
PHYSICAL REVIEW B 95, 134431 (2017)

Critical behavior of dissipative two-dimensional spin lattices
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We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg
Hamiltonian that are subject to incoherent spin flips. We determine the steady-state solution of the master equation
for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and
critical exponent of the magnetic linear susceptibility associated with a dissipative ferromagnetic transition. We
show that the von Neumann entropy increases across the critical point, revealing a strongly mixed character of
the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information, which exhibits a critical
behavior at the transition point, showing that quantum correlations play a crucial role in the transition.
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I. INTRODUCTION

Quantum phase transitions [1] are fascinating critical phe-
nomena affecting the nature of the quantum ground state in the
thermodynamical limit as a result of the competition between
distinct physical contributions to the system Hamiltonian. If a
quantum system is coupled to an external reservoir, dissipative
phase transitions may take place. They appear due to the
competition between the coherent Hamiltonian dynamics and
dissipation processes [2–6]. In contrast to equilibrium critical
phenomena at zero temperature, the physical properties do not
depend on the Hamiltonian ground state but instead on the
steady-state density matrix of a master equation accounting
for the dissipation. Nowadays, a large number of experimental
platforms are accessible to study the many-body properties
of quantum driven-dissipative systems: arrays of optical
microcavities [7], superconducting circuits [8–10], trapped
ions [11], and cold atoms in optical lattices [12].

Many fundamental questions associated with the physics
of dissipative phase transitions in extended systems are open.
In particular, the role and eventual emergence of the criticality
of quantum correlations as a function of the system spatial
size have yet to be explored in conjunction with the mixed
character of the steady state. Moreover, the calculation of
critical exponents for nonequilibrium phase transitions is an
outstanding problem. A first important step in this direction
is provided by the Keldysh functional integral formalism.
Using a renormalization-group approach, the emergence of
an effective thermal phase transition has been predicted in
several driven-dissipative models, such as lossy polariton
condensates [13–15] and spin systems [16]. However, to date
the Keldysh formalism has not allowed us to study the role
of quantum correlations and entanglement in dissipative phase
transitions.

A physical system that has recently attracted interest for
the presence of a genuine dissipative phase transition is a
lattice of spins described by a Heisenberg XYZ Hamiltonian
in the presence of a dissipating environment, which tends to
relax each spin into the |sz = −1/2〉 state. In this model, the
single-site Gutzwiller mean-field theory for the density matrix
predicts a phase transition from a paramagnetic phase, in which

all the spins point along the z axis, to a ferromagnetic phase,
which presents a finite polarization in the xy plane [3]. A
recent study [4] has shown that in one-dimensional systems
such transition disappears, while it should survive in two-
dimensional lattices. The two-dimensional case is particularly
challenging to describe and predict theoretically because well-
known techniques such as the density-matrix renormalization
group (DMRG) [17] and matrix product operators are more
powerful for one-dimensional systems [18,19].

In this paper, we present a theoretical study of the dissipative
phase transition of the XYZ Heisenberg system in two-
dimensional lattices (with periodic boundary conditions) by
applying the recently developed corner-space renormalization
method [20]. We determine the finite-size scaling of the
magnetic susceptibility and show that its peak increases
as a power law of the system size in agreement with the
presence of a dissipative phase transition in two dimensions.
A study of the von Neumann entropy of the steady-state
density matrix reveals that the ferromagnetic phase is a mixed
state. Importantly, our results for the finite-size scaling of
the quantum Fisher information [21–23] show that a critical
behavior of entanglement and quantum correlations occurs
at the transition. The picture that emerges is quite intriguing
and novel compared to ordinary classical or quantum phase
transitions. In the classical case, quantum fluctuations are
irrelevant, while in a quantum phase transition the entan-
glement properties are critical [24]. In this work, we show
that a dissipative phase transition can share properties of both
classical and quantum phase transitions.

This paper is organized as follows. In Sec. II, we describe
the dissipative spin model considered, and we discuss the
numerical methods used to calculate its steady-state properties.
In Sec. III, we present the results obtained, and finally, in
Sec. IV, we draw our conclusions.

