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Semiclassical approach to quantum spin ice
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We propose a semiclassical description of the low-energy properties of quantum spin ice in the strong Ising
limit. Within the framework of a semiclassical, perturbative Villain expansion, that can be truncated at arbitrary
order, we give an analytic and quantitative treatment of the deconfining phase. We find that photon-photon
interactions significantly renormalize the speed of light and split the two transverse photon polarizations at
intermediate wave vectors. We calculate the photon velocity and the ground-state energy to first and second order
in perturbation theory, respectively. Both are in good agreement with recent numerical simulations. We further
compute the classical energy of the vison excitation.
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I. INTRODUCTION

Classical spin-ice materials such as Ho2Ti2O7 and
Dy2Ti2O7 contain magnetic moments that occupy sites of
corner-sharing tetrahedra. Local strong crystal fields force the
moments to point either in or out of the tetrahedra, motivating
an effective spin-1/2 description. Dipolar interactions between
the spins lead to the famous two in-two out ice rules at low
temperatures, giving a macroscopically degenerate manifold
of classical spin-ice states [1]. Tetrahedra that violate the ice
rules correspond to sources of flux of the physical magnetic
field and can be identified as magnetic monopoles [2,3].

The possibility of realizing quantum analogues of these
systems, dubbed quantum spin ice [4], in related rare-
earth magnets such as Tb2Ti2O7, Pr2Sn2O7, Pr2Zr2O7, and
Yb2Ti2O7, has attracted much attention of late. However,
definitive confirmation of the discovery of quantum spin ice is
yet to be found. (We point to Ref. [5] for an extensive survey
of the theoretical and experimental progress on quantum spin
ice; more recent experimental efforts include Refs. [6–10].)

This anticipated quantum spin liquid state of matter is
argued to be a gapless U (1) spin liquid. Indeed, it was shown
by Hermele et al. [11] that quantum (virtual) perturbative
processes can lead to an effective Hamiltonian that couples
states in the two in-two out manifold. Because the Hamiltonian
acts within the space of states that satisfy a lattice diver-
genceless condition, it necessarily possesses U (1) symmetry.
This gauge invariance prevents long-range order down to zero
temperature and keeps the system in a quantum spin liquid
phase. In the same reference, it was also demonstrated that
the Hamiltonian can be mapped onto a variant of compact
U (1) lattice gauge theory, the compactness arising from the
discreteness of the spin-1/2 degrees of freedom. From lattice
gauge theory literature, e.g., Ref. [12], it is known that
such a model exhibits two phases: a deconfining one with a
gapless photon excitation, where (static) charges (magnetic
monopoles) interact via Coulomb forces; and a confining
phase where the photon is gapped and charges are confined.
Hermele et al. argued that the underlying frustration of the
spin-1/2 model keeps quantum spin ice in its deconfining
phase. These results were confirmed using quantum Monte
Carlo calculations by Shannon et al. [13,14], who compared
the dynamical structure factor as predicted by lattice gauge
theory for the deconfining phase against numerical results.

Progress has also been made away from the strong Ising
limit, where the coupling between the degenerate spin-ice
states is no longer small by comparison with the Ising
exchange. This leads to increasing violations of the ice
rules and proliferation of magnetic monopoles. Slave-boson
treatments [15–18] have studied the resulting transitions from
quantum spin ice into neighboring ordered phases through
mean-field theory or phase stability arguments. In particular,
in Ref. [15], it was shown that a condensation of magnetic
monopoles leads to a transition from the quantum spin ice
phase into a phase with antiferromagnetic order. The above
analytic treatments have been complemented and supported
by numerical investigations, e.g., Refs. [19,20].

For completeness, we also mention the recent theoretical
work in Refs. [21–23] directed at investigating the behavior
of quasiparticle (monopole) excitations in quantum spin ice.
Further, systems that satisfy Gauss’s Law and host a gapless
photon excitation are not limited to quantum spin ice. Dimer
models are a prominent example, and for completeness, we
mention the recent theoretical work in Refs. [24–26].

In the search for experimental signatures of quantum spin
liquid behavior, and in general to gain further insight on
the properties of quantum spin ice systems, new theoretical
perspectives can be helpful. In this article, we propose a
complementary viewpoint to that taken in Ref. [11]. We apply
Villain’s semiclassical expansion [27] to quantum spin ice and
obtain quantitative estimates of the ground-state energy and the
long-wavelength dispersion of its excitations. We find the latter
to be in good quantitative agreement with the numerical results
obtained in Ref. [13]. Photon-photon interactions significantly
renormalize the speed of light and split the two transverse
photon polarizations at intermediate wave vectors.

In our approach, the deconfining phase and its gapless
photon excitations arise naturally at large length scales,
through a coarse-graining of the microscopic spin-1/2 degrees
of freedom, analogously to how the ordered phase and its
spin-wave excitations arise at large length scales in spin-1/2
ferromagnets. In light of the large-s expansion, our approach
offers the advantage of being able in principle to systematically
improve on the accuracy of the results by going to higher order
in perturtbation.

In Sec. II, we describe in detail the effective ring-exchange
Hamiltonian that was derived in Ref. [11] and which acts

2469-9950/2017/95(13)/134439(12) 134439-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.134439
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within the manifold of spin-ice states. We introduce the semi-
classical perturbative large-spin expansion and we discuss,
following Ref. [27], its surprising success in the case when
s = 1

2 . A calculation of the ground-state energy and dispersion
is also presented here to quadratic order. In Sec. III, we
look at higher-order corrections arising from photon-photon
interactions. In particular, we calculate the renormalization of
the speed of light and the ground-state energy. We argue that
higher-order terms are generally irrelevant in the RG sense.
We discuss how zero-point fluctuations affect the ground state,
and from this we argue that the kinematic constraints arising
from the finite spin size are irrelevant at large length scales. In
Sec. IV, we compute the classical part of the vison energy.

II. LARGE-S DESCRIPTION

Spin-ice materials contain magnetic moments that occupy
the sites of a pyrochlore lattice. The pyrochlore lattice is a
bipartite lattice of corner sharing “up” and “down” tetrahedra,
whose centers map out a diamond lattice and the corners
correspond to pyrochlore lattice sites. The crystal field forces
the magnetic moments to lie along the bonds of the diamond
lattice and they are well approximated by spin-1/2 degrees of
freedom [5]. A given moment is in the Sz = 1/2 spin state if it
points out of the “up” tetrahedron and in the Sz = −1/2 state
if it points into it. Furthermore, because of strong Ising-type
exchange, the low-energy manifold of spin ice obeys the
following constraint: ∑

n∈tet.

Sz
n = 0, (1)

where the sum is taken over the four corners of a given
tetrahedron. These are known as spin-ice rules.

Quantum effects lead to tunneling between the two Sz =
±1/2 spin states. The lowest-order virtual process that
connects two states that satisfy the spin-ice rules (and does not
give rise to a trivial constant) is the hexagonal ring-exchange.
This perturbative process is captured by the following effective
Hamiltonian, derived in Ref. [11]:

H = −g
∑
hex.

