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Magnetomechanical coupling and ferromagnetic resonance in magnetic nanoparticles
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We address the theory of the coupled lattice and magnetization dynamics of freely suspended single-domain
nanoparticles. Magnetic anisotropy generates low-frequency satellite peaks in the microwave absorption spectrum
and a blueshift of the ferromagnetic resonance (FMR) frequency. The low-frequency resonances are very sharp
with maxima exceeding that of the FMR, because their magnetic and mechanical precessions are locked, thereby
suppressing the effective Gilbert damping. Magnetic nanoparticles can operate as nearly ideal motors that
convert electromagnetic into mechanical energy. The Barnett damping term is essential for obtaining physically
meaningful results.
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I. INTRODUCTION

Magnetic nanoparticles (nanomagnets) are of fundamental
interest in physics by forming a link between the atomic
and macroscopic world. Their practical importance stems
from the tunability of their magnetic properties [1], which
is employed in patterned media for high density magnetic
data storage applications [2] as well as in biomedicine and
biotechnology [3–6]. Superparamagnetic particles are used for
diagnostics, stirring of liquids, and magnetic tweezers [7].
The heat generated by the magnetization dynamics under
resonance conditions is employed for hyperthermia cancer
treatment [8–10]. Molecular based magnets can cross the
border from the classical into the quantum regime [11,12].
The magnetic properties of individual atomic clusters can be
studied by molecular beam techniques [13–15].

Einstein, de Haas, and Barnett [16,17] established the
equivalence of magnetic and mechanical angular momentum
of electrons by demonstrating the coupling between magneti-
zation and global rotations. Spin and lattice are also coupled
by magnetic anisotropy, induced either by dipolar forces
or crystalline fields. A quite different interaction channel is
the magnetoelastic coupling between lattice waves (phonons)
and spin waves (magnons) with finite wave vectors. This
magnetoelastic coupling between the magnetic order and the
underlying crystalline lattice has been explored half a century
ago by Kittel [18] and Comstock [19,20]. The coupling
between spin and lattice causes spin relaxation including
Gilbert damping of the magnetization dynamics [21,22].

“Spin mechanics” of thin films and nanostructures en-
compasses many phenomena such as the actuation of the
magnetization dynamics by ultrasound [23–25], the dynamics
of ferromagnetic cantilevers [26–28], spin current-induced
mechanical torques [22,29], and rotating magnetic nanos-
tructures [30]. The Barnett effect by rotation has been
observed experimentally by nuclear magnetic resonance [31].
The coupled dynamics of small magnetic spheres has been
studied theoretically by Usov and Liubimov [32] and Rusconi
and Romero-Isart [33] in classical and quantum mechanical
regimes, respectively. A precessing single-domain ferromag-
netic needle is a sensitive magnetometer [34], while a

diamagnetically levitated nanomagnet can serve as a sensitive
force and inertial sensor [35]. A stabilization of the quantum
spin of molecular magnets by coupling to a cantilever has been
predicted [36,37] and observed recently [38].

Here we formulate the dynamics of rigid and single-domain
magnetic nanoparticles with emphasis on the effects of mag-
netic anisotropy and shape. We derive the equations of motion
of the macrospin and macrolattice vectors that are coupled
by magnetic anisotropy and Gilbert damping. We obtain the
normal modes and microwave absorption spectra in terms of
the linear response to ac magnetic fields. We demonstrate
remarkable changes in the normal modes of motion that can
be excited by microwaves. We predict microwave-activated
nearly undamped mechanical precession. Anisotropic mag-
netic nanoparticles are therefore suitable for studies of nonlin-
earities, chaos, and macroscopic quantum effects.

In Sec. II we introduce the model of the nanomagnet
and give an expression for its energy. In Sec. III we discuss
Hamilton’s equation of motion for the magnetization of a freely
rotating particle, which is identical to the Landau-Lifshitz
equation. We then derive the coupled equations of motion
of magnetization and lattice in Sec. IV. Our results for
the easy-axis and easy-plane configurations are presented
in Secs. V and VI. We discuss and summarize our results
in Secs. VII and VIII. In the Appendices A–D we present
additional technical details and derivations.

II. MACROSPIN MODEL

We consider a small isolated nanomagnet that justifies the
macrospin and macrolattice approximations, in which all inter-
nal motion is adiabatically decoupled from the macroscopic
degrees of freedom, rendering the magnetoelastic coupling
irrelevant. We focus on nonspherical nanoparticles with mass
density ρ(r) and tensor of inertia

I =
∫

d3r ρ(r)[(r · r)1̂ − r ⊗ r], (2.1)

where 1̂ is the 3 × 3 unit matrix. The mechanical properties
of an arbitrarily shaped rigid particle is identical to that of an
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ellipsoid with a surface that in a coordinate system defined
along the symmetry axes (in which I is diagonal) reads(

x

c

)2

+
(

y

b

)2

+
(

z

a

)2

= 1, (2.2)

where a,b,c are the shape parameters (principal radii). The vol-
ume is V = 4πabc/3, total mass Q = ρV , and principal mo-
ments of inertia I1 = Q(a2 + b2)/5, I2 = Q(a2 + c2)/5,I3 =
Q(b2 + c2)/5. We focus in the following on prolate (a >

b = c) and oblate (a < b = c) spheroids, because this allows
analytic solutions of the dynamics close to the minimum
energy state.