II. THEORETICAL MODEL AND METHODS

The model considered in this work is a two-dimensional
(2D) spin-1/2 lattice governed by the Heisenberg XYZ
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Hamiltonian (h̄ = 1)

Ĥ =
∑
〈i,j〉

(
Jxσ̂

x
i σ̂ x

j + Jyσ̂
y

i σ̂
y

j + Jzσ̂
z
i σ̂ z

j

)
, (1)

where σ̂ α
i (α = x,y,z) are the Pauli matrices on the ith spin

of the system and the spin-spin coupling is between nearest-
neighbor sites. We will assume that the system is subject to a
dissipative channel that leads to the following Lindblad master
equation for the steady-state density matrix

dρ̂

dt
= −i[Ĥ ,ρ̂] +

∑
j

Lj [ρ̂] = 0, (2)

where the incoherent spin relaxation is described by

∑
j

Lj [ρ̂] = γ
∑

j

[
σ̂−

j ρ̂σ̂+
j − 1

2
(σ̂+

j σ̂−
j ρ̂ + ρ̂σ̂+

j σ̂−
j )

]
, (3)

with σ̂±
j = (σ̂ x

j ± iσ̂
y

j )/2. If the spin-spin coupling between
nearest neighbors is anisotropic in the xy plane [i.e., if Jx �= Jy

in Eq. (1)], such relaxation is at odds with the Hamiltonian. The
competition between the coherent and incoherent dynamics
can induce the dissipative phase transition from a paramagnetic
state with no magnetization in the xy plane to a ferromagnetic
state with finite magnetization in the xy plane. The determi-
nation of the steady-state density matrix for an open lattice
system is a challenging task whose complexity grows faster
than what is required to calculate the ground state of a closed
Hamiltonian system. In fact, the density-matrix lives in a space
whose dimension is the squared of the Hilbert space.

In this work, we consider squared spin lattices consisting
of L × L sites with periodic boundary conditions. The results
for the lattices with L = 2 and L = 3 (having Hilbert space
of dimension 24 = 16 and 29 = 512, respectively) have been
obtained via a brute-force temporal integration of the master
equation in Eq. (2). The results for the lattices with L = 4, 5,
and 6 have been obtained using the corner-space renormaliza-
tion method [20], an algorithm which allows us to target the
relevant subspace (corner of the Hilbert space) for the steady-
state density matrix. The convergence of the results is checked
by increasing the dimension MC of the corner space until
a desired accuracy is reached. For instance, the convergence
of the numerical results for the magnetization of the 6 × 6
lattice has been obtained with a corner-space dimension of
MC � 5000, which is considerably smaller than the full
Hilbert space, which has a dimension of 236 � 6.8 × 1010. The
technical details of the corner-space renormalization method
can be found in Ref. [20]. The temporal solution of the master
equation in the corner space for the lattices with L = 4,5,6
has been obtained via the Monte Carlo wave-function method
(averaging over quantum trajectories) [25–28]. The number of
quantum trajectories (up to 500) has been chosen to achieve a
relative error on the expectation values of the order of 1%.

III. RESULTS AND DISCUSSION

To study the critical properties of such a class of systems, we
will focus on the linear response of the system in the presence
of an applied polarizing field in the xy plane, which modifies
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FIG. 1. Angularly averaged magnetic susceptibility χav versus
the normalized coupling parameter Jy/γ (γ is the dissipation rate)
for different sizes of the L × L lattice. The other coupling parameters
are Jx/γ = 0.9 and Jz/γ = 1. Inset: maximum value χmax

av of the
susceptibility as a function of the size L of the lattice. The dashed
line is a power-law fit of the finite-size scaling. Error bars, when not
shown, are smaller than the symbol size.

the Hamiltonian as follows:

Ĥext (h,θ ) = Ĥ +
∑

j

h
[

cos(θ )σ̂ x
j + sin(θ )σ̂ y

j

]
. (4)

Since the Hamiltonian is anisotropic, the induced in-plane
magnetization per site �M depends on the angle θ of the applied
field. The linear response is summarized by the susceptibility
tensor