(S+
1 S−

2 S+
3 S−

4 S+
5 S−

6 + H.c.). (2)

Here the sum is taken over all possible hexagonal plaquettes
of the pyrochlore lattice and S+

n , S−
n , n = 1–6, are the spin-

1/2 raising and lowering operators for the six spins that
form a given plaquette. Figure 1 highlights these spins. The
Hamiltonian is a sum of terms, each of which flips all the
spins around a different plaquette, assuming they are in an
appropriately flippable state.

This Hamiltonian was studied in Refs. [11,13], where, by
mapping the ring-exchange model to an O(2) quantum rotor
representation, it was argued that the low-energy physics is that
of compact U (1) electrodynamics in its deconfining phase.
This was later confirmed with Monte Carlo calculations on
finite systems [13], where it was found that the spin-spin
correlators are chiefly governed by a linearly dispersing photon
excitation, characteristic of deconfining U (1) electrodynam-
ics.

The O(2) rotor picture has the main drawback that no
analytic, quantitative predictions can be easily made from

FIG. 1. Hexagonal ring-exchange from the Hamiltonian in
Eq. (2). The highlighted spins 1–6 form a single plaquette. As shown,
the plaquette is flippable since adjacent spins have opposite sign of
Sz. Note that the spins lie along lines joining the centers of adjacent
tetrahedra and that, by the constraint in Eq. (1), each tetrahedron has
two spins that point out of it and two spins that point in.

the bare microscopic parameters. Moreover, the deconfining
phase is argued to be a result of the underlying frustration—the
eigenvalues of the magnetic field Sz are half-integers and hence
its expectation value cannot be made to vanish, as would be
energetically favorable in the confining phase where magnetic
flux lines form narrow tubes. It is proposed that this frustration
leads to a massive renormalization of the bare parameters of
the model such that the effective long-wavelength description
is that of compact electrodynamics in its deconfining phase.

Here, we propose a complementary view that allows us to
shed some light on this massive renormalization and to make
quantitative predictions that were previously not accessible.
With the hindsight that the effective long-wavelength, low-
energy description hosts gapless, linearly dispersing collective
photon excitation, in which the original, discrete, i.e., quantum,
nature of the participating spins is coarse-grained over, we
propose a semi-classical large-s description. That is, we extend
our analysis of the Hamiltonian in Eq. (2) to spins of general
size s.

We start off with large spins and employ semiclassical
approximations to obtain the effective model. The spin s

can then be tuned to 1/2 to obtain quantitative estimates of
the relevant parameters. The success of this approach is a
consequence of the RG flow to the fixed point at 1

s
= 0, so

that at small momenta 1/s can be treated as a small parameter
and is analogous to the success of spin-wave description in
spin-1/2 quantum ferromagnets. We have implicitly assumed
the absence of other fixed points—because of the above-
mentioned frustration, the system is in the deconfining phase
for all s and the RG flow is controlled by the 1

s
= 0 fixed point.

Note that it is the relevant gapless, long-wavelength modes that
determine the RG flow to large s, rather than the global broken
symmetry per se. To see this, it is particularly instructive
to use a spin representation that, unlike Holstein-Primakoff
or Dyson-Maleev, does not rely on a broken symmetry. A
particularly useful representation of this type is the Villain
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representation (see, e.g., Ref. [28], where it is used to obtain
quantitative estimates for the spin-1/2 XY model; the results
agree to second order in 1/s with those obtained by Holstein-
Primakoff).

In the Villain spin representation, the U (1) gauge symmetry
of the ring-exchange Hamiltonian becomes explicit:

S+ = eiφ/2
√

s̃2 − Sz2eiφ/2 S− = (S+)†, (3)

where s̃ = s + 1
2 , φ and Sz are canonically conjugate operators

([φ,Sz] = i), and the Hilbert space is spanned by periodic (or
antiperiodic) eigenfunctions of φ. This means that it is also
spanned by eigenfunctions of Sz with integer (or half-integer)
eigenvalues. Our physical system will be further restricted to
the subspace where |Sz| � s—this is known as the kinematic
constraint.

We introduce the variable p = Sz

s̃
and expand the Hamilto-

nian in Eq. (2) to order s̃−1, i.e., to second order in p and φ

(for large s the quadratic term controls the fluctuations of p

and φ, which scale as s̃− 1
2 ),

H
gs̃6

= −2 +
∑
αβ

(curlαβφ)2 + z
∑
ij

p2
ij + O

(
1

s̃2

)
, (4)

where z = 6 is the coordination number of the hexagonal
plaquette, latin letters {i} index the sites of the diamond
lattice (bond midpoints {ij} correspond to pyrochlore lattice
sites on which the spins live) and the greek letters index
the sites of the dual diamond lattice. Bond midpoints of the
dual diamond lattice {αβ} correspond to centers of hexagonal
plaquettes of the original pyrochlore lattice (see Appendix A
for an explanation of this duality). In particular, curlαβφ ≡
φ1 − φ2 + φ3 − φ4 + φ5 − φ6, where 1–6 index the six spins
that make up the hexagonal plaquette centered on αβ.

Validity of the harmonic approximation. By expanding
the Hamiltonian in small curlαβφ we have made an im-
plicit approximation. Namely, we are approximating periodic
wave functions �p({φij }) by square-integrable wave functions
�s({φij }). Because �s({φij }) = �p({φij }) for |curlαβφ| < π

and vanishes otherwise, a smooth approximation for �s({φij })
works well if most of the weight of the wave function
is confined to the region where curlαβφ ≈ 0. Note that by
conjugacy, removing the periodicity in φij is equivalent to
making pij continuous. The harmonic approximation works
well for large s because typical fluctuations O(curlαβφ) ∼
O(pij ) ∼ s− 1

2 become small. It is surprising, however, that it
may work well for s = 1

2 . However, the system is believed
to be in the deconfining phase even for s = 1

2 , and in this
phase, the long-distance properties are determined by long-
wavelength, gapless degrees of freedom. As explained above,
these permit us to take an average of many adjacent spins,
and in this case the square-integrable wave functions become
a good approximation of the physical periodic eigenstates
of the system. Consider a single spin-1/2 aligned along the
x axis. Its wave function in the Sz basis is the well-known
�→(Sz) = 1√

2
(δSz= 1

2
+ δSz=− 1

2
), and in the φ basis it is equal

to �→(φ) = 1√
π

cos(φ

2 ). A square-integrable approximation
for �→(φ) or a continuum approximation for �→(Sz) at this
stage would be rather poor. However, if we have a large
number N of spins aligned along the x axis and we are

interested in the average 〈φ〉 or average 〈Sz〉 of this ensemble
(coarse-graining), then by the central limit theorem, a Gaussian
approximation for these will work very well: �→(〈φ〉) =
e−3N〈φ〉2/2π(π2−6) and �→(〈Sz〉) = e−2N〈Sz〉2

, regardless of the
underlying distribution or its discreteness. The only parameters
that the individual spins provide are the average and variance
of the relevant variable, which is set by s. This is the essence
of why the harmonic approximation works so well even for
s = 1

2 , when long-wavelength modes that allow for coarse
graining are the relevant degrees of freedom in the system. A
similar coarse-grained description was motivated in the work
of Ref. [29] in the context of classical spin ice.

