
PHYSICAL REVIEW B 95, 134430 (2017)

Absence of long-range order in the frustrated magnet SrDy2O4 due to trapped
defects from a dimensionality crossover
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Magnetic frustration and low dimensionality can prevent long-range magnetic order and lead to exotic
correlated ground states. SrDy2O4 consists of magnetic Dy3+ ions forming magnetically frustrated zigzag
chains along the c axis and shows no long-range order to temperatures as low as T = 60 mK. We carried out
neutron scattering and ac magnetic susceptibility measurements using powder and single crystals of SrDy2O4.
Diffuse neutron scattering indicates strong one-dimensional (1D) magnetic correlations along the chain direction
that can be qualitatively accounted for by the axial next-nearest-neighbor Ising model with nearest-neighbor
and next-nearest-neighbor exchange J1 = 0.3 meV and J2 = 0.2 meV, respectively. Three-dimensional (3D)
correlations become important below T ∗ ≈ 0.7 K. At T = 60 mK, the short-range correlations are characterized
by a putative propagation vector k1/2 = (0, 1

2 , 1
2 ). We argue that the absence of long-range order arises from

the presence of slowly decaying 1D domain walls that are trapped due to 3D correlations. This stabilizes a
low-temperature phase without long-range magnetic order, but with well-ordered chain segments separated by
slowly moving domain walls.

DOI: 10.1103/PhysRevB.95.134430

I. INTRODUCTION

While most magnetic systems feature long-range ordered
ground states, magnetic frustration can preclude magnetic
order to the lowest temperatures and instead promote strongly
correlated fluctuating phases. Absence of magnetic order
due to magnetic frustration was observed in a number of
rare-earth pyrochlore oxides exhibiting topological magnetic
phenomena. For example, Dy2Ti2O7 and Ho2Ti2O7 feature
spin ice states at low temperature where the spin disorder is
analogous to the proton position disorder in water ice [1,2].
Other examples include the spin glass state of Y2Mo2O7 in
absence of structural disorder [3] and the magnetoelastic spin
liquid state of Tb2Ti2O7 [4].

Magnetic interactions which dominate along mainly one
or two spatial dimensions can also weaken the tendency
towards magnetic order. Purely one-dimensional (1D) sys-
tems cannot order at finite temperature [5]. The magnetic
order in such materials is generally stabilized due to weak
interchain interactions leading to two- or three-dimensional
(3D) order at temperatures much lower than the Curie-Weiss
temperature. The simultaneous presence of frustration and low
dimensionality can lead to novel phenomena and complex
phase diagrams, of which the zigzag chain is a case in point.
The zigzag chain is described by nearest-neighbor exchange
J1 and next-nearest-neighbor exchange J2, where J2 acts as the
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source of frustration. For Ising spins, different ground states
are stabilized depending on the size of the antiferromagnetic
J2 > 0. For ratio J2

|J1| < 0.5 and an antiferromagnetic J1 a
simple Néel state ↑↓↑↓ is realized while a ferromagnetic J1

leads to a ferromagnetic state ↑↑↑↑. For ratio J2
|J1| > 0.5 a

double Néel state ↑↑↓↓ is realized, regardless of the sign
of J1 [6]. These states are separated by a critical point
at J2

|J1| = 0.5 where the degree of frustration is strongest.
For antiferromagnetic J1 and J2, a magnetic field stabilizes
an intermediate ↑↑↓ state, associated with a magnetization
plateau at 1/3 of the full saturation Ms [6–8].

The magnetism in many members of the AR2O4 (A =
Ba, Sr and R = Nd, Gd, Tb, Dy, Ho, Er, Tm, and Yb)
family is qualitatively well described by the zigzag chain
model, such as SrDy2O4 and SrHo2O4 [9]. These compounds
are frustrated magnets with various interesting properties:
they feature spin-liquid-like ground states [10], magnetic
phases with multiple coexisting order parameters [11–13],
low-dimensional correlations [9], magnetization plateaus [14],
and magnetic field induced order [15–18].

The magnetic rare earth ions form a distorted honeycomb
lattice in the ab plane and zigzag chains along the c axis. There
are two inequivalent rare earth sites, surrounded by distorted
oxygen octahedra (Fig. 1). These two inequivalent sites form
two inequivalent zigzag spin chains. This magnetic topology
has also been observed in β-CaCr2O4 [19] and CaV2O4 [20]
and low dimensionality correlations are a common feature in
these compounds.