χχχ =
(

χxx χxy

χyx χyy

)
, χαβ = ∂Mα

∂hβ

∣∣∣
h=0

, (5)

where hx = h cos(θ ) and hy = h sin(θ ) and the induced
magnetization per site is

Mα = 1

N

N∑
j=1

Tr(ρ̂σ̂ α
j ), (6)

with α = x,y and N being the number of lattice sites.
For the study of critical behavior, it is convenient to look at a

single quantity, namely, the angularly averaged susceptibility,

χav = 1

2π

∫ 2π

0
dθ

∂| �M(h,θ )|
∂h

∣∣∣
h=0

, (7)

where

∂| �M(h,θ )|
∂h

∣∣∣
h=0

=
∣∣∣∣∣
(

χxx cos(θ ) + χxy sin(θ )

χyx cos(θ ) + χyy sin(θ )

)∣∣∣∣∣. (8)

In Fig. 1, we present the angularly averaged susceptibility
χav as a function of the normalized coupling Jy/γ for square
lattices consisting of L × L sites with periodic boundary
conditions (the other coupling parameters are Jx/γ = 0.9
and Jz/γ = 1). The convergence of the results with the
dimension of the corner space has been carefully controlled
(the truncation errors fall within the statistical uncertainty
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arising from the Monte Carlo simulation). Each point in Fig. 1
has been determined considering four values of the applied
field for each in-plane direction in order to calculate accurately
the linear susceptibility. For the 6 × 6 lattice in the critical
region, the calculation of a single point in Fig. 1 required
approximately 1 week of computation time on our 48-core
computer cluster.

The finite-size numerical results reported here are consis-
tent with a critical behavior of the magnetic susceptibility
[29] and allow us to obtain an estimate of the corresponding
critical exponent. The magnetic susceptibility in Fig. 1 for the
L × L lattices exhibits a peak of height χmax

av (L) obtained for
the coupling J max

y (L). As L is increased, the peak becomes
considerably sharper. As shown in the inset, for the largest
values of L, the peak height scales as a power law: in particular,
the data for L � 4 are fitted by the power law χmax

av (L) ∝ Lκ ,
with κ = 1.59 ± 0.10, where the error corresponds to one
standard deviation. It is interesting to notice that the numerical
value κ = 1.59 ± 0.10 is close to the corresponding critical
exponent 7/4 for the thermal transition of the 2D Ising model
but significantly deviates from the value 2, which is the mean-
field critical exponent. However, in order to provide a more
precise estimation of the critical exponent, in the future it will
be necessary to perform simulations of larger lattices, which
require further improvements of the present state-of-the-art
methods. From the finite-size scaling of J max

y (L), we can
also estimate a critical coupling J (c)

y /γ = 1.07 ± 0.02. For
a comparison, in the 4 × 4 cluster mean-field calculations in
Ref. [4], the phase transition occurs at Jy/γ � 1.03.

Cluster mean-field calculations predicted the presence of
a second phase transition around Jy/γ = 1.4, although the
location of this second critical point varies considerably for
2 × 2, 3 × 3, and 4 × 4 clusters [4]. We performed exact
calculations (i.e., the full Hilbert space) of the susceptibility
for 2 × 2 and 3 × 3 lattices with periodic boundary conditions
and for a 4 × 4 lattice (via the corner-space renormalization):
for Jy � 1.4γ , we do not observe any additional peaks in
the magnetic susceptibility (see the Appendix). Our results
with periodic boundary conditions suggest the absence of a
second phase transition at large Jy , in disagreement with mean-
field calculations with small clusters: further calculations for
larger lattices, which would thus be less sensitive to specific
boundary conditions, are therefore needed to fully understand
the properties of the dissipative XYZ model in such a region
of the phase diagram.

