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We investigate nonequilibrium properties of the frustrated Heisenberg antiferromagnets on the triangular
lattice. Nonequilibrium critical relaxation of frustrated Heisenberg antiferromagnets shows a dynamic transition
(or, at least, sharp crossover) near the temperature 7, = 0.282J of the equilibrium Z,-vortex unbinding. We
show that starting from the high-temperature initial state, due to the presence of Z, vortices in the system being
considered, in a broad temperature range 7' < 7, the dynamic properties in the intermediate time range are
similar to those of the two-dimensional XY model below the Berezinskii-Kosterlitz-Thouless transition. The
interaction of Z, vortices with spin-wave degrees of freedom does not emerge until rather long times.
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I. INTRODUCTION

Investigations of critical behavior of systems with con-
tinuous symmetry of the order parameter attract a lot of
attention and represent considerable fundamental and practical
interest [1]. Strong fluctuation effects playing an important role
in low dimensional [2,3] and frustrated [4] systems, may lead
to nontrivial critical behavior of these systems.

In two-dimensional (2D) systems with continuous symme-
try of the order parameter the long-range order at finite tem-
peratures is destroyed by spin fluctuations [5]. The presence
of topologically nontrivial configurations (vortices), however,
leads to the peculiarities of the disordered (paramagnetic) state.
In particular, a topological phase transition, associated with the
dissociation of vortex pairs, occurs at a temperature Tkt 7# 0,
as was shown by Berezinskii [6,7], and then Kosterlitz and
Thouless [8,9]. Below Tgkr vortices are bound in pairs, the
correlation length is infinite, and there is an algebraic (power-
law) decay of spin correlators. This changes at T > Tk,
when vortices are not bound, causing finite correlation length.

The presence of vortices in nonequilibrium states (even
below Tkr) may change essentially the dynamical properties
of the system. In particular, in Ref. [10] it was shown
that in the presence of vortices the time dependence of
the correlation length below Tpkt for the high-temperature
initial state, £(¢) o< (t/ Int)'/? acquires logarithmic correction.
The dynamic spin correlation functions fulfill certain scaling
relations, which involve the abovementioned time dependence
of the correlation length.

Magnetic frustration, which occurs due to peculiarities of
lattice geometry, yields on one hand an enhancement of the
fluctuation effects, but on the other hand, provides a possibility
of realizing new types of topological structures with respect to
those in nonfrustrated systems. Experimental studies of mag-
netic materials with triangular lattice, in particular NaCrO,
[11-14], NiGa,Ss [15-21], « — (BEDT — TTF),Cu,(CN)3
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[22-24], EtMe;Sb[Pd(dmit),], [25,26], reveal distinct
anomaly behavior at nonzero temperatures, typical of phase
transitions and nontrivial dynamic properties above and below
the observed phase transition [11,14,17,19,20].

Equilibrium properties of frustrated antiferromagnets on a
triangular lattice exhibit features of the Z,-vortex unbinding
transition (or at least sharp crossover), which is similar to
the 2D Berezinskii-Kosterlitz-Thouless transition in the XY
model [27,28]. The Z, vortices (or their major part) are
bounded to vortex pairs at temperatures below a certain
characteristic temperature 7,, which allows one to draw an
analogy between the low-temperature properties of this system
and critical properties of the 2D XY model. In contrast to the
XY model below Tgkr, for frustrated magnetic materials the
correlation length is finite even below T, due to the contribution
of nontopological (or spin-wave) degrees of freedom [29-33].

The finiteness of the correlation length and difference of Z,
vortices with respect to those in the XY model lead to the ques-
tion: To what extent are the dynamic properties of frustrated
systems similar (or different) to those of the XY model, in par-
ticular do peculiar phenomena of the nonequilibrium critical
dynamics, such as dynamic scaling and aging effects [34-38],
occur in the low-temperature phase 7 < T,? Although the
equilibrium dynamics of triangular lattice antiferromagnets
was studied earlier [39], in the present paper we concentrate
on the nonequilibrium dynamic properties and show that at
intermediate time scales the dynamic properties of frustrated
magnets are in fact very similar to those of the XY model.

