We therefore identify a clear
difference in the superfluid response to climb as compared to
glide motion: while climb tends to leave behind the initially
trapped superfluid field, glide movement is quite effective in
“carrying along” the superfluid field.

Both dislocation climb and glide lead to a small decay
in the superfluid wave function normalization (N ) for the
physical value of γ = 10−3 considered in this study. Using
a larger value of γ = 10−1, a much larger decay effect can
be observed. As the parameter γ takes into account the
energy dissipated by the dislocation motion, larger values
of γ must indeed, as shown, lead to more damping of the
associated superfluid field. By studying the fluctuations in the
amplitude of the superfluid field, a nonhydrodynamic variable,
within the DGPE formalism, we observe similar trends in the
asymmetric distribution of the superfluid field (as quantified
by the parameter B) and the decay in superfluid wave function
normalization. Faster motion of the dislocation line leads
to both larger decay of the superfluid field and increased
asymmetry in its spatial distribution. The coupling between
the damping parameter γ and VD is clearly elucidated.

In summary, we have studied the effects of dislocation
motion on an associated superfluid field. During glide, no
change in the superfluid field asymmetry characteristics is
observed. However, climb motion leads to the superfluid field
being asymmetrically smeared near the dislocation line. The
asymmetry induced in the superfluid distribution due to climb
is the most prominent physical effect observed in this study.
The implication of dislocation motion in terms of the decay of
the superfluid field is also discussed.
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