SrDy2O4 is particularly interesting because no long-range
order has been observed in zero field to the lowest temperature
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FIG. 1. (a) Magnetic lattice of SrDy2O4 showing both inequiva-
lent sites in red and blue with their respective g factors represented by
ellipsoids. (b) SrDy2O4 structure in the ab plane showing the oxygen
octahedra surrounding the Dy3+ ions.

surveyed. Previous powder neutron scattering results show the
presence of 1D correlations persisting down to T = 60 mK [9],
providing evidence that magnetic interactions along the chain
direction dominate the cooperative magnetic properties. Fur-
thermore, this system exhibits a magnetization plateau at 1

3Ms

for field along the b axis [14], as expected in the zigzag
chain for antiferromagnetic J1 and J2. The field-induced phase
related to this plateau has been mapped by specific heat [15]
and more recently by ultrasound measurements [16].

We studied the crystal structure of SrDy2O4 by neutron
diffraction and revisited the crystal electric field level scheme,
which we discuss in Sec. III A. We present in Sec. III B a
detailed single-crystal neutron scattering study of the diffuse
scattering at T = 60 mK. We also present ac susceptibility
measurements in Sec. III C. The results are discussed in
Sec. IV in the context of the axial next-nearest-neighbor Ising
(ANNNI) model and the domain walls of its ground state
correlations.

II. EXPERIMENTAL DETAILS

SrDy2O4 powder was prepared by solid state reaction
using high purity starting materials, similar to the method
described by Balakrishnan et al. [21]. Stoichiometric mixtures
of Dy2O3 (99.995%) and SrCO3 (99.994%), with a 1% surplus
of carbonate, both dried at 600 ◦C and weighted in glovebox,
were mixed in a ball mill and pressed into a rod. The rods
were heated in air at 1400 ◦C in an alumina crucible for a
total of three days with two intermediate steps of grinding
and pressing. Single crystals were grown using an optical
floating zone furnace equipped with four xenon arc lamps.
Polycrystalline rods of about 8 cm were pressed, sintered in
air at 1500 ◦C, and used as seeds and feeds, with a growth rate
of 10 mm/h in an ultrapure argon environment.

Powder neutron diffraction was carried out on the HRPT
diffractometer, SINQ at the Paul Scherrer Institut. The
SrDy2O4 powder was loaded in a double-walled copper can
(Rinner = 4.5 mm; Router = 5.0 mm) with 10 bar of helium ex-
change gas for better thermalization in the dilution refrigerator.
The patterns were collected using neutrons with a wavelength

λ = 1.155 Å and 1.886 Å from temperature T = 0.1 K up
to 100 K. The D7 neutron diffractometer at ILL was used to
probe the diffuse scattering of SrDy2O4 with XYZ polarization
analysis [22]. Two samples of coaligned single crystals with a
total mass of about 0.1 g were measured in the (h0l) and (0kl)
reciprocal planes. The samples were glued on a silicon plate
with araldite and CYTOP, and mounted on a copper holder. The
measurements were carried out in a dilution refrigerator using
a neutron wavelength λ = 3.1 Å. Prior to the data collection,
vanadium, quartz, and cadmium were measured to correct the
data for normalization of the detector efficiency, the flipping
ratio, and the background, respectively. Measurements taken
at T = 40 K were used to subtract the background scattering
due to both the sample holder and the sample environment
from the low temperature scattering. Diffuse scattering was
also measured on TASP and RITA-II triple-axis spectrometers
at SINQ as well as on the IN22 triple-axis spectrometer at
ILL. For TASP, the sample was oriented in the (0kl) plane
and made of coaligned 300 μm thick single crystals covering
the full surface of a 2 × 3 cm2 copper plate, for a total mass
of ∼ 1 g. The crystals were fixed using CYTOP. The sample
was inserted in a dilution refrigerator and the measurements
were carried out at fixed analyzer energy Ef = 3.5 meV with
a beryllium filter. For RITA-II, a sample of coaligned single
crystals mounted on an aluminum plate, oriented in the (h0l)
scattering plane, and inserted in a dilution refrigerator was
measured with Ef = 13.7 meV. IN22 was used in polarized
mode with the CryoPad device at fixed Ef = 14.68 meV and
30.55 meV. The sample consisted of several coaligned crystals
with a total mass of 120 mg mounted on a silicon plate in a
copper mount. Measurements were performed in an orange
cryostat at T = 1.4 K.

Ac susceptibility measurements were performed in a Quan-
tum Design MPMS equipped with an iHelium option. The
sample with dimensions 0.9 × 1.9 × 0.4 mm3 was measured
in zero field for an excitation amplitude of 1 Oe along
the b axis from T = 0.6 K up to 1.8 K. Due to the large
magnetic moments in SrDy2O4, the measurements had to
be corrected for demagnetization [23]. The demagnetization
factor N = 0.128 was calculated from the sample dimensions
using the equations for a rectangular prism [24]. In our case,
this correction did not qualitatively change the ac susceptibility
of SrDy2O4, although this was the case previously in other
measurements [25].