The quadratic part of the Hamiltonian is diagonal in the
appropriate basis (details of the required transformation, which
follows Ref. [13], can be found in Appendix A):

H0

gs̃6
=
∑

λ,k∈BZ

[
ξ 2
λ (k)φλ(k)φλ(−k) + zpλ(k)pλ(−k)

]
, (5)

where λ = 1,2,3,4 indexes the four normal mode branches, k

is summed over the first Brillouin zone of the fcc lattice, and
ξλ(k) are given by

ξλ=1,2(k) = ±
√

2
√∑

μν

sin2
(
k · �μν

)
,

ξλ=3,4(k) = 0, (6)

and the vectors �μν are given in the Appendix. The con-
jugate operators satisfy the canonical commutation relations
[φλ(k),p†

λ′(q)] = 1
s̃
δk,qδλ,λ′ . There are two divergenceless

modes λ = 1,2, which correspond to the two polarizations
of the photon and become the two transverse modes in the
continuum limit, and there are two divergenceful modes
λ = 3,4, which give rise to the longitudinal mode in the
continuum limit. The spin-ice rules enforce zero lattice
divergence on pij so that the divergenceful modes vanish
identically,

pλ=3(k) = pλ=4(k) = 0 for all k. (7)

Because of this constraint, the divergenceful modes do not
enter the Hamiltonian. These degrees of freedom span the
2Ns-dimensional space of constants of motion (where Ns is the
number of k vectors in the Brillouin zone of the fcc lattice), i.e.,
the above operators commute with the Hamiltonian, and are
in a one-to-one correspondence with the tetrahedron charges∑

i∈tet. pi , which span the same space. Because pλ=3(k) and
pλ=4(k) are linear combinations of the tetrahedron charges,
they must vanish in their absence. Note that, by the uncertainty
principle, the fluctuations in the divergenceful part of φij , i.e.,
φλ=3(k) and φλ=4(k), are unbounded and correspond to the
U (1) gauge freedom of the Hamiltonian: φij → φij + χi − χj .

For the two divergenceless modes λ = 1,2 that remain in the
Hamiltonian, we introduce bosonic creation and annihilation
operators:

φλ(k) =
√

ω(k)

2s̃
[a†

λ(k) + aλ(−k)],

pλ(k) = i√
2s̃ω(k)

[a†
λ(k) − aλ(−k)], (8)
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M. P. KWASIGROCH, B. DOUÇOT, AND C. CASTELNOVO PHYSICAL REVIEW B 95, 134439 (2017)

where the bosonic operators obey the usual commutation
relations, in particular [aλ(k),a†

λ′ (q)] = δk,qδλ,λ′ . If we make
the choice

ω(k) = √
z/|ξλ=1(k)|, (9)

the Hamiltonian becomes diagonal in the above basis,

H0 =
∑

k∈BZ,λ=1,2

ε(k)

[
a
†
λ(k)aλ(k) + 1

2

]
, (10)

where the elementary spin-wave excitations aλ(k) are “photon”
like, i.e., they are gapless, linearly dispersing modes with two
polarisations λ = 1,2. The energy dispersion,

ε(k)

gs5
= 2z

ω(k)
+ O

(
1

s

)
|k|ao�1→ c|k|,

c ≈ 0.15ga0 for s = 1

2
. (11)

This is substantially different from the Monte Carlo estimate
of Ref. [13]. We will see that there is a sizable Hartree-Fock
correction coming from higher-order terms in the Hamiltonian
[Eq. (2)], which we believe is chiefly responsible for this
discrepancy. The total energy E, to order 1/s is given by

E

4Nsgs6
= −2

s̃6

s6
+

√
zs̃5

4Nss6

∑
k,λ

|ξλ(k)| + O

(
s̃4

s6

)

= −2 + 1

s

[
−6 +

√
z

4Ns

∑
k,λ

|ξλ(k)|
]

+ O

(
1

s2

)

= −2 + A1

s
+ O

(
1

s2

)
, (12)

where A1 ≈ −1.820 and the two corrections at order 1/s

arise from the smearing of the spin length and zero-point
fluctuations, respectively. Ns is the number of k vectors in
the first Brillouin zone of the fcc lattice and 4Ns is the number
of pyrochlore lattice sites.

It is instructive to compare this result with that for the square
spin-1/2 XY model from Ref. [28],

EXY/Ns2 = −2 − 0.084

s
+ O

(
1

s2

)
, (13)

where the same Villain spin representation was used. The
coefficient of the 1/s term is much larger in our case and
this can be explained by the fact that there are six spins
participating in the ring-exchange interaction as compared
to two in the easy-plane ferromagnetic exchange of the XY

model. Zero point fluctuations contribute at second order in the
expansion of the Hamiltonian around the classical saddle pont.
Writing each spin as the sum of its classical expectation value
(gauging out unbounded longitudinal fluctuations in the case
of ring exchange—see Appendix C) and a small fluctuation
δS, we see that there will be 6C2 = 15 quadratic terms for the
ring exchange (for each plaquette) and 2C2 = 1 such terms
for the XY model (for each bond). Assuming each quadratic
term gives a separate contribution (δS/S)2 that scales as 1/s

(largely set by infrared fluctuations of the spin phase, which
are insensitive to the microscopic model), we find that the ratio

of zero-point fluctuations for the two models scales roughly as
6C2/

2C2 = 15, in agreement with the results above.
We close by noticing that this quadratic analysis allows

also to compute the zero-point fluctuations of the gauge mean-
field, as defined, for example, by the slave boson mapping
of Ref. [15] (see Appendix C). We find a ∼4% reduction of
the gauge mean-field, suggesting that in the strong Ising limit
g → 0, there are only small corrections to gauge mean-field
theory from zero-point fluctuations.

III. PERTURBATIVE CORRECTIONS: SPIN-WAVE
INTERACTIONS

We now consider perturbative corrections to the energy
of the system, at order 1/s2 in E/gs6, arising from normal
ordering of quartic terms in the Hamiltonian in Eq. (2),
i.e., Hartree-Fock corrections. We shall not consider here
self-energy terms (which come in at order higher than 1/s2),
although our perturbative expansion can be straightforwardly
extended to compute them.

A. Hartree-Fock corrections

We first note that there are no cubic terms in the expansion
of the Hamiltonian in Eq. (2). Collecting all quartic terms, we
get

HI

gs̃6
= −
∑
αβ

⎡
⎣ 2

4!
(curlαβφ)4 − 1

2

∑
ij∈αβ

p4
ij

+ 1

4
(curlαβφ)

⎛
⎝∑

ij∈αβ

p2
ij

⎞
⎠(curlαβφ) + 1

4

∑
ij,kl∈αβ

p2
ijp

2
kl

+ 1

8
(curlαβφ)2

⎛
⎝∑

ij∈αβ

p2
ij

⎞
⎠+ 1

8

⎛
⎝∑

ij∈αβ

p2
ij

⎞
⎠(curlαβφ)2

⎤
⎦,

(14)

where ij ∈ αβ signifies that the sum is taken over the sites
ij that belong to the plaquette αβ. Note that the divergenceful
(λ = 3,4) φij modes do not enter the Hamiltonian at all orders,
and that the divergenceful pij modes vanish by the constraint.