II. MODELS AND APPROACHES

We consider the nonequilibrium dynamics of the frustrated
Heisenberg model on a triangular lattice,

H=1J

S;S;, (1)
(i,J)
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where J > 0 is the exchange integral, which is taken as a unit
of energy in the present study, S; are classical Heisenberg spins
located at sites i of the two-dimensional triangular lattice,
and (i,j) denotes summation over the nearest neighbors of
the lattice. The ground state of the system has the form of
120-degree order with the wave vector Q = (47r/3,0).

In the continuum approach, the dynamics of the triangular
lattice Heisenberg antiferromagnet can be described by the
fluctuating order parameter having the form of continuous
vector fields e;(x), e;(x) defined by the equation,

S; = e(R;)cos(Q - R;) + e>(R;) sin(Q - R;). (2)

These fields evolve in time according to a stochastic equation
(dynamic model A in the Hohenberg and Halperin classifica-
tion [40]),

deqy(X,t) _ SH
Fya F(Sea(x,t) + Vu(X,1). 3

Here T' is the kinetic coefficient, y,(x,¢) is the random
Gaussian force, o = 1,2, and H is the continuum limit of
the Hamiltonian (1), cf. Refs. [41,33],

H = % / d’x[(Ve))’ + (Ve))* + V(er.e)]l, (4

where p; ~ /3J /4is the transverse spin stiffness. Since Si2 =
1, Eq. (2) implies e ~ €3 ~ 1, e; - €, ~ 0 at each lattice site
R;, the potential V (e;,e;) must have degenerate deep minima
at these e; ». For fluctuations having sufficiently low energies
the potential V' is reduced to an irrelevant constant which we
choose to be zero.

For a numerical study of the nonequilibrium relaxation,
we perform Monte Carlo simulations of the model (1) using
the Metropolis algorithm. Although equilibrium properties
were intensively studied previously [27,30-32,42-45], the
investigation of the nonequilibrium processes allows us to
get information on the dynamic properties of the frustrated
systems. Time is set in Monte Carlo steps per spin (MCS/s),
which defines the time interval during which each of N = L?
spins have the ability to change its state. We consider lattices
with sizes L < 360.

The low-temperature ordered state corresponds to the
ground state of the system with the initial temperature Tlini =0.
This initial state does not have vortex excitations. In contrast to
this initial state, the high-temperature initial state is prepared
at temperature 71 = 20 >> T, where the concentration of
unbound vortices is much larger than at the equilibrium. Initial
low- and high-temperature states are visualized in Fig. 1.

The sequence of states defined by the Metropolis algorithm
according to the transition probability between neighboring
configurations, forms a Markov process. The evolution of the
nonequilibrium distribution function P,(#) can be written in
the form of the master kinetic equation:

dP,(1)

T Z[W(n — m)P,(1) — W(im — n)P,(1)], (5)

where W(n — m) = min [1.0, exp(—AE,,,/ T)]. The dynam-
ics of the single-flip Metropolis algorithm corresponds to the
dynamic model A; cf. Eq. (3).
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FIG. 1. Projection of spin vectors onto the xy plane for the initial
low- and high-temperature states of Monte Carlo simulation.

The time dependence of correlation length £(¢) can be
defined as follows:

3L [x@)
=— = 6
§@) = o\ o) (6)
where
x(@) = (ISe®)*) = (ISe(®)])? ™
is the susceptibility, Sq = (1/N) Y, ¢'®®S;, and
| 2
_ . iq, R;+iQ-R;
®() = 5 :Z)< Z Si(t)e' > ®)
is the structural factor of the system, q, = (— - —) and

q, = (0, — E) are the vectors of the reciprocal lattlce.

II. Z,-VORTEX UNBINDING AT EQUILIBRIUM

Before proceeding to the nonequilibrium dynamics, let
us consider first some important aspects of the Z,-vortex
unbinding at equilibrium.