III. EXPERIMENTAL RESULTS

A. Crystal structure and crystal field excitations

Powder neutron diffraction reveal no significant structural
changes between T = 0.1 K and 100 K. Diffraction patterns
were measured using both a wavelength of λ = 1.155 Å and
1.886 Å for each temperature and the structure was determined
by combined Rietveld refinement using FULLPROF [26]. The
broad magnetic diffuse scattering at low temperature was
treated as background to refine the nuclear structure. The most
important structural change that may affect the magnetism
is related to the oxygen octahedra surrounding the Dy3+

ions, which determine the crystal fields that define the
single ion anisotropy. The average octahedral distortion �
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FIG. 2. Temperature dependence of (a) the average Dy-O bond
distance and (b) the distortion � [Eq. (1)] for the oxygen octahedron
of each inequivalent Dy3+ site, based on combined refinement of
powder diffraction pattern recorded with λ = 1.155 Å and 1.886 Å
at HRPT.

is characterized by

� = 1

6

6∑
n=1

(
dn − 〈d〉

〈d〉
)2

, (1)

where dn is the distance between the Dy3+ ions and the nth
oxygen atom and 〈d〉 is the average value of dn. Figure 2
shows that the average Dy-O bond lengths and the distortion �

for both inequivalent sites are temperature independent within
the accuracy of our measurements. From our results, we can
exclude a structural phase transition in SrDy2O4 between
T = 0.1 K and 100 K. We point out, however, that more
precise measurements on SrTm2O4 and SrTb2O4 show a clear
temperature dependence of � and a similar distortion in both
compounds [27,28].

The results of the structural determination at T = 0.1 K are
presented in Table I. This low-temperature structure was used
to revisit the crystal field level scheme presented by Fennell
et al. [9]. In SrDy2O4, the levels degeneracy is lifted by the Cs

symmetry at the Dy sites, resulting in a set of Kramers doublets.
The excitations are modeled using a point charge calculation
with crystal-field scaling factors S1

xtal = 0.55 and S2
xtal = 0.41

for sites 1 and 2, respectively [29]. By its nature, this model
is extremely sensitive to the atomic positions. Figure 3 shows
that the new structure gives a more appropriate description
of the crystal-field excitations previously observed by Fennell
et al. [9]. In particular, it reproduces the excitation at an energy
transfer E = 8 meV [Fig. 3(b)] which was not accounted for
in the previous fit. However, it does not reproduce well the
intensity of the excitation at E = 48 meV [Fig. 3(d)]. To verify
the accuracy of this fit, calculations were done for slightly
modified structures: spectra were calculated by moving single
oxygen atom position within the uncertainty of the refined
structure. The calculated scattering intensity is only weakly
affected by this change but the energy levels change by up to
0.5 meV for the crystal-field excitations below E = 10 meV
and up to 1.5 meV for excitations above E = 10 meV.

We calculated the gyromagnetic g tensor using the ground
state doublet wave functions obtained from the experimentally
determined crystal-field environment (see the Appendix for
details). The presence of a mirror symmetry in the ab plane

TABLE I. Determined structure of SrDy2O4 for combined re-
finement of powder neutron data with λ = 1.155 Å and 1.886 Å at
HRPT.

T (K) 0.10(2)

Space group Pnam

a (Å) 10.0773(3)
b (Å) 11.9124(4)
c (Å) 3.4240(1)
α, β, γ (◦) 90, 90, 90

λ = 1.155 Å
Rp , Rwp , Rexp, χ 2 13.4, 13.9, 9.85, 2.002

λ = 1.886 Å
Rp , Rwp , Rexp, χ 2 11.2, 9.86, 6.77, 2.122
Global χ 2 2.06

Atom x y z

Sr 0.75 0.65 0.25
Dy1 0.4239(4) 0.1109(2) 0.25
Dy2 0.4210(4) 0.6114(2) 0.25
O1 0.2150(8) 0.1771(6) 0.25
O2 0.1297(6) 0.4797(7) 0.25
O3 0.5113(8) 0.7838(6) 0.25
O4 0.4248(9) 0.4221(5) 0.25

forces one of the principal axis of the gyromagnetic tensor to
be along the c axis and the two others are in the ab plane.
The calculated g factors along the principal axes and their
orientation are presented in Fig. 4. For site 2, the ground state
doublet has a single easy axis at 10.7◦ from the b axis in
the ab plane, which is staggered in the lattice as shown on
Fig. 1. The values of the g factor along the other principal axes
are negligible making site 2 strongly Ising-like. For site 1,
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FIG. 3. (a)–(d) Inelastic neutron spectra of SrDy2O4 for
Ei = 18 meV and Ei = 79 meV at T = 20 K and 80 K. The solid
lines show the calculated spectra for both sites from the point charge
calculation (see text) and (e) the corresponding energy levels scheme
for both inequivalent Dy sites. The levels are doublet states.
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Dy1 Dy2
g1 8.0 19.7
g2 2.8 < 0.1

g3 = gc 8.4 < 0.1
θ 1.9◦ 79.3◦

FIG. 4. Left: g factors along the principal axes calculated from
the point charge calculations for both Dy sites. The principal axes of
g1 and g2 are in the ab plane and at θ and θ + 90◦ from the a axis,
respectively. The principal axis of g3 is along the c axis. Right: visual
representation of the g factors by ellipsoids for site 1 (red) and site 2
(blue).