The Hartree ground-state energy correction is given by

〈g.s.|HI |g.s.〉, (15)

where |g.s.〉 is the ground state of the quadratic Hamiltonian
H0. The correction is equal to the constant remaining after HI

is normal-ordered. Details are given in Appendix B. To order
1/s2 the ground-state energy can then be written as

E

4Nsgs6
= −2 + A1

s
+ A2

s2
+ O

(
1

s3

)
,

E ≈ −0.138Npg for s = 1

2
, (16)

where A2 = −0.793 and Np = 4Ns is the total number of
hexagonal plaquettes or pyrochlore lattice sites. This compares
well with the quatum Monte Carlo result of Ref. [14], where
E ≈ −0.19Npg.
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FIG. 2. The dispersion for the case s = 1
2 in the direction [013]

of the bcc reciprocal lattice. The dashed line shows the zeroth-order
dispersion [ε(k)/gs5 is given to zeroth order in 1/s]. The solid line
includes the first-order Hartree-Fock corrections, which can be seen
to increase the speed of light. It also introduces a small splitting �ε(k)
of the modes away from k = 0, which is visible on the scale of the
plot only if appropriately magnified (dotted line). �ε(k) ∝ |k|3 close
to k ≈ 0.

Considering the Hartree correction to the excitation spec-
trum, we find that HI mixes the degenerate spin-wave modes,

〈g.s.|aλ(k)HI a
†
λ′(k)|g.s.〉 = 0, (17)

even for λ = λ′. This is because of terms p2
ijp

2
kl in HI , which

couple electric fields at different lattice points. The resulting
splitting in the spin-wave spectrum only appears at |k|a0 ∼ 1
and vanishes in the continuum limit |k|a0 → 0, i.e. it does
not lift the degeneracy of the gapless photon. Figure 2 shows
the Hartree-renormalized dispersion across the Brillouin zone
(details of the calculation can be found in Appendix B). To
order s−1, the renormalized speed of light is given by

c

gs5
= 2a0

√
z

(
1 + 0.846

s

)
+ O(s−2),

c ≈ 0.41ga0 for s = 1

2
, (18)

which is now much closer to the numerical value of
(0.6 ± 0.1)ga0 computed in Ref. [13].

B. RG considerations, spin-wave damping,
and the ground-state wave function

We now shed a bit more light on the success of the large
s expansion by discussing the relevance of the successive
terms in the Hamiltonian in the long-wavelength limit. In
the path-integral description of the Hamiltonian in Eq. (4),
the continuum-limit action is of the following form (without
loss of generality gs̃6 has been set to one):

S =
∫

ddr
∫

dτ s̃[(∇ × �(r,τ ))2 + �̇(r,τ )2

+O((∇ × �)4,�̇2(∇ × �)2,�̇4)], (19)

where �(r,τ ) is a vector field and the quartic and higher order
terms are included in O((∇ × �)4,�̇2(∇ × �)2,�̇4), which is
typical of the scaling properties of all the quartic terms in the
Hamiltonian [see Eq. (14)]. Note that we have rescaled the
imaginary time τ → s̃τ and perturbatively integrated out the
massive modes. Naive RG scaling proceeds as follows:

r,τ → br,bτ,

� → b
1−d

2 s̃− 1
2 �,∫

dτ

∫
ddr(∇ × �)4 → b−d−1

s̃

∫
dτ

∫
ddr(∇ × �)4,

(20)

for b > 1. The Gaussian term dominates in all dimensions and
higher order � terms are irrelevant. The above scaling also
shows that higher order terms in � correspond to increasing
orders in the 1/s expansion. Naive scaling therefore leads to the
conclusion that the 1/s expansion provides a good description
of long-wavelength physics.

From the irrelevance of the quartic term, one also expects
the damping of a photon above the ground state to be small. In
fact, the decay of a single photon intro three photons (caused
by HI ) vanishes exactly in the relativistic part of the spectrum
because of kinematic constraints.

We have shown that dynamical spin-wave interactions
are irrelevant for low-energy physics. The Gaussian term
dominates the action, which corresponds to neglecting normal
ordered terms in the quartic contribution Eq. (14), and higher
order. The renormalized quadratic Hamiltonian (i.e., after
Hartree Fock corrections have been added to it) should give us
good estimates for long-distance correlators. It is also worth
noting at this point that higher-order terms are irrelevant in
the sense that they do not alter the functional form of the
low-energy correlators. However, unlike 4d QED, the quartic
terms are not required to satisfy Lorentz invariance, and indeed
they do not, and thus lead to the renormalization of the speed
of light.

Now that we have satisfied ourselves that dynamical spin-
wave interactions are negligible, one can also try to address
the issue of kinematic spin-wave interactions arising from the
fact that |Sz| � s. Here, it proves very instructive to consider
the overlap of a particular spin configuration with the ground
state,

〈{
Sz

ij

}∣∣g.s.
〉 ∝
( ∏

k,λ=3,4

δSz
λ(k)

)
e−∑k,λ=1,2

ω(k)
s̃

Sz
λ(k)2

, (21)

where |{Sz
ij }〉 is a particular eigenstate of Sz

ij . First, in the
limit s → ∞, zero-point fluctuations disappear and the ground
state becomes an unweighted (for Sz

ij � s) superposition of all
states that satisfy the spin ice rules, i.e., those where Sz

λ=3(k) =
Sz

λ=4(k) = 0 for all k. For s = 1
2 this would correspond to

the RK state. As we make s finite, zero-point fluctuations
have the strongest effect on the low lying k states, where
the weights vanish nonperturbatively because ω(k) ∝ 1

k . It is
this divergence of ω(k) that dominates the long-wavelength
physics and is for instance responsible for the disappearance
of pinch-points as s becomes finite and we move away
from the RK state. One could therefore exclude the high
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Fourier components of Sz(k) from the weights in Eq. (21),
since the effect on low-energy physics is negligible—it is
for these high Fourier components that the kinematic bound
on the microscopic spins is also highly relevant. For low k
components, on the other hand, the spins can be coarse-grained
into large effective spins of typical size ∼s/(|k|a)3 and the
bound becomes irrelevant.

IV. VISONS

So far, we have neglected nonperturbative corrections in
s, arising from the compact nature of the Hamiltonian in
Eq. (2). In the ground state, these corrections involve virtual
excitations of vison pairs of opposite charge. A vison is a
gapped quasiparticle excitation [5] that carries electric charge.
If Sz is the physical magnetic field, then the conjugate variable
θij can be viewed as the fictitious electric vector potential
and Eαβ ≡ curlαβθ − 2πn as the corresponding electric field,
where n is chosen so that −π < Eαβ < π . Note that this
electric field has no relation to the physical electric field, and
its eigenstates correspond to quantum superpositions of the
spin-1/2 states that carry physical magnetic moments.

Visons are sources of flux of the electric field, which is
quantized in units of 2π ,∑

tet.α

Eαβ = 2πqα, (22)

where the sum is taken over the four corners of tetrahedron
α, belonging to the dual diamond lattice, and qα ∈ Z is the
vison charge at that tetrahedron. Any configuration of the
electric field can be viewed as a superposition of visons,
which uniquely determine the longitudinal part of the electric
field, and photons, which uniquely fix the transverse part—this
statement is essentially the lattice version of the Helmholtz
decomposition.