Let there be an isolated vortex at the origin of the coordinate
system. If we neglect the spin-wave fluctuations (i.e., consider
just a state with the lowest energy), the field configuration of
the vortex,

€))

. b (¢
e1+ie2:e"”<a+i X +y )

VX2 +y?
is parametrized by three real orthonormal vectors a, b, ¢, and
angle v (x, y are the Cartesian coordinates in the plane of the

lattice). For general ¥ % n/2 (n is an integer) the Z, vortex is
anoncoplanar configuration. Nevertheless, the chirality vector,

—yb 4+ xc
/X2 + 32’

describes an ordinary vortex which is planar in spin space. The
energy of the configuration (9),

H =~ mp, In(L/a), an

e =e xe] = (10)

diverges logarithmically with the increase of the size of the
system L (here a is the lattice spacing). Overall, if we neglect
the spin-wave fluctuations, the Z, vortex is analogous to the
vortex of the XY model (this analogy extends to the interaction
between Z, vortices which is also logarithmic).
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However, this picture changes considerably when one
accounts for the thermal spin-wave fluctuations. In contrast
to the XY model, the equilibrium correlation length at T < T,
is finite, although exponentially large at low temperatures
T « J, where it is determined by long wavelength spin-wave
fluctuations [29],

T2+ m)pL
— 7

These spin-wave fluctuations wash out the specific spin
configuration of the vortex at distances r > &, from the vortex
core. As a result, the effective energy of an isolated vortex E|,
renormalized by the spin-wave fluctuations, does not diverge
with an increase of the system size; at temperatures 7 < p|
this energy for an infinite system (L = 0o) behaves as [46]

Esw(T) o< aexp (12)

N 3712,0J2_

T
Similarly, the two vortices almost cease to interact with each
other at distances r > &, and their energy E, =~ 2E;. At
shorter distances r < &, the double logarithmic attractive
potential,

E,

r 2
x §[ln($sw/a)] . 13)

T
Ula < r)=2E — E; ~ Z[In(ssw/rnz, (14)

emerges between vortices [46].

The energy of the vortex (13) is finite at L = oo, so that
finite density of unbound vortices n, ~ a2 exp(—E;/T)
exp (—const/ T?) will appear at equilibrium also below 7.
Therefore, there are strictly speaking no differences in topo-
logical properties of the system at low and high temperatures,
as well as no topological phase transition. Most likely this
argument also means that there is a crossover rather than a
phase transition (defined as nonanalyticity of the free energy)
at T = T,. However, the density of unbound vortices n,(T)
is extremely small at 7 < T, [according to our estimate,
nu(T,) ~ 10~23]. Hence, in Monte Carlo simulations of finite
systems with linear sizes L ~ 100, unbound vortices are not
detected at T < T, and Z,-vortex unbinding looks like a true
topological phase transition, accompanied by peculiarities in
free energy and its derivatives. The effect of unbound vortices
below T, for larger systems is also expected to be very small.

As we argue in Sec. IV B 1, the correlation length (12)
provides an additional length scale not only for the equilibrium
but also for the dynamics.

IV. NONEQUILIBRIUM DYNAMIC AND
STATIC PROPERTIES

A. Dynamics from low-temperature initial state
towards equilibrium

Starting from the low-temperature initial state, which is
characterized by an infinitely large correlation length, the
correlation length in the process of relaxation drops to its
equilibrium value determined by the temperature and the linear
size of the system [see Fig. 2(a)]. One can see the existence
of a certain characteristic Z,-vortex unbinding temperature
T, ~ 0.3, at which the correlation length at short time scales
drops substantially, yielding also shorter correlation length in
the limit of long times.
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FIG. 2. (a) The time dependence of the correlation length of the
system at nonequilibrium evolution from the low-temperature initial
state for the linear size L = 240. (b) The temperature dependence
of the equilibrium order parameter S(7) for various sizes of the
system L.

The temperature 7, in equilibrium can be accurately
determined from the temperature dependence of the equilib-
rium order parameter S(7') = /|Sq|?, which decreases with
temperature, dropping at some (size-dependent) characteristic
temperature 7"(L) [see Fig. 2(b)]. The dependence of the
position of the inflection points 7*(L) of the temperature
dependence of the order parameters determines 7, and the
(quasi)critical exponent of the temperature dependence of the
correlation length of the vortex subsystem &, o< exp(A/(T —
T,)") according to

T*(L) =T, + A/(In L)"". (15)

From fitting the least squares, we find 7, = 0.282(5) and v =
0.37(5). The temperature T, agrees well and the index v agrees
qualitatively with previous results 7, = 0.285(5), v = 0.42 +
0.15 of Ref. [32].