We assume that the particle is smaller than the critical size
dcr ∼ 36

√
AKA/(μ0M

2
s ) for magnetic domain formation [39],

where A is the exchange constant, KA the anisotropy constant,
Ms the saturation magnetization, and μ0 = 4π × 10−7N A−2

the vacuum permeability. For strong ferromagnets these
parameters are typically in the range A ∈ [5,30] pJ m−1,
KA ∈ [10,20000] kJ m−3, Ms ∈ [0.4,1.7] MA m−1, leading to
dcr ∈ [1,500] nm [39]. For a spherical particle of radius R

with sound velocity v, the lowest phonon mode frequency is
approximately [40]

ωph

2π
≈ v

4R
= 0.25

(
v/

(
103 m

s

)
R/nm

)
THz, (2.3)

while the lowest magnon mode (for bulk dispersion relation
h̄ωmag = Dk2)

ωmag

2π
≈ πD

8h̄R2
= 0.6

(
D/(meV nm2)

R2/nm2

)
THz, (2.4)

where the spin wave stiffness D = 2gμBA/Ms is typically
of the order meV nm2 [39], e.g., D = 2.81 meV nm2 for
iron [41]. We may disregard spin and lattice waves and the
effects of their thermal fluctuations when the first excited
modes are at sufficiently higher frequencies than that of the
total motion (the latter is typically in the GHz range) and
therefore adiabatically decoupled [33,40], i.e., the macrospin
and macrolattice model is valid. Thermal fluctuations of
the magnetization with respect to the lattice do not play
an important role below the blocking temperature, TB ∼
KAV/(25kB ) [42], where kB is the Boltzmann constant. For
kBT � V Msμ0H0, thermal fluctuations of the magnetization
with respect to the static external magnetic field H0 are
suppressed.

Under the conditions stipulated above the classical dynam-
ics (disregarding translations of the center of mass) is described
in terms of the magnetization vector M = Msm (with |m| = 1)
and the three Euler angles (θ,φ,ψ) of the crystal orientation
direction in terms of the axis n(θ,φ) and a rotation angle ψ

around it (see Appendix A for details). The total energy can
be split up into several contributions,

E = ET + EZ + ED + EK. (2.5)

ET = 1
2�TI� is the kinetic energy of the rotational motion

of the nanomagnet in terms of the angular frequency vector
�. EZ = −μ0V M · Hext is the Zeeman energy in a magnetic
field Hext. ED = 1

2μ0V MTDM is the magnetostatic self-
energy with particle shape-dependent demagnetization tensor
D. EK = K1V (m × n)2 is the (uniaxial) magnetocrystalline
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FIG. 1. (a) Laboratory frame (x, y, z) and (moving) body frame
(xb, yb, zb) of a nanomagnet with principal axis n along the zb axis.
The directions of n and magnetization m are shown for (b) oblate and
(c) prolate spheroids with dipolar magnetic anisotropy.

anisotropy energy, assuming that the easy axis is along n, and
K1 is the material-dependent anisotropy constant.

We consider an inertial laboratory frame with origin at the
center of mass and a moving frame with axes fixed in the body.
The laboratory frame is spanned by basis vectors ex , ey , ez, and
the body frame by basis vectors exb

, eyb
, ezb

(see Fig. 1). The
body axes are taken to be the principal axes that diagonalize
the tensor of inertia. For spheroids with b = c the inertia and
demagnetizing tensors in the body frame have the form

Ib =
⎛
⎝I⊥ 0 0

0 I⊥ 0
0 0 I3

⎞
⎠, Db =

⎛
⎝D⊥ 0 0

0 D⊥ 0
0 0 D3

⎞
⎠, (2.6)

with I⊥ = Q(a2 + b2)/5 and I3 = 2Qb2/5; the elements
D⊥and D3 for magnetic spheroids are given in Ref. [43]. The
particle shape enters the equations of motion via I⊥, I3, and
the difference D3 − D⊥; the latter reduces to −1/2 for a thin
needle and 1 for a thin disk. When

E⊥ − E‖ = KAV = K1V − 1
2μ0V M2

s (D3 − D⊥) (2.7)

is larger than zero, the configuration m ‖ n is stable (“easy
axis”); otherwise m ⊥ n (“easy plane”). The anisotropy
constant KA includes both magnetocrystalline and shape
anisotropy.