At low temperatures, vison excitations are exponentially
suppressed and form a dilute Debye plasma. It is of particular
interest to experimental studies to know the size of this
suppression, and hence, the expected vison density at some
nonzero temperature T . The semiclassical expansion allows
for a systematic calculation of the vison energy, and below,
we find its classical part. The first-order term (in s) in the
Hamiltonian in Eq. (2) is given by

H
gs6

= −2
∑
αβ

cos(Eαβ), (23)

where the longitudinal part of Eαβ (which satisfies curlijE = 0
everywhere) is uniquely determined by the vison charges qα

through Eq. (22). This is because the longitudinal part can be
written down as the lattice derivative,

E(r + eμ/2) = �d(r + eμ) − �u(r), (24)

where the variables �u/d(r) are defined on the centers of dual
up and down tetrahedra that make up two fcc lattices. (The
position vectors r belong to the fcc lattice that maps out
the centers of dual down tetrahedra and the basis vectors eμ

are defined in Appendix A.) Making the above substitution,

the constraint in Eq. (22), for up tetrahedra, can be written as

2πqu(r) =
∑

μ

[�d(r + eμ) − �u(r)], (25)

and for down tetrahedra as

2πqd(r) = −
∑

μ

[�d(r) − �u(r − eμ)], (26)

where qu(r) and qd(r) are the vison charges at position r of an
up or down tetrahedron, respectively. By Fourier transforming
the two equations we obtain a unique solution (up to a constant)
for �u/d(r).

It follows that for a single vison at r = 0 the electric field
is given by

E(r + eμ/2) = 1

Ns

∑
k∈BZ

π (1 − eik·eμγ ∗(k))

2(1 − |γ (k)|2)
eik·r, (27)

where

γ (k) = 1

4

∑
μ

eik·eμ . (28)

Substituting this into the Hamiltonian in Eq. (23) and making
a parabolic approximation for the cosine potential gives the
following expression for the vison energy:

U = gs6
∑
k∈BZ

π2

1 − |γ (k)|2

= 0.274g for s = 1

2
. (29)

For Yb2Ti2O7, fits to neutron scattering data [30] give g ≈
0.60K [31] and hence U ≈ 0.16K.

At low temperatures, visons tunnel quantum mechanically
between sites of the dual diamond lattice. The delocalization
of visons that results gives a nonperturbative kinetic energy
correction to U , of the order of e−s . The calculation of this
quantum mechanical correction to the energy is beyond the
scope of the present paper.

V. CONCLUSION

We have developed a semiclassical description that accu-
rately captures the properties of quantum spin ice at large
length scales and allows for a systematic, perturbative expan-
sion, which in principle can be truncated at arbitrary order. In
particular, we have computed the speed of light to first order in
the expansion parameter (the inverse of the spin size), and the
ground-state energy to second order. Our results are in good
quantitative agreement with recent numerical calculations
in Ref. [13]. We find that Hartree-Fock corrections, due to
photon-photon interactions, that go beyond the quadratic U (1)
lattice gauge theory, significantly renormalize the speed of
light and give rise to a small splitting in the energy of the two
photon modes at intermediate wave vectors.

We offered some a posteriori justification for the semiclas-
sical expansion in the case s = 1

2 and argued that higher-order
terms in the expansion are irrelevant in the usual RG sense.
We used some of Villain’s original arguments [27] to also
argue that square-integrable wave functions can provide an
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accurate description of the long-distance properties of the
deconfining phase, which are determined by long-wavelength
fluctuations of the spins. Further, we have explicitly showed
how zero-point fluctuations modify the classical ground state,
which is an unweighted superposition of spin-ice states. From
this, we argued that the kinematic constraint on the spin size
is irrelevant for the long-distance properties of quantum spin
ice.

We have also looked at how zero-point fluctuations modify
the gauge mean-field theory of quantum spin ice [15]. We have
found, with the optimal choice of gauge [U (1) gauge freedom
would otherwise prevent spontaneous symmetry breaking of
the gauge field], that there is only a small ∼4% reduction of
the mean-field value at the quadratic level of the semiclassical
expansion.

Finally, within the framework of the semiclassical expan-
sion, we have computed the classical part of the vison energy.
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APPENDIX A: DIAGONALIZING THE QUADRATIC
HAMILTONIAN

Figure 3 summarizes the geometry of the pyrochlore lattice
on which the spins live, and the dual pyrochlore lattice mapped
out by centres of the hexagonal plaquettes.

The pyrochlore lattice is not a Bravais lattice and hence does
not have a well-defined reciprocal lattice space. However, it
can be decomposed into four offset fcc lattices. Considering
a single “up” tetrahedron, the position vectors of the four
neighboring “down” tetrahedra, relative to its center, are given
by

e1 = a0

4
(1,1,1), e2 = a0

4
(1,−1,−1),

e3 = a0

4
(−1,1,−1), e4 = a0

4
(−1,−1,1), (A1)

where a0 is the side length of the fcc cubic unit cell. The
corners of the “up” tetrahedron correspond to the midpoints
of these position vectors. Each corner is a pyrochlore lattice
site and is identified by one of the above vectors eμ, where
μ = 1,2,3,4. Corners of all “up” tetrahedra with the same μ

map out a single fcc lattice. The superposition of the four fcc
lattices, one for each value of μ, gives us the pyrochlore lattice.

Within the above picture, each pyrochlore lattice site can
be identified by an index μ, which tells us which fcc lattice it
belongs to, and a position vector on that lattice. This is reflected
by the following change of notation:

φij → φμ(ri + eμ/2),

pij → pμ(ri + eμ/2). (A2)

Here μ identifies the fcc lattice to which the site ij belongs
(eμ = rj − ri , where rj and ri are the position vectors of
the “down” and “up” tetrahedra touching at the site ij ) and
(ri + eμ/2) is its position vector on that lattice.

FIG. 3. The pyrochlore lattice (sites shown by filled black circles)
is composed of corner sharing “up” (in red) and “down” (in green)
tetrahedra. Open circles mark their centers and these map out a
diamond lattice. The fcc lattice mapped out by the centers of “down”
tetrahedra is also shown (a0 is the length of the cubic unit cell). A
single plaquette centered on site αβ of the dual pyrochlore lattice is
also drawn. The plaquette chosen is located at the e3 corner of one
of the tetrahedra (dashed lines) of the dual pyrochlore lattice (drawn
displaced by the thick yellow arrow, for convenience). The normal to
the plaquette plane is along e3 and the vectors ±�3μ, μ = 3, give the
positions of the plaquette vertices relative to its center at αβ.