To analyze the dynamic behavior of magnetic order, in
addition to x () we have investigated the time dependence of
the short-range order parameter K (¢),

1
K@) = ﬁ<2 |k(r,r)|>, (16)

134437-3



POPOV, PRUDNIKOV, IGNATENKO, AND KATANIN

075
0.7

0.65

06 E 4

0.95 1

0.90 H

0.28 0.29 0.30 0.31 0.32 0.33 0.34 035

0.85 - —a— [ =60 with LT
—eo— L =240 with LT
—A—L=60 with HT
0.80 4 —w— L =240 with HT

t=25000 MCS/s

0.75 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

T

FIG. 3. (Upper plot) The short-range order parameter starting
from the low-temperature (LT) and high-temperature (HT) initial state
at L = 240. (Lower plot) Temperature dependence of the equilibrium
short-range order parameter for various L. The inset shows the
behavior in the vicinity of the Z,-vortex unbinding transition (or
crossover).

determined by local field of vector chirality k(r,?),

2
k(r,t) = 3—ﬁ(sl x 8o+ 82 x 834+ 83 x §y), 17

where the summation is meant for all the elementary triangles
of the lattice and spins with numbering 1, 2, and 3 correspond-
ing to the anticlockwise circumvention of triangles.

Figure 3 shows the obtained time dependence K () at
various temperatures and temperature dependence of the
equilibrium short-range order parameter of the system Ky =
K(t — 00). One can observe that the characteristic time
of the onset of the equilibrium short-range order parameter
tsro increases with decreasing temperature, and agrees with
the time scale, starting from which the scaling of the time
dependence of the correlation length is observed, starting from
the high-temperature initial state. The equilibrium short-range
order parameter K7 monotonously decreases with tempera-
ture, and does not have any peculiarity (except a possible
inflection point) near 7, = 0.282.
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B. Dynamics from high-temperature initial state
1. Results of the continuum approach

Here we generalize the analysis of the vortex dynamics
performed by Bray et al. for the 2D XY model [10] to the case
of the triangular lattice Heisenberg antiferromagnet. We use
the continuum model (3) and the results of Sec. III.

Let us consider the relaxation of the high-temperature state.
The disordered initial state contains many unbound vortices
that are attracted to each other and annihilate as relaxation
proceeds (see Fig. 5 below). Against the background of this
slow movement there is also more rapid spin-wave dynamics,
which is not related to a change in positions of vortex
cores. Because of the difference of characteristic times of the
vortices and spin waves, the coarse-grained description of the
relaxation process on the basis of the adiabatic approximation
becomes possible.

Assuming that the spin-wave subsystem is already in the lo-
cal (intermediate) thermodynamic equilibrium for each current
position of the vortex cores, we introduce, following Ref. [10],
the friction coefficient y (r) which depends on the distance be-
tween vortices. To calculate y (r) we consider the field config-
uration e, (x,y,t) = e,(x — vt,y,t) corresponding to two vor-
tices augmented by arbitrary spin-wave fluctuation and moving
as a whole with the velocity v in direction x. Then the rate of
energy dissipation is dH/dt = f dZX(SH/cSea) - (0ey /0t) =
—(1/T) [d*x Y, (3e,/31)* = —Hv?/ T [we have neglected
the stochastic term in Eq. (3); see Ref. [10]]. Hence, the friction
coefficient equals y(r) = H/ I'. Averaging over the spin-wave
fluctuations using Eqgs. (13) and (14) we obtain

T
y(r)=E)/T ~ E{[ln(sw/a)]2 — [In(Ew/M1*}.  (18)

Writing down the condition for the balance of the conservative
F = —VU(r) and the friction —y (r)dr/dt forces we come to
the equation,

dr
= —f), (19)
fry =2 0w/ 1) a<r St

(/@) — [In(Eg /TP

[note that f(r) > 0 everywhere in the domain of applicability].
According to this equation the fall of Z, vortices at each other
occurs in a finite time t(ry), which depends on the initial
distance between vortices ry. The inverse function £(¢) =
17!(t) determines time dependence of some characteristic
length which satisfies the equation d§ /dt = f (&), or, in the
explicit form,

dg 4 In(y /)
di "~ InE/a@)2In(E/€) + InE /)]’

and can be identified with time dependence of the dynamical
correlation length &(¢) for a < &(¢) < &w. Even for T ~ T,
the spin-wave correlation length &, has a very large value
of order of several thousand lattice spacings [30,31], and
typically &(¢) < &, in the Monte Carlo calculations. In this
regime f (&) ~ I'/(€ In[£ /a]) has the same form as in the XY
model [10]. Accordingly, the solution of Eq. (20) gives the
standard behavior of the correlation length £(¢) o (t/Int)'/2.
On the triangular lattice this regime exists up to rather long