III. LANDAU-LIFSHITZ EQUATION

For reference we rederive here the classical equation of
motion of the magnetization. The magnetization of the particle
at rest is related to the angular momentum S = −V Msm/γ ,
where γ = 1.76 × 1011 s−1 T−1 is (minus) the gyromagnetic
ratio of the electron. The Poisson bracket relations for angular
momentum are

{Sα,Sβ} = εαβγ Sγ . (3.1)

Hamilton’s equation of motion reads

d

dt
S = {S,H}, (3.2)
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whereH ≡ E is the Hamiltonian. We consider a general model
Hamiltonian of a single macrospin coupled to the macrolattice,

H =
∑

i,j,k∈N0

aijk(n,L)Si
xS

j
y Sk

z , (3.3)

where the coefficients aijk(n,L) may depend on the orientation
n of the lattice and its mechanical angular momentum L =
I�. Since lattice and magnetization are different degrees
of freedom, the Poisson brackets {n,S} = {L,S} = 0 and
therefore {aijk(n,L),S} = 0. We derive in Appendix B

{S,H} =
∑

i,j,k∈N0

aijk(n,L)

⎛
⎝ iSi−1

x S
j
y Sk

z

jSi
xS

j−1
y Sk

z

kSi
xS

j
y Sk−1

z

⎞
⎠ × S, (3.4)

which is the Landau-Lifshitz equation [44],

d

dt
S = ∇SH|n,L=const. × S. (3.5)

In accordance with Eq. (3.4), the gradient in Eq. (3.5) has to
be evaluated for constant n and L.

The rotational kinetic energy ET = 1
2�TI� does not

contribute to this equation of motion directly since {S,ET } =
0. However, ET is crucial when considering the energy
of the nanomagnet under the constraint of conserved total
angular momentum J = L + S. Minimizing the energy of the
nanomagnet under the constraint of constant J is equivalent to

H̃eff = − 1

μ0V Ms

∇mE

∣∣∣∣
J=const.

= 0, (3.6)

where the rotational kinetic energy ET contributes the Barnett
field

HB = − 1

μ0V Ms

∇mET

∣∣∣∣
J=const.

= − �

γμ0
, (3.7)

which gives rise to the Barnett effect (magnetization by
rotation) [17]. Although the Barnett field appears here in the
effective field H̃eff when minimizing the energy, it is not part
of the effective field Heff of the Landau-Lifshitz equation,

Heff = − 1

μ0V Ms

∇mE

∣∣∣∣
n,L=const.

, (3.8)

where L is kept constant instead of J. In the Landau-Lifshitz-
Gilbert equation in the laboratory frame the Barnett effect
operates by modifying the Gilbert damping torque as shown
below.

IV. EQUATIONS OF MOTION

We now derive the coupled equations of motion of the
magnetization m and the Euler angles (φ,θ,ψ). The magne-
tization dynamics is described by the Landau-Lifshitz-Gilbert
equation [21,44]

ṁ = −γμ0m × Heff + τ (α)
m , (4.1)

where the effective magnetic field Eq. (3.8) follows from the
energy Eq. (2.5),

Heff = Hext + HD + HK, (4.2)

and τ (α)
m is the (Gilbert) damping torque. The external magnetic

field Hext is the only source of angular momentum; all
other torques acting on the total angular momentum J =
L − V Msm/γ cancel. From

J̇ = μ0V Msm × Hext, (4.3)

we obtain the mechanical torque as time derivative of the
mechanical angular momentum, which leads to Newton’s Law

L̇ = V Ms

γ
ṁ + μ0V Msm × Hext. (4.4)

The dissipation parameterized by the Gilbert constant [21]
damps the relative motion of magnetization and lattice. In the
body frame of the lattice [30]

τ
(α)
m,b = αmb × ṁb, (4.5)

where the subscript b indicates vectors in the body frame.
Transformed into the laboratory frame (see Appendix A)

τ (α)
m = α[m × ṁ + m × (m × �)]. (4.6)

This torque is an angular momentum current that flows
from the magnet into the lattice [22]. Angular momentum
is conserved, but the generated heat is assumed to ultimately
be radiated away. In vacuum there is no direct dissipation of
the rigid mechanical dynamics.

The Barnett field μ0HB = −�/γ enters in the laboratory
frame only in the damping term τ (α)

m . To leading order in α

ṁ ≈ −γμ0m × Heff − αγμ0m × [m × (Heff + HB)]

+O(α2). (4.7)

The contribution of HB in the damping term causes the Barnett
effect [17]. We find that this Barnett damping is very significant
for the coupled dynamics even though no fast lattice rotation
is enforced: Without Barnett damping the FMR absorption
of the low-frequency modes described below would become
negative.