To study the mixed character of the steady-state density
matrix, a useful quantity to evaluate is the von Neumann
entropy, defined as

S = −Tr[ρ̂ ln(ρ̂)] = −
∑

r

pr ln(pr ), (9)

where pr are the eigenvalues of the density matrix ρ̂ =∑
r pr |�r〉〈�r |. The calculation of the entropy is numerically

much harder than that of the magnetization �M . Indeed, the
convergence of S versus the dimension MC of the corner
space is slower since the density-matrix eigenstates |�r〉 with
small probability pr can also provide significant contributions
to the sum in Eq. (9) due to the logarithmic term ln(pr ).
Figure 2 reports results for the entropy across the critical
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FIG. 2. von Neumann entropy S as a function of the normalized
coupling parameter Jy/γ for different values of the size L of the
squared lattices. Parameters are the same as in Fig. 1. Inset: the
derivative of the entropy with respect to the coupling parameter Jy .

region. It is apparent that in the limit of the isotropic system
(Jx = Jy = 0.9γ ), the entropy tends to zero, indicating a
nearly pure state. Close to the critical point, the entropy sharply
rises with a slope that increases with L. Finally, for large Jy/γ ,
it saturates to a finite value which depends on the size of the
lattice, indicating that the ferromagnetic phase is a strongly
mixed state. In the inset of Fig. 2, we present the numerical
derivative of the entropy, showing a clear peak at the critical
point, which becomes more and more pronounced by enlarging
L. By fitting the maximum entropy derivative with a power law
[i.e., max(∂S/∂Jy) ∝ Lλ] for L � 3, we get the estimate for
the critical exponent λ = 1.6 ± 0.2. The behavior of the von
Neumann entropy S as a function of the coupling parameter
Jy in the XYZ model resembles the behavior of the entropy
versus temperature in second-order thermal phase transitions.
However, in contrast to a classical transition, in the dissipative
phase transition the ferromagnetic phase has a larger entropy
than the paramagnetic one.

An important question to address is whether quantum
entanglement is present in the critical region. To this aim, we
calculate the quantum Fisher information (QFI) of the mixed
steady state ρ̂ = ∑

r pr |�r〉〈�r |, which is defined as

FQ = 2
∑
r,r ′

(pr − pr ′)2

pr + pr ′
|〈�r |Ô|�r′〉|2, (10)

where the sum includes only the terms with pr + pr′ > 0. The
operator Ô = ∑N

j=1 Ôj (where N = L2 is the number of sites)

is the sum of local Hermitian operators Ôj , whose spectrum
width is 1 (the spectrum width is defined as the difference
between the largest and the minimal eigenvalues). The value
of the QFI is obtained by maximizing the expression in Eq. (10)
over the possible operators Ô with the properties mentioned
above. The QFI has been used to study entanglement in
quantum phase transitions in several systems at thermal
equilibrium [23,30–32]. Indeed, the QFI can be used as a
witness for multipartite entanglement: if FQ/N > m, then a
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FIG. 3. Quantum Fisher information FQ/N (normalized by the
number N = L2 of sites in the squared lattice) as a function of the
normalized coupling parameter Jy/γ for different sizes L. Parameters
are the same as in Fig. 1. The inequality FQ/N > 1 witnesses bipartite
entanglement. Inset: maximum value of FQ/N versus the lattice size
L (log-log scale) with a power-law fit (dashed line).

quantum state possesses (m + 1)-partite entanglement [22]. In
particular, the inequality FQ/N > 1 is a sufficient condition
to have bipartite entanglement [33].

Since the order parameter of the transition in the dissi-
pative XYZ model is the magnetization in the xy plane,
it makes sense to consider a set of operators Ô similar to
that in Ref. [23]. Namely, we evaluate FQ by considering
Ô = 1

2

∑N
j=1[cos(τ )σ̂ x

j + sin(τ )σ̂ y

j ] in Eq. (10) and by maxi-
mizing FQ with respect to the angle τ . This procedure simpli-
fies the numerical calculation and produces only an underesti-
mation of the QFI. Consequently, if the inequality FQ/N > 1
is satisfied, the bipartite entanglement is demonstrated a
fortiori. The function FQ is directly accessible in our numerical
calculations with the corner-space renormalization method.
Indeed, one needs only to diagonalize the steady-state density
matrix ρ̂ in the corner space to estimate FQ. However, similar
to the calculation of the entropy, the convergence of the QFI
with respect to the corner-space dimension is more demanding
than what is needed for the susceptibility. The criticality of
the quantum correlations in the dissipative phase transition
studied here can also be characterized with the calculation
of other entanglement witnesses, such as the negativity [34].
However, while the QFI can be directly calculated with the
corner-space renormalization, the calculation of the negativity
with our method is inefficient (see the Appendix).