Following Ref. [13], we can now concisely express the
lattice curl. We first introduce a set of vectors ±�μν , which
give the positions of plaquette vertices relative to site αβ of
the dual pyrochlore lattice on which the plaquette is centered:

�μν ≡ a0√
8

eμ × eν

|eμ × eν | . (A3)

The index μ identifies which of the four dual fcc lattices the site
αβ belongs to (eμ = rβ − rα , where rβ and rα are the position
vectors of the dual “down” and “up” tetrahedra touching at the
site αβ), and the index ν identifies which of the four fcc lattices
the relevant plaquette vertex belongs to. The lattice curl can
now be written as

curlαβφ ≡
∑

ν =μ,±
±φν(rα + eμ/2 ± �μν). (A4)

We express the operators in Fourier space [introducing the
Fourier transformed φ̂ν(k) and p̂ν(k)]:

φμ(ri + eμ/2) =
∑
k∈BZ

φ̂μ(k)e−ik·(ri+eμ/2),

pμ(ri + eμ/2) =
∑
k∈BZ

p̂μ(k)e−ik·(ri+eμ/2), (A5)

and the lattice curl becomes

curlαβφ = 1√
Ns

∑
k∈BZ,ν

Zμν(k)e−ik·(rα+eμ/2)φ̂ν(k), (A6)

where Zμν(k) = −2i sin (k · �μν), Ns is the number of fcc
lattice sites, and k vectors are summed over the Brillouin zone
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of the fcc lattice (with periodic boundary conditions). We can
then diagonalize the quadratic Hamiltonian in Eq. (4) by a
unitary transformation to the eigenbasis of the 4 × 4 matrix
Zμν(k):

φλ(k) =
∑

μ

Uλμ(k)φ̂μ(k)

= 1√
Ns

∑
μ,r∈fcc

Uλμ(k)φμ(r + eμ/2)eik·(r+eμ/2),

pλ(k) =
∑

μ

Uλμ(k)p̂μ(k)

= 1√
Ns

∑
μ,r∈fcc

Uλμ(k)pμ(r + eμ/2)eik·(r+eμ/2), (A7)

where Uλμ(k) is a unitary matrix chosen to diagonalize
the hermitian matrix Zμν(k) and λ = 1,2,3,4 indexes its
eigenbasis. Note that the transformation from φij and pij

to φλ(k) and pλ(k) is unitary and therefore preserves the
canonical commutation relations. (φλ(k) and pλ(k) are normal
modes, not to be confused with the Fourier transforms φ̂ν(k)
and p̂ν(k), hence the use of a “hat” notation for the latter.)

For convenience we also give the inverse transformations.
First, we notice that p3(k) = 0 and p4(k) = 0 by the diver-
genceless constraint [see Eq. (7)], and therefore,

pμ(r + eμ/2) = 1√
Ns

∑
λ=1,2, k∈BZ

U
†
μλ(k)e−ik·(r+eμ/2)pλ(k),

(A8)

where U †(k) is the hermitian conjugate of the matrix U (k).
For φ instead, all modes are needed:

φμ(r + eμ/2) = 1√
Ns

∑
λ,k∈BZ

U
†
μλ(k)e−ik·(r+eμ/2)φλ(k).

(A9)

However, the φ terms enter the Hamiltonian only in the form
of lattice curl, and from Eq. (A6) we see that

curlαβ(φ) = 1√
Ns

∑
k∈BZ

∑
ν,λ

Zμν(k)U †
νλ(k)

× e−ik·(rα+eμ/2)φλ(k)

= 1√
Ns

∑
λ,k∈BZ

ξλ(k)U †
μλ(k)e−ik·(rα+eμ/2)φλ(k)

= 1√
Ns

∑
λ=1,2, k∈BZ

ξλ(k)U †
μλ(k)e−ik·(rα+eμ/2)φλ(k),

(A10)

where we have used the fact that columns of U
†
νλ(k) are eigen-

vectors of Zμν(k) with
∑

ν Zμν(k)U †
νλ(k) = ξλ(k)U †

μλ(k), and
that ξλ(k) = 0 for λ = 3,4. Once again we find that the lattice
curl depends only on the divergenceless modes λ = 1,2.

In order to study the Hamiltonian perturbatively in 1/s we
then represent the λ = 1,2 modes in terms of creation and
annihilation operators, see Eq. (8), and we do not need to
consider the λ = 3,4 modes any further.

APPENDIX B: NORMAL ORDERING THE QUARTIC PART
OF THE HAMILTONIAN

We normal-order the terms in the quartic part of the
Hamiltonian given in Eq. (14). Operators are normal ordered
with respect to the creation and annihilation operators in which
the quadratic Hamiltonian is diagonal. A string of operators is
said to be normal ordered if all creation operators are on the
left and all annihilation operators are on the right.

We can always write any operator A, which is a linear
superposition of creation and annihilation operators, e.g., φij

or pij are such operators, as a sum of two parts: A = A+ + A−,
where A+ is a linear superposition of creation operators only
and A− is a linear superposition of annihilation operators only.
A contraction of two such operators A and B is defined as

{A,B} = {A+ + A−,B+ + B−} ≡ [A−,B+], (B1)

where the curly brackets signify a contraction, and the square
brackets are commutators. From Eq. (8) in the main text, it
then follows that

{φλ(k),pλ′(q)} = i

2s̃
δλ,λ′δk,−q,

{φλ(k),φλ′(q)} = ω(k)

2s̃
δλ,λ′δk,−q,

{pλ(k),pλ′(q)} = 1

2s̃ω(k)
δλ,λ′δk,−q, (B2)

for λ = 1,2. Because the contraction is a linear product of
two operators, then {αA + βB,C} = α{A,C} + β{B,C} (and
it is anticommutative: {A,B} = −{B,A}). Contractions of
operators which are linear superpositions of φλ(k) and pλ(k)
can be computed straightforwardly as sums of the above
contractions.

To obtain the quartic contributions [see Eq. (B6) below], we
need to evaluate two specific contractions, {curlαβφ,curlαβφ}
and {pij ,pkl}. The first contraction, using Eq. (A10) and
Eq. (B2), gives

{curlαβφ,curlαβφ}

= 1

Ns

∑
k,q∈BZ

∑
λ,λ′=1,2

U
†
μλ(k)U †

μλ′(q)

× ξλ(k)ξλ′(q)e−ik(r+eμ/2)−iq(r+eμ/2){φλ(k),φλ′(q)}
= 1

2s̃Ns

∑
k∈BZ

ω(k)
∑
λ=1,2

ξ 2
λ (k)U †

μλ(k)U †
μλ(−k)

= 1

2s̃Ns

∑
k∈BZ

ω(k) [Z2(k)]μμ

= z

4s̃Ns

∑
k∈BZ

1

ω(k)
≡ C0

s̃
. (B3)

(The choice of the same indices αβ in both terms is intentional
as it is the only term we will need.) As before, eμ = rβ − rα,

z = 6 is the coordination number of a hexagonal plaquette,
C0 ≈ 2.09 and [Z2(k)]μμ is the μμ element of the

134439-8



SEMICLASSICAL APPROACH TO QUANTUM SPIN ICE PHYSICAL REVIEW B 95, 134439 (2017)

square of the matrix Z(k), after using the fact that
U

†
μλ(−k) = Uλμ(k). We evaluated [Z2(k)]μμ = z

2ω2(k) using

the fact that [Z2(k)]μμ is independent of μ, according
for instance to the definition below Eq. (A6). Therefore,
[Z2(k)]μμ =∑μ[Z2(k)]μμ/4, which can be straightforwardly
related to ω(k) = √

z/|ξλ=1(k)| via Eq. (6).