V. EASY-AXIS CONFIGURATION

We first consider an easy-axis configuration (m ‖ n ‖ ez)
in the presence of an external magnetic field with a large
dc component H0 along ez and a small transverse ac com-
ponent, Hext = (hx(t), hy(t), H0)T, with hx(t) ∝ hy(t) ∝
eiωt . Linearizing the equations of motion in terms of small
transverse amplitudes, we can solve (4.1) and (4.4) analytically
to obtain the linear response to h (see Appendix C for the
derivation), i.e., the transverse magnetic susceptibility. Since
we find �̇z = 0, we disregard an initial net rotation by setting
�z = 0. For small damping α � 1, the normal modes are
given by the positive solutions of the equations

ω3 ∓ ω2ω0 − ωωcωA ± ωcωAωH = 0, (5.1)

where ωH = γμ0H0, ωA = 2γKA/Ms , ω0 = ωH + ωA, and
ωc = MsV/(γ I⊥) is the natural mechanical frequency gov-
erned by the spin angular momentum. Note that the equivalent
negative solutions of Eq. (5.1) have the same absolute values
as the positive solutions. We find that the FMR mode ω0 is
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blueshifted to ω‖ = ω0 + δω‖ with

δω‖ ≈ ω2
Aωc

ω2
0

> 0, (5.2)

which is significant for small nanomagnets with large satura-
tion magnetization and low mass density. It is a counterclock-
wise precession of m with n nearly at rest.

Two additional low-frequency modes emerge. For ω �
ω0,ωA we may disregard the cubic terms in Eq. (5.1) and
find

ωl1,2 ≈
√(

ωcωA

2ω0

)2

+ ωHωcωA

ω0
± ωcωA

2ω0
. (5.3)

At low frequencies, the magnetization can follow the lattice
nearly adiabatically, so these modes correspond to clockwise
and counterclockwise precessions of nearly parallel vectors m
and n, but with a phase lag that generates the splitting. The
frequency of the clockwise mode ωl1 > ωl2 (see Fig. 3). Since
magnetization and mass precess in unison, the effective Gilbert
damping is expected to be strongly suppressed as observable
in FMR absorption spectra as shown below.

The absorbed FMR power is (see Appendix D)

P = −μ0V

2
ωIm

(
h∗T

⊥ χh⊥

)
, (5.4)

where h⊥ is the ac field normal to the static magnetic field
H0ez and

χαβ = Mα

hβ

∣∣∣∣
h⊥=0

(5.5)

is the transverse magnetic susceptibility tensor (α,β = x,y).
The diagonal (χxx = χyy) and the off-diagonal components
(χxy = −χyx) both contribute to the absorption spectrum near
the resonance frequencies, |Imχxx | ≈ |Reχxy |. For α � 1, we
find that the sum rule∫ ∞

0
dω( − ωImχxx(ω)) ≈ π

2
ω0ωM, (5.6)

where ωM = γμ0Ms does not depend on ωc, meaning that
the coupling does not generate oscillator strengths, only
redistributes it. Close to a resonance

−ωImχxx(ω) ∼ F
η2

(ω − ωi)2 + η2
, (5.7)

with integral πηF . For the low-frequency modes the maximum
F ∼ 1

2ωMω2
A/(αω2

H ) with broadening η ∼ 1
2αωcω

2
H/(ωA +

ωH )2; for the FMR mode F ∼ 1
2ωM/α with η ∼ αω0.

Let us consider an iron sphere with 2 nm diameter (a =
b = 1 nm) under μ0H0 = 0.65 T or ωH/(2π ) = 18.2 GHz. Its
magnetization ωM/(2π ) = 60.33 GHz, crystalline anisotropy
ωA/(2π ) = 29.74 GHz [45], and the magnetomechanical cou-
pling ωc/(2π ) = 0.5(nm/a)2 GHz. The blocking temperature
is TB ∼ 11(a/nm)3 K and |EZ|/(kBTB) ≈ 30, while the criti-
cal size for domain formation dcr ∼ 20 nm [46,47]. We adopt
a typical Gilbert damping constant α = 0.01. The calculated
FMR spectra close to the three resonances are shown in Fig. 2.
Both low-frequency resonances are very sharp with a peak
value up to 3.5 times larger than that of the high-frequency
resonance, although the integrated intensity ratio is only
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FIG. 2. Low- and high-frequency resonances in the FMR spec-
trum of an Fe nanosphere of 2 nm diameter in a static magnetic field
of 0.65 T with Gilbert damping constant α = 0.01; quality factor
Qf = ω/(2η).

0.2%. Long relaxation times of low-frequency modes that
imply narrow resonances have been predicted for spherical
nanomagnets [32]. The blueshift of the high-frequency reso-
nance is δω‖/(2π ) ≈ 0.2(nm/a)2 GHz. In Fig. 3 we plot the
low-frequency modes ωl1 and ωl2 as a function of ωH/ωA.
For ωH/ωA → 0, ωl1 ≈ ωc and ωl2 → 0. The low-frequency
modes become degenerate in the limit ωH/ωA → ∞.