In Fig. 3, we show our results for FQ/N as a function of
the coupling parameter Jy . The figure presents a maximum
close to J (c)

y . In this regime, FQ/N > 1 is sufficient to witness
the presence of bipartite entanglement in the steady state.
Moreover, looking at the behavior of the maximum value
of FQ/N versus L of the lattice, we notice it increases
for increasing L, although more slowly than the magnetic
susceptibility peak. A power-law fit for L � 3 shows that the
peak value F max

Q /N ∝ Lη, with η = 0.18 ± 0.03.

IV. CONCLUSIONS

We have explored theoretically a genuine dissipative phase
transition of a two-dimensional spin lattice system described
by an anisotropic XYZ Heisenberg Hamiltonian. By applying
the corner-space renormalization method [20] for the steady-
state solution of the master equation, we have demonstrated
that a critical behavior indeed emerges in two-dimensional
lattices. By a finite-size scaling analysis of the magnetic
susceptibility, we provided an evaluation of the corresponding
critical exponent. Our present work on the XYZ Heisenberg
model shows that dissipative phase transitions share properties
of both quantum and thermal phase transitions. Indeed, we
have demonstrated that the von Neumann entropy sharply
increases across the transition, as it happens in thermal
phase transitions. Furthermore, the quantum nature emerges
in the crucial role played by entanglement, as witnessed
by the criticality of the quantum Fisher information. An
interesting development is the study of different entanglement
witnesses to see how their critical properties may change.
Future exploration of other physical models with different
symmetries and dissipators is an intriguing perspective.
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APPENDIX

In this appendix, we provide additional numerical results
concerning the dissipative anisotropic XYZ Heisenberg model
for two-dimensional lattices.

In Fig. 4, we provide results for the angularly averaged
magnetic susceptibility on a wider range of values for Jy/γ .
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FIG. 4. Angularly averaged magnetic susceptibility χav versus
normalized coupling parameter Jy/γ for different sizes of the L × L

lattice (periodic boundary conditions). Parameters Jx/γ and Jz/γ are
the same as in Fig. 1.
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FIG. 5. Entanglement negativity N vs the normalized coupling
parameter Jy/γ for small lattices. Parameters Jx/γ and Jz/γ are the
same as in Fig. 3.

Notice that the results for 2 × 2 and 3 × 3 lattices have been
obtained considering the whole Hilbert space. The results for

the 4 × 4 lattice have been calculated with the corner-space
renormalization method. The susceptibility peak around Jy �
γ is associated with the critical point comprehensively studied
in Sec. III. We would like to point out that in the region of
larger Jy , there is no additional susceptibility peak.

In Fig. 5, we show exact results (considering the whole
Hilbert space) for the entanglement negativity [34] N as a
function of the normalized coupling parameter Jy/γ for small
rectangular lattices. By exact integration of the master equation
in the full Hilbert space, we have found the steady-state density
matrix of the 2 × 2, 4 × 2, and 6 × 2 lattices. We found
that N (Jy) has a peak qualitatively similar to the quantum
Fisher information. However, the negativity witnesses bipartite
entanglement also in regions where the QFI does not, in
particular above the critical point. In contrast to the quantum
Fisher information, the entanglement negativity cannot be
calculated efficiently with the corner-space renormalization.
Indeed, the calculation of N requires the diagonalization of
the non-Hermitian matrix obtained by partial transposition
of the density matrix with respect to one half of the lattice,
an operation which enhances the truncation errors in the
corner space and makes unfeasible the calculation for larger
lattices.
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