In the second contraction, we only need to consider sites
ij and kl belonging to the same plaquette centered on site
αβ ≡ r + eσ

2 of the dual pyrochlore lattice. The calculation
proceeds in a similar manner, except that in this case there is
a dependence on the relative displacement between the two
sites:

{
pμ
(

r + eσ

2
+ �σμ

)
,pν
(

r + eσ

2
+ �σν

)}

= 1

Ns

∑
k,q∈BZ

∑
λ,λ′=1,2

U
†
μλ(k)U †

νλ′(q)e−ik(r+ eσ
2 +�σμ)−iq(r+ eσ

2 +�σν ){pλ(k),pλ′(q)}

= 1

2s̃Ns

∑
λ=1,2,k∈BZ

U
†
μλ(k)U †

νλ(−k)
e−ik(�σμ−�σν )

ω(k)
= 1

2s̃Ns

∑
k∈BZ

e−ik(�σμ−�σν )

ω(k)

∑
λ=1,2

U
†
μλ(k)Uλν(k)

= 1

2zs̃Ns

∑
k∈BZ

e−ik(�σμ−�σν )ω(k)
∑
λ=1,2

U
†
μλ(k)ξ 2

λ (k)Uλν(k) = 1

2zs̃Ns

∑
k∈BZ

e−ik·(�σμ−�σν )ω(k)[Z2(k)]μν. (B4)

The contraction of two p operators on the same site follows

{pij ,pij } = C0

zs̃
. (B5)

Using Wick’s theorem, we can express a string of operators as a normal ordering of that operator plus a sum over all possible
pairwise contractions. The different terms in HI can then be written as follows:

[curlαβφ]4 = 6{curlαβφ,curlαβφ} : [curlαβφ]2 : +3{curlαβφ,curlαβφ}2+ : [curlαβφ]4 :

p4
ij = 6{pij ,pij } : p2

ij : +3{pij ,pij }2

p2
ijp

2
kl = : p2

ijp
2
kl : +{pij ,pij } : p2

kl : +{pkl,pkl} : p2
ij : +2{pij ,pkl} : pijpkl : +{pij ,pij }2 + 2{pij ,pkl}2

[curlαβφ]p2[curlαβφ] = : [curlαβφ]p2[curlαβφ] : + : p2 : {curlαβφ,curlαβφ}+ : [curlαβφ]2 : {p,p}
+ 2{curlαβφ,p}{p,curlαβφ} + {curlαβφ,curlαβφ}{p,p}

[curlαβφ]2p2 + p2[curlαβφ]2 = : [curlαβφ]2p2 : + : p2[curlαβφ]2 : +2 : p2 : {curlαβφ,curlαβφ} + 2 : [curlαβφ]2 : {p,p}
+ 2{curlαβφ,curlαβφ}{p,p} + 4{curlαβφ,p}2, (B6)

where :: denotes that the enclosed string of operators is normal ordered. Note that {curlαβφ,p}{p,curlαβφ} = −{curlαβφ,p}2 and
therefore the corresponding contributions in the last and second to last term above cancel exactly, and we do not need to compute
them.

Collecting all quadratic terms, e.g., {pij ,pij } : p2
kl :, from the normal ordering of HI , we write down the Hartree correction to

the quadratic Hamiltonian H0,

�H0

gs̃6
=
(−C0

s̃

)∑
αβ

: [curlαβφ]2 : +
(−3C0

s̃

)∑
ij

: p2
ij : +
(

−1

s̃

) ∑
λ,λ′=1,2, k∈BZ

Cλλ′(k) : pλ(k)pλ′(−k) :

= −C0

s̃

∑
λ,λ′=1,2, k∈BZ

[
Cλλ′(k)

C0
: pλ(k)pλ′(−k) : +δλλ′ξ 2

λ (k) : |φλ(k)|2 : +3δλλ′ : |pλ(k)|2 :

]
, (B7)

where the matrix

Cλλ′(k) ≡ 1

zNs

∑
q∈BZ

∑
σ,(μ,ν =σ )

ω(q)[Z2(q)]μν cos[(k + q) · �σμ] cos[(k + q) · �σν]U †
μλ(k)U †

νλ′(−k). (B8)

The term in Eq. (B7) that mixes different photon polarizations arises from contractions of p operators on different lattice sites,

∑
αβ

∑
ij,kl∈αβ

{pijpkl} : pijpkl : =
∑
r∈fcc

∑
σ,μ =σ,ν =σ

∑
a,b=±1

{
pμ

(
r + eσ

2
+ a�σμ

)
,pν

(
r + eσ

2
+ b�σν

)}

× : pμ

(
r + eσ

2
+ a�σμ

)
pν

(
r + eσ

2
+ b�σν

)
: . (B9)
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Substituting in for the contraction using Eq. (B4) and transforming to the eigenbasis of H0 gives us the expression in
Eq. (B7).

To obtain the single-particle spectrum correct to order s−1, first-order perturbation theory requires us to diagonalize the matrix,

Hλλ′(k) = 〈g.s.|aλ(k)(H0 + �H0)a†
λ′ (k)|g.s.〉 = 2zgs̃5

ω(k)

[
δλλ′

(
1 − C0

2s̃
− 3C0

2s̃z

)
− 1

2s̃z
Cλλ′(k)

]
, (B10)

obtained from Eqs. (8), (10) (without the constant 1/2 term), and (B7). The single-particle energy spectrum is then given by its
eigenvalues:

εη(k) = 2zgs̃5

ω(k)

[
1 − 1

2s̃

(
C0 + 3C0

z
+ 1

z
C11(k) ± 1

z
|C12(k)|

)]

= 2zgs5

ω(k)

[
1

2s

(
5 − C0 − 3C0

z
− 1

z
C11(k) ∓ 1

z
|C12(k)|

)
+ 1 + O(s−2)

]
, (B11)

where the plus or minus sign is chosen for the eigenvalues εη=1(k) and εη=2(k), respectively. Note that C12(k) = C21(−k) =
C∗

21(k), from the properties of the matrix Uμν(k). Moreover, C11(k) = C22(k), which follows from the fact that [Z2(k)]μν is a

symmetric matrix and from the relation U
†
ν1(−k) = U

†
ν2(k), demonstrated by the following eigenvalue equation:∑

ν

Zμν(k)U †
ν1(−k) = −

∑
ν

Zμν(−k)U †
ν1(−k)

= −ξ1(−k)U †
μ1(−k)

= ξ2(k)U †
μ1(−k). (B12)

The splitting |C12(k)| vanishes at k = 0 and the speed of light is given by

c

gs5
= 2

√
za0

[
1 + 1

2s

(
5 − C0 − 3C0

z
− 1

z
C11(0)

)]
+ O(s−2)

= 2
√

za0

(
1 + 0.846

s

)
, (B13)

where we used the fact that C11(k) is linear in k near k = 0.
Collecting the constant terms from the normal ordering of HI we obtain the Hartree correction to the ground-state energy:

〈g.s.|HI |g.s.〉 = −gs̃6
∑
αβ

⎧⎨
⎩1

4
{curlαβφ,curlαβφ}2 − 3

2

∑
ij∈αβ

{pij ,pij }2 + 1

4

∑
ij∈αβ

{curlαβφ,curlαβφ}{p,p}

+ 1

4

∑
ij∈αβ

{curlαβφ,curlαβφ}{p,p} + 1

4

∑
ij,kl∈αβ

[{pij ,pij }2 + 2{pij ,pkl}2]