In ε − Fe2O3 [48] magnetization is reduced, resulting
in ωM/(2π ) = 2.73 GHz and ωc/(2π ) = 35(nm/a)2 MHz.
For the single-molecule magnet TbPc2 [38], we estimate
ωA/(2π ) ∼ 5 THz [49], ωM/(2π ) ∼ 10 GHz, ωc/(2π ) ∼
100 MHz [50], giving access to the strong-anisotropy regime
with ultralow effective damping.
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FIG. 3. Low-frequency magnetomechanical modes ωl1 and ωl2 of
an Fe nanosphere of 2 nm diameter.
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VI. EASY-PLANE CONFIGURATION

An easy-plane anisotropy aligns the equilibrium mag-
netization normal to the principal axis (m ⊥ n), which is
typically caused by the shape anisotropy of pancake-like oblate
spheroids corresponding to ωA < 0. We choose an external
magnetic field with a static component in the plane H0ey and
an ac field along x and z, while the equilibrium n points along
ez [see Fig. 1(b)]. For θ � 1, my ≈ 1, nz ≈ 1, we again obtain
analytic solutions for m and n (see Appendix C). We find
two singularities in the magnetic susceptibility tensor with
frequencies (for α � 1)

ω⊥ ≈ ωH

√
1 − ωA

ωH

− ωcωA

ω2
H

, (6.1)

ωl ≈
√

ω2
HωcωA

ωAωH − ω2
H + ωcωA

. (6.2)

Since nx does not depend on time there is only one low-
frequency mode ωl , viz. an oscillation about the x axis of
the nanomagnet. Linearization results in L̇y ≈ V Msṁy/γ ≈ 0
and implies L̇y ≈ I⊥n̈x ≈ 0. The high-frequency resonance
ω⊥ is blueshifted by δω⊥ ∼ ωc. As before, the lattice hardly
moves in the high-frequency mode, while at low frequencies
the magnetization is locked to the lattice.

In Fig. 4 we plot the FMR spectrum of an Fe nanodisk with
shape parameters a = 1 nm and b = 7.5 nm under μ0H0 =
0.25 T or ωH /(2π ) = 7 GHz. The characteristic frequencies
are ωc/(2π ) = 17.2 MHz and ωA/(2π ) = −14.4 GHz. The
blocking temperature with |EZ|/(kBTB) ≈ 24 is now about
300 K. Again, the low-frequency resonance is very sharp
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FIG. 4. FMR spectrum of an Fe disk with 15 nm diameter and
2 nm thickness in a static magnetic field of 0.25 T with Gilbert
damping constant α = 0.01.

and relatively weak. The contribution of Imχxx to the low-
frequency resonance is by a factor of 600 smaller than the
dominant Imχzz and therefore not visible in the plot.

VII. DISCUSSION

The examples discussed above safely fulfill all conditions
for the validity of the theory either at reduced temperatures
(T < 11 K, Fe sphere with 2 nm diameter) or even up to
room temperature (2 nm × 15 nm Fe disk). The levitation of
the particle can be achieved in cluster beams [13,15,51], in
aerosols [52], or by confinement to a magnetic trap [33,35,53].
FMR experiments should preferably be carried out in a
microwave cavity, e.g., a coplanar wave guide that can also
serve as a trap [54].

Metal oxide nanoparticles, such as ε − Fe2O3 [48], have
crystal anisotropies of the same order as that of pure iron but
smaller magnetization, which reduces the magnetomechanical
coupling strength, leading to similar results for somewhat
smaller particles. The strongest anisotropies and couplings
can be found in single-molecule magnets, e.g., TbPc2 [49], but
FMR experiments have to be carried out at low temperatures
in order to suppress thermal fluctuations.

Our theory holds for isolated particles at sufficiently low
temperatures and disregards quantum effects. According to
the fluctuation-dissipation theorem a Gilbert damping is at
finite temperatures associated with stochastic fields [55].
A full statistical treatment of the dynamics of magnetic
nanoparticles at elevated temperatures, subject to microwaves,
and weakly coupled to the environment is beyond the scope of
the present paper. When not suspended in vacuum but in, e.g.,
a liquid, the mechanical motion encounters viscous damping
and additional random torques acting on the lattice. Vice
versa, the liquid in proximity of the particle will be stirred
by its motion. These effects can be included in principle by
an additional torque term in Eq. (4.4). The external torque
will cause fluctuations in �z and a temperature dependent
broadening of the low-frequency resonances.

Microwave cavities loaded with thin films or spheres of
the high-quality ferrimagnet yttrium iron garnet have received
recent attention because of the relative ease with which the
(ultra) strong coupling between magnons and photons can be
achieved (for references and evidence for coherent magnon-
phonon interaction, see Ref. [56]). The sharp low-frequency
modes of free magnetic nanoparticles coupled to rf cavity
modes at 10–100 MHz correspond to co-operativities that
are limited only by the quality factor of the cavity. This
appears to be a promising route to access nonlinear, chaotic, or
quantum dynamical regimes. This technique would work also
for magnets with large damping and could break the monopoly
of yttrium iron garnet for quantum cavity magnonics. Materials
with a large anisotropy are most attractive by the enhanced
magnetization-lattice coupling.