(20)
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FIG. 4. Log-log plot of the function & (¢) satisfying Eq. (20); ¢ is
measured in units a?/ T

times t (612/4F)(ESW /a)4/3. At even longer times, when & (¢)
increases to the value of order &, the growth rate is slowing
down. At & = &;,, Eq. (20) gives f(§) = 0. Correspondingly,
the dependence of &(¢) saturates (see Fig. 4). This should
happen physically, because the equilibrium correlation length
on a triangular lattice at 7 > 0 is finite.

2. Monte Carlo results

In Fig. 5 we present the snapshots of spin configurations
at different times (Monte Carlo steps), while in Fig. 6 we
present the time dependence of the correlation length of
the system from the initial high-temperature state, obtained
from the Monte Carlo calculation, and plot as a function of
t/Int in a logarithmic scale. In agreement with the analytical
consideration of the previous subsection, the obtained time
dependence of the correlation length is best fit by (¢/Int)!/2
law in the intermediate time range, reflecting violation of
dynamic scaling due to the dynamics of vortex pairs, which
are present in the system.

In the Monte Carlo results of Fig. 6 we also observe a
deviation from the universal dependence at low temperatures
T < 0.2 and short time scale <100-1000 MCS/s. The time
of the onset of scaling behavior increases with decreasing
temperature and agrees with the time of the onset of strong
short-range order fsro. Therefore, the observed deviation from
(t/In1)'/? scaling behavior corresponds to the not fully formed
short-range magnetic order (see upper part of Fig. 5 for typical
spin configuration), when vortices and spin waves are not yet
well defined. We emphasize that the obtained time dependence
of the correlation length in the intermediate time range is
entirely due to the presence of Z, vortices.

To emphasize the scaling of the correlation length with the
size of the system, we plot in Fig. 7 the dependencies &(¢)
for different system sizes, rescaled according to the dynamic
exponent z = 2. One can see that the dynamic scaling of
£(t)/L = f(t/(L*Int)) is perfectly fulfilled with the function
f(x) o< x'/? at small x, implying in the intermediate time range
£ o (t/1In1)"/? independently of the size L at sufficiently large
L. Note that similar dependence of £(¢)/L as a function of
t/L? does not show universal scaling behavior, reflecting again
violation of the “naive” dynamic scaling behavior.
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FIG. 5. Snapshot of relaxation dynamics of system at 7 = 0.1
and the times 100 (upper plots), 5000 (middle plots), and 15000
(lower plots) MCS/s from the high-temperature initial state. Left
(right) figures—projections of the spins (chirality) vectors onto the
xy plane. The radius of each circle on the right figures represents the
length of the corresponding chirality vector. Red triangles on the right
lower figure denote cores of Z, vortices; the vortices on the upper
and middle figure are not shown (because of their large number, it is
impossible to identify them uniquely).
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FIG. 6. The time dependence of the correlation length of the
system at nonequilibrium evolution from the high-temperature initial
state for the linear size L = 240 with (¢/1In¢)'/? (dashed lines) and
t'/2 (dot-dashed lines) fits.

134437-5



POPOV, PRUDNIKOV, IGNATENKO, AND KATANIN

L=60 L=120 L=240 T

8 8 > 0.280
I v v 0300
- =~ (t/Inp"
ot
o
oI ]
| -
Vv
G .
0,01 5 ,1
[t/Int]/L

L L A |
10° FL=120 L=180 L=240 T

. . . 0.05
. 4 . 0.10
v v v 0.20

------ (t/no)"”

/L

10"

10"

[t/Int]/L?