⎫⎬
⎭

= −gs̃4(C0)2
∑
αβ

⎧⎨
⎩1

4
− 3

2z
+ 1

4
+ 1

4
+ 1

4

⎫⎬
⎭+ −gs̃6

2

∑
αβ

∑
ij,kl∈αβ

{pij ,pkl}2

= −gs̃4Np

(
3

4
C2

0 + C1

)
, (B14)

where C1 ≈ 0.468 follows from performing the summation over αβ and over ij (kl) on the square of Eq. (B4) and Np = 4Ns is
the total number of plaquettes. Treating HI as a perturbation, to first order (Hartree-Fock) the ground-state energy is given by

E

Npgs̃6
= −2 +

√
z

Nps̃

∑
k∈BZ,λ

|ξλ(k)| + 1

Np

〈g.s.|HI

gs̃6
|g.s.〉 + O(s̃−4). (B15)

Expanding in s−1, we can now write the ground-state energy correct to order s−2,

E

Npgs6
= −2

s̃6

s6
+ 2C0

s̃5

s6
−
(

3

4
C2

0 + C1

)
s̃4

s6
+ O

(
s̃2

s6

)

= −2 + A1

s
+ A2

s2
+ O(s−3), (B16)

where A1 = 2C0 − 6 ≈ −1.820 and A2 = 5C0 − 15
2 − 3

4C2
0 − C1 ≈ −0.793.
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APPENDIX C: FLUCTUATIONS OF THE GAUGE
MEAN-FIELD

The fluctuations of the zero-energy modes of φij , which
are proportional to χj − χi , i.e., φλ=3(k) and φλ=4(k), do not
contribute to the gauge-independent expectation values of the
electric field curlαβφ, nor to the dynamical, transverse part
of the magnetic field Sz

ij (the longitudinal part is set to zero
by the ice rules). The physical ground-state wave function
(in φij space) is a function of only the transverse modes
φλ=1(k) and φλ=2(k), see Eq. (21), and can be multiplied by
any function of the longitudinal modes F [φλ=3(k),φλ=4(k)],
without altering the expectation values of gauge-independent
observables—this is the quantum analog of classical gauge
fixing. Each gauge corresponds to a particular choice of the
function F [φλ=3(k),φλ=4(k)]. It is interesting to consider a
gauge, where the gauge field

〈Sx〉 ≡ 1

2Np

∑
ij

〈S+
ij + S−

ij 〉 (C1)

has a nonzero expectation value, i.e., it has long-range order
and spontaneously broken symmetry. There are many choices
of F [φλ=3(k),φλ=4(k)], which give a nonzero expectation
value of the gauge field. We shall make the choice that
minimizes the fluctuations of the gauge field order parameter
〈Sx〉 to first order in 1/s. This can be referred to as the
maximally coherent gauge and essentially removes the effect
of longitudinal fluctuations on the order parameter, so that
the only fluctuations that remain are transverse. The relative
magnitude of this reduction can then be interpreted as the size
of the corrections to the RK state, see Eq. (21), which is the
exact ground state in the s = ∞ limit, contains no transverse
fluctuations, and is continuosly connected to the ground state
at finite s. Our semiclassical expansion corresponds to a
perturbation of the RK state, and small corrections would
support the RG arguments in favour of the stability of the
s = ∞ fixed point and the deconfining phase connected to
it. Note that the Monte Carlo calculations of Ref. [13] also
analyzed the adiabatic continuity to the RK state, but via a
chemical potential term rather than a semiclassical expansion.

Furthermore, the expectation value in Eq. (C1) in the
maximally coherent gauge can be interpreted as the gauge
mean-field order parameter of Ref. [15], i.e., the expectation
value of the operator,

eiψi S+
ij e

−iψj , (C2)

where ψ is the phase of the slave-boson field, and e±iψi,j creates
a magnetic monopole/antimonopole at site i,j . Through a
gauge-fixing procedure, e.g., à la Feddeev-Popov (neglecting
periodic boundary conditions on φij ), the unbounded fluctua-
tions in the longitudinal component (λ = 3,4) of the spin phase
φij , proportional to χj − χi , can be offset by the fluctuations
of the phase of the slave boson field ψ , so that the above
expectation value is nonzero. This motivates the mean-field
decoupling of Ref. [15]. The expectation value of the above

operator with respect to the true ground state is then equivalent
to the expectation value of S+

ij in the ground state with modified
longitudinal fluctuations of φij .

As outlined before, the modification involves multiplying
the ground state, which is a function of φλ=1,2(k) only, by a
function of the longitudinal modes F [φλ=3(k),φλ=4(k)]. The
reduction of the gauge mean-field from its maximum value of
1
2 becomes a measure of the remaining transverse fluctuations
in φij (which cannot be absorbed by the slave boson field).
Notice that 〈Sx〉 = 0 (long-range order) in the deconfining
phase, whereas 〈Sx〉 = 0 (absence of long-range order) would
be indicative of the confining phase.

Using our semiclassical approach, we can calculate 〈Sx〉
in the maximally coherent gauge to first order in zero-point
fluctuations, i.e., to first order in 1/s,

〈Sx〉
s

= s̃

2sNp

∑
ij

〈
2 − φ2

ij − p2
ij

〉+ O(s̃−2)

= s̃

s
− s̃

2sNp

∑
k =0,λ=1,2

〈|φλ(k)|2 + |pλ(k)|2〉g.s.

− s̃

2sNp

∑
k =0,λ=3,4

〈|φλ(k)|2 + |pλ(k)|2〉F + O(s̃−2)

= s̃

s
− 1

2sNp

∑
k =0

[
ω(k) + 1

ω(k)

]
− 1

4s
+ O(s̃−2)

= 1 + 1

4s
− 1

2sNp

∑
k =0

[
ω(k) + 1

ω(k)

]
+ O(s−2),

= 1 − D

s
+ O(s−2), (C3)

where the the expectation value 〈〉g.s. is taken with respect to
the physical ground state, i.e., the bosonic vacuum defined
in Eq. (8). The expectation value 〈〉F is taken with respect
to such wave function F [φλ=3(k),φλ=4(k)], which minimizes
it: 〈|φλ(k)|2 + |pλ(k)|2〉F = 1/s̃ is the minimum expectation
value for each mode (λ = 3,4,∀ k) and corresponds to the
simple harmonic oscillator ground state energy. (To see this
one can use Eq. (8) with the choice ω(k) = 1 to express
|φλ(k)|2 + |pλ(k)|2 in terms of creation and annihilation
operators—the state F is then the vacuum of these bosonic
operators.) We have also excluded the global zero-mode k = 0
from the sums and calculated D = 0.019. We find

〈Sx〉 = 0.481 for s = 1
2 . (C4)

The mean-field theory of Ref. [15] gives 〈Sx〉 = 1
2 in the

region of parameter space where the ring-exchange model is
applicable. We thus find that zero-point fluctuations only give
a small ∼4% correction to mean-field theory. In our semi-
classical expansion, this small reduction can be interpreted
as a small correction to the RK state and supports the other
arguments we have presented for the stability of the classical
s = ∞ fixed point and the deconfining phase.
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