VIII. SUMMARY

In conclusion, we discussed the effect of the magnetome-
chanical coupling on the dynamics of levitated single-domain
spheroidal magnetic nanoparticles, e.g., in molecular cluster
beams and aerosols. We predict a blueshift of the high-
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frequency resonance and additional low-frequency satellites
in FMR spectra that reflect particle shape and material
parameters. In the low-frequency modes the nanomagnet pre-
cesses together with the magnetization with strongly reduced
effective damping and thereby spectral broadening.
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APPENDIX A: COORDINATE SYSTEMS AND
TRANSFORMATIONS

We derive the coordinate transformation from the labo-
ratory with basis vectors ex , ey , ez to the body frame exb

,
eyb

, ezb
. The position of the particle is specified by the three

Euler angles (φ,θ,ψ). These three angles are defined by the
transformation matrix from the laboratory to the body frame
(rb = Ar),

A =
⎛
⎝ cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

⎞
⎠

⎛
⎝1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎞
⎠

×
⎛
⎝ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞
⎠. (A1)

The main axis n of the particle is given by the local zb axis
in the body frame and can be directly obtained via the inverse
transformation AT,

n =
⎛
⎝ sin θ sin φ

− sin θ cos φ

cos θ

⎞
⎠. (A2)

The angular velocity vector of the rotating particle reads in the
lab frame

� = ψ̇AT

⎛
⎝0

0
1

⎞
⎠ + θ̇

⎛
⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎠

⎛
⎝1

0
0

⎞
⎠ + φ̇

⎛
⎝0

0
1

⎞
⎠

=
⎛
⎝θ̇ cos φ + ψ̇ sin θ sin φ

θ̇ sin φ − ψ̇ sin θ cos φ

φ̇ + ψ̇ cos θ

⎞
⎠, (A3)

and in the body frame,

�b = A� =
⎛
⎝φ̇ sin θ sin ψ + θ̇ cos ψ

φ̇ sin θ cos ψ − θ̇ sin ψ

φ̇ cos θ + ψ̇

⎞
⎠. (A4)

The mechanical angular momentum L and the principal axis
n of the nanomagnet can be related by considering the

mechanical angular momentum in the body frame

Lb = Ib�b. (A5)

Transforming (A5) to the laboratory frame and expanding for
small angles θ ,

Lx ≈ I⊥
d

dt
(θ cos φ) ≈ −I⊥ṅy, (A6a)

Ly ≈ I⊥
d

dt
(θ sin φ) ≈ I⊥ṅx, (A6b)

Lz ≈ I3(φ̇ + ψ̇) ≈ I3�z, (A6c)

which is a valid approximation when �z = O(θ ). Further-
more, nz ≈ 1 and ṅz ≈ 0 is consistent with θ � 1.

The Gilbert damping is defined for the relative motion of
the magnetization with respect to the lattice, i.e., in the rotating
frame. The damping in the laboratory frame is obtained by the
coordinate transformation

τ (α)
m = ATτ

(α)
m,b = AT(αmb × ṁb), (A7)

where mb = Am. Expanding the time derivative

τ (α)
m = αm × ṁ + αm × (ATȦm). (A8)

The angular frequency vector � is defined by

ṙ = � × r, (A9)

where r is a point in the rotating body, i.e., ṙb = 0, and

ṙ = ȦTrb = ȦTAr. (A10)

Using d
dt

(ATA) = ATȦ + ȦTA = 0 and comparing
Eqs. (A9) and (A10),

ATȦr = r × �, (A11)

and therefore

τ (α)
m = αm × ṁ + αm × (m × �). (A12)

APPENDIX B: POISSON BRACKET IN
HAMILTON’S EQUATION

In the following, we show how to derive Hamilton’s
equation of motion (3.4). Using the linearity of the Poisson
bracket together with the product rule

{AB,C} = A{B,C} + {A,C}B, (B1)

and {aijk(n,L),S} = 0, we get

{S,H} =
∑

i,j,k∈N0

aijk(n,L)
{
S,Si

xS
j
y Sk

z

}
. (B2)

We only consider the x component, as the other components
can be derived similarly. Using the product rule (B1), we may
write {

Sx,S
i
xS

j
y Sk

z

} = Si
x

{
Sx,S

j
y Sk

z

}
= Si

xS
j
y

{
Sx,S

k
z

} + Si
xS

k
z

{
Sx,S

j
y

}
. (B3)

Next, we prove by induction that{
Sx,S

k
z

} = −kSyS
k−1
z , (B4)
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where the base case (k = 0){
Sx,S

0
z

} = 0 (B5)

and the inductive step (k → k + 1){
Sx,S

k+1
z

} = Sz

{
Sx,S

k
z

} + Sk
z {Sx,Sz}

= −(k + 1)SyS
k
z (B6)

complete the proof. Similarly, it follows{
Sx,S

j
y

} = jSj−1
y Sz. (B7)

Summarizing {
Sx,S

i
xS

j
y Sk

z

} = jSi
xS

j−1
y Sk+1

z

− kSi
xS

j+1
y Sk−1

z , (B8)

which gives with Eq. (B2) the x component of Eq. (3.4).