FIG. 7. The time dependence of correlation length &(r) for
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according to the dynamic exponent z = 2 for triangular lattice (upper
plot) and square lattice (lower plot). Dashed and dash-dotted lines
show the slope of (¢/1n¢)"/? fit.
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The obtained time dependence of the correlation length can
also be compared to that for the square lattice (see lower part of
Fig. 7). In the case of the square lattice the (¢ / In¢)'/? behavior
is also obtained (although only in a rather restricted time range
at low temperatures), presumably because of the presence of
skyrmion quarks [47,48] (called also “zindons” [49]), which
interact via logarithmic potential. Although these quarks
are at the effective temperature ~2Tgky, the correlation
length appears to be exponentially large at low temperatures,
providing the possibility for approximate scaling. More
detailed discussion of the square lattice will be presented
elsewhere.

C. Spin autocorrelation function

Let us now turn to the time dependence of the autocorrela-
tion function,

1
Clt,tw) = = > (Si(DSi(e)). @1

A

We have observed the presence of the aging effects (slowing of
the relaxation processes by increasing the waiting time ¢,,) in
the system for temperatures 7 < 0.35 (see Fig. 8); for higher
temperatures obtained dependencies cannot be attributed to the
aging effects; they instead show nonequilibrium relaxation,
which is nonuniform in time. With the start from the initial
high-temperature state we find slowdown in the time decay of
the autocorrelation function with increasing waiting time £,
while with the start from the initial low-temperature state the
observed effects are the opposite, and autocorrelation function
decay is accelerated with increasing waiting time #,,.

The important feature of the aging is the scaling behavior,
which is obeyed by the autocorrelation function in accordance
with the general considerations of critical dynamics [50,51],

C(t,ty) = (t — )" 2 E — 1,)/E(tw)), (22)

where n is the anomalous dimension, depending on the
temperature. In Figs. 9(a)-9(c) we present obtained scaling
laws for two-time dependencies of the autocorrelation function

1000 10000

FIG. 8. Time dependence of the autocorrelation spin function for the high-temperature initial state L = 240, and T = 0.25 (left plot) and

T = 0.35 (right plot).
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FIG. 9. (a)-(c) Scaling for the autocorrelation function of the system with L = 240; T = 0.28, 0.3, and 0.31 from the high-temperature
initial state. (d) The temperature dependence of the anomalous dimension 7(T).

according to Eq. (22). One can see that in the low-temperature
phase the scaling of the autocorrelation function is fulfilled, but
it begins to break after passing to the high-temperature phase
T > T,. In Fig. 9(d) we present the extracted temperature
dependence of the critical exponent n. Surprisingly, at the
vortex unbinding temperature 7, the critical exponent is
close to the value n(Tgkr) = 0.25 for the XY model. We
expect that the critical exponent 1 can be also observed
in principle in the static correlation function at the scales
a L r K &. Note that in the system being considered the
nonzero value of 1 is generated by vortex pairs; in contrast to
the XY model spin waves alone do not generate an anomalous
dimension [52].

V. CONCLUSIONS

In conclusion, we have calculated time dependence of
the correlation length and spin correlation functions for the
Heisenberg antiferromagnet on the triangular lattice. From
our consideration we conclude that on the intermediate time
range the scaling properties of the frustrated Heisenberg model
on the triangular lattice are very similar to those for the
XY model: We observe (¢/1nt)!/? time dependence of the

correlation length and fulfillment of the scaling law (22) in
a broad time range at T < Ty, despite finite value of the
equilibrium correlation length in this temperature range. This
reflects the vanishingly small equilibrium concentration of
unbound vortices at low temperatures 7 < Ty, and surprisingly
weak effects of the interaction between vortices and spin-wave
degrees of freedom. Our results demonstrate also significant
difference in the dynamics of the system above and below T,
such that the obtained temperature 7, can be considered as
the temperature of the dynamic transition (or, at least, sharp
crossover), related to the vortex unbinding.

Therefore, we have found, that in the intermediate time
range scaling relations, identical to those, which were ob-
tained earlier for the XY model, are fulfilled. The dynamic
properties of the triangular lattice antiferromagnets in this
time range originate mainly from the Z, vortices, in which
the contribution to the dynamic properties is similar to that
of the vortices of the XY model. At very short times we
have observed some deviations from the scaling laws, which
originate from the absence of well-defined spin-wave and
vortex excitations in the lack of short-range magnetic order.
At very long times the contribution of the (equilibrated) spin
waves, which provide a finite correlation length below the
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Z,-vortex unbinding transition/crossover temperature, be-
comes important.
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