APPENDIX C: LINEARIZED EQUATIONS OF MOTION

1. Easy-axis configuration

In the easy-axis case (m ‖ n ‖ ez), the linearized equations
of motion of the magnetization m and mechanical angular
momentum L read

ṁx = −ωHmy + ωM

hy

Ms

− ωA(my − ny) − α(ṁy − ṅy),

(C1a)

ṁy = ωHmx − ωM

hx

Ms

+ ωA(mx − nx) + α(ṁx − ṅx),

(C1b)

ṁz = 0, (C1c)

L̇x = −I⊥n̈y, (C2a)

L̇y = I⊥n̈x, (C2b)

L̇z = I3�̇z = 0, (C2c)

with

n̈x = ω2
N (mx − nx) + αωc(ṁx − ṅx), (C3a)

n̈y = ω2
N (my − ny) + αωc(ṁy − ṅy), (C3b)

n̈z = 0, (C3c)

where ω2
N = ωcωA. Since �̇z = 0 and with initial condition

�z = 0, there is no net rotation �z. Introducing the chiral
modes,

m± = mx ± imy, n± = nx ± iny, h± = hx ± ihy, (C4)

we can write the equations of motion in the compact form

ṁ± = ±i

(
ω0m

± − ωM

h±

Ms

− ωAn±
)

± iα(ṁ± − ṅ±),

(C5)

n̈± = ω2
N (m± − n±) + αωc(ṁ± − ṅ±). (C6)

For ac magnetic fields

h±(t) = h±
0 eiωt , (C7)

we solve the equations of motion by the ansatz

m±(t) = m±
0 eiωt , n±(t) = n±

0 eiωt . (C8)

The observables correspond to the real part of the complex m,
n, and h. The susceptibilities are defined

m± = χ±h±/Ms, n± = χ±
n m±, (C9)

and read

χ±
n (ω) = ω2

N + iαωωc

−ω2 + ω2
N + iαωωc

, (C10)

χ±(ω) = ∓ωM

( − ω2 + ω2
N + iαωωc

)
× [

(ω ∓ ω0 ∓ iαω)
( − ω2 + ω2

N + iαωωc

)
±ωc(ωA + iαω)2

]−1
. (C11)

Close to a resonance of χ± at ωi the absorbed microwave
power is determined by the contributions

−ω

2
Imχ±(ω) ∼ F± (η±)2

(ω − ωi)2 + (η±)2
, (C12)

with

η± = ±αωi

(
ω2

i + ωc(±ωi − ωH )
)

3ω2
i ∓ 2ωiω0 − ωcωA

, (C13)

F± =
1
2ωM

(
ω2

i − ωcωA

)
α
(
ω2

i + ωc(±ωi − ωH )
) . (C14)

Note that for each resonance of χ+ at ωi there is a correspond-
ing resonance of χ− at −ωi .

The magnitudes of the x and y components of n are related
to m via the susceptibility χ±

n given in Eq. (C10). For high
frequencies ω we find χ±

n ≈ 0 and for low frequencies χ±
n ≈

1. Therefore, the main axis n is nearly static for the high-
frequency mode, while for the low-frequency modes n stays
approximately parallel to m.

The susceptibility χ± given in Eq. (C11) can be related to
the usual magnetic susceptibilities (α,β = x,y),

χαβ = Mα

hβ

∣∣∣∣
h⊥=0

. (C15)

Defining the symmetric and antisymmetric parts of the
susceptibility χ±,

χ± = χs ± χa. (C16)

we find the relations

χxx = χyy = χs, (C17a)

χxy = −χyx = iχa. (C17b)

The magnetization dynamics in terms of the magnetic
susceptibility reads

Re

(
mx(t)
my(t)

)
= Re

[(
χxx χxy

−χxy χxx

)(
hx(t)/Ms

hy(t)/Ms

)]
, (C18)
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FIG. 5. Real and imaginary parts of the magnetic susceptibility tensor χ (ω) of the low-frequency modes ωl1 and ωl2 for an Fe nanosphere
of 2 nm diameter with Gilbert damping α = 0.01.

where χyy = χxx and χyx = −χxy . For linear polarization
hx(t) = |hx |eiωt and hy(t) = 0,

Re

(
mx(t)
my(t)

)
= |hx |

Ms

(
Reχxx cos(ωt) − Imχxx sin(ωt)

−Reχxy cos(ωt) + Imχxy sin(ωt)

)
.

(C19)

According to Fig. 5, |Reχxx |, |Imχxy | � |Reχxy | ≈ |Imχxx |,
and Imχxx < 0 for both low-frequency modes ωl1 and ωl2 . The
direction of the precession depends now on the sign of Reχxy ,
which is negative for ωl1 and positive for ωl2 . The mode ωl1 is
a clockwise precession,

Re

(
mx(t)
my(t)

)
∝

(
sin(ωl1 t)
cos(ωl1 t)

)
, (C20)

whereas the mode ωl2 precesses counterclockwise:

Re

(
mx(t)
my(t)

)
∝

(
sin(ωl2 t)

− cos(ωl2 t)

)
. (C21)

Note that χ−(ω) has a low-frequency peak only at ωl1 and
χ+(ω) only at ωl2 (for ω > 0).

2. Easy-plane configuration

Here, we consider an equilibrium magnetization normal
to the principal axis (m ⊥ n) due to the shape anisotropy of
an oblate spheroid. Linearizing for small deviations from the
equilibrium (θ � 1, my ≈ 1, nz ≈ 1), the equations of motion
for the magnetization and mechanical angular momentum read

ṁx = ωH mz − ωM

hz

Ms

− ωA(mz + ny) + α(ṁz + ṅy),

(C22a)

ṁy = 0, (C22b)

ṁz = −ωH mx + ωM

hx

Ms

− αṁx − α�z, (C22c)

L̇x = −I⊥n̈y, (C23a)

L̇y = I⊥n̈x, (C23b)

L̇z = I3�̇z = V Ms

γ
(−αṁx − α�z), (C23c)

with

n̈x = 0, (C24a)

n̈y = ω2
N (mz + ny) − αωc(ṁz + ṅy), (C24b)

n̈z = 0. (C24c)

In the presence of ac magnetic fields

hx(t) = hx,0e
iωt , hz(t) = hz,0e

iωt , (C25)

we use the ansatz

mx(t) = mx,0e
iωt , mz(t) = mz,0e

iωt , ny(t) = ny,0e
iωt .

(C26)

From Eq. (C23c)

�z = −ωIωαmx

ω − iαωI

≈ −αωImx, (C27)

where ωI = V Ms/(γ I3) and provided αωI is sufficiently
smaller than all the other relevant frequencies. We approx-
imate α�z = O(α2) ≈ 0 in Eq. (C22c). Due to the reduced
symmetry for m ⊥ n, we cannot simplify the equations of
motion by introducing chiral modes but have to calculate the
Cartesian components of the magnetic susceptibility tensor
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χ as

χxx = ωM

[
ω2(ωA − ωH ) − iα(ω3 − ωωcωH ) − ωHω2

N

]/
χd,

(C28a)

χzz = −ωM (ωH + iαω)
(
ω2 + ω2

N − iαωcω
)/

χd, (C28b)

χxz = iωωM

(
ω2 + ω2

N − iαωcω
)/

χd, (C28c)

χzx = −χxz, (C28d)

where the denominator

χd = ω4(1 + α2) + iαω3(ωA − ωc − 2ωH )

+ ω2
(
ωAωH − ω2

H + ω2
N − α2ωcωH

)
+ iαωωH

(
ωcωH − ω2

N

) − ω2
Hω2

N . (C29)

The singularities in χ mark the two resonance frequencies. For
small damping (α � 1)

ω2
1,2 = −1

2

(
ωAωH − ω2

H + ω2
N

)
±1

2

√(
ωAωH − ω2

H + ω2
N

)2 + 4ω2
H ω2

N . (C30)

From Eq. (C24b), we obtain the following relation between
the magnetic and mechanical motion

ny = −ω2
N + iαωcω

ω2 + ω2
N − iαωcω

mz. (C31)

For high frequencies ny ≈ 0 and for low frequencies ny ≈
−mz. This implies that for the high frequency mode ω⊥ = ω1

we recover the bulk FMR, while in the low-frequency mode
ωl = ω2 the magnetization is locked to the lattice.

APPENDIX D: FMR ABSORPTION

FMR absorption spectra are proportional to the energy
dissipated in the magnet [25]. The energy density of the

magnetic field is given by

w(t) = 1
2 H(t) · B(t), (D1)

where B = μ0χH. The absorbed microwave power by a
magnet of volume V is

P (t) = V ẇ(t) = V H(t) · Ḃ(t). (D2)

The average over one cycle T = 2π/ω,

P ≡ 〈P (t)〉 = 1

T

∫ T

0
dt P (t), (D3)

can be calculated using the identity

〈Re(Aeiωt ) · Re(Beiωt )〉 = 1
2 Re(A∗ · B). (D4)

When a monochromatic ac component of the magnetic field
h⊥ is normal to its dc component, the power reads

P = −μ0V

2
ωIm(h∗

⊥ · M⊥), (D5)

where M⊥ is the transverse magnetization. When the magne-
tization and static magnetic field are parallel to the principal
axis of the particle, we can write

P = −μ0V

2
ω[(|hx |2 + |hy |2)Imχs(ω)

− 2Im(h∗
xhy)Imχa(ω)], (D6)

where the symmetric and antisymmetric parts of the suscepti-
bility χ± Eq. (C11) as defined by Eq. (C16) obey the symmetry
relations Imχs(−ω) = −Imχs(ω) and Imχa(−ω) = Imχa(ω).
The term proportional to Imχa can therefore be negative,
depending on the signs of ω and Im(h∗

xhy), whereas the term
involving Imχs (as well as the total absorbed power) is always
positive.

When magnetization and static magnetic field are normal
to the principal axis, both real and imaginary parts of the
off-diagonal components of χ contribute to the absorbed power

P = −μ0V

2
ω[|hx |2Imχxx(ω) + |hz|2Imχzz(ω)

+ Im(χxzh
∗
xhz + χzxhxh

∗
z )]. (D7)
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