the g factor along the c axis is the largest but g1 near the
a axis has a similar value, suggesting that site 1 is XY -like
with an easy plane in the ac plane. This XY anisotropy
is not protected by symmetry and contrasts with the usual
Ising anisotropy of Dy3+ ions [30]. For both sites, there is
no obvious correspondence between the suggested anisotropy
and the oxygen atom positions surrounding the magnetic ions,
an observation that also applies to SrEr2O4 [31].

We investigated the sensitivity of the g tensor to small vari-
ations of the oxygen atom positions within their experimental
uncertainty. For site 2, the effects on the g factors and the
orientation of the principal axes were negligible. However, for
site 1, the g factors were strongly affected: g1 and gc varied
from ∼ 5 to 12 and the angle θ in the ab plane took values
up to 25◦, showing thus a high sensitivity to the crystal-field
environment. This may lead to strong magnetoelastic effects.
It also prevents a definitive description of the anisotropy on
site 1: the moments could be XY -like or have an easy-axis
along either the a or c axis. This result suggests that XY

anisotropy in Dy3+ ions can generally arise at the crossover
between two Ising anisotropies with different directions.

B. Zero field short-range order

While there is no transition to long-range magnetic order in
SrDy2O4, short-range spin correlations gradually emerge with
decreasing temperature. These short-range spin correlations
are clearly visible for two different sample orientations in the
magnetic diffuse scattering measured on the D7 diffractometer
with the polarization analysis. Neutrons were polarized along
Z perpendicular to the scattering plane and analyzed to
separate the non-spin-flip (NSF) and spin-flip (SF) neutron
scattering. The NSF scattering is sensitive to nuclear scattering
and scattering from magnetic moments parallel to the neutron
polarization. The SF scattering is sensitive to magnetic
moments perpendicular to the neutron polarization. Figures 5
and 6 show the magnetic diffuse scattering in the (h0l) and
(0kl) reciprocal plane, respectively, for both polarization chan-
nels at different temperatures. The data has been symmetrized
into a single quadrant to improve statistics.

At T = 60 mK, lines of diffuse scattering are observed at
half-integer values of l in the (h0l) plane in NSF scattering
(Fig. 5) and in the (0kl) plane in SF scattering (Fig. 6). These
lines represent two-dimensional (2D) diffuse scattering planes
close to Q = (h,k,n + 1

2 ), where n is an integer. In real space,
this indicates the presence of 1D correlations along the c axis,

FIG. 5. Diffuse NSF and SF scattering in the (h0l) reciprocal
plane at various temperature where the polarization Z is parallel to
the b axis. The powder rings in the NSF scattering originate from an
incomplete background subtraction.

which is the direction of the zigzag chains. With increas-
ing temperature, the diffuse scattering is modulated around
l = n + 1

2 as a function of h and k. As a consequence, the
diffuse scattering forms distorted 2D planes at T = 1.3 K.

The polarization analysis of the diffuse scattering indicates
that the moments giving rise to this scattering predominantly
lie along the b axis. For the crystal orientation with the b-axis
vertical, the strong NSF scattering in the (h0l) reciprocal plane
near even h values must originate from moments along the
b axis. Weaker intensity of the SF scattering appears near
odd h values at the lowest temperature, indicating a smaller
moment component in the ac plane. For the crystal orientation
with the a axis vertical, strong SF intensity is observed in the
(0kl) reciprocal plane near half-integer values of k, indicating
moments in the bc plane. A small moment component along
the a axis also emerges at T = 60 mK, as seen from the
NSF scattering near Q = (0,1.5,0.5) and (0,2.5,0.5) shown
in Fig. 6.
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FIG. 6. Diffuse NSF and SF scattering in the (0kl) reciprocal
plane at various temperature where the polarization Z is par-
allel to the a axis. As the temperature increases the scattering
moves to incommensurate positions. The powder rings in the NSF
scattering originate from an incomplete background subtraction. The
temperature-independent strong peaks appearing at incommensurate
positions are nuclear Bragg peak of Si from the sample mount.

A detailed temperature dependence of the diffuse scattering
for T < 1.5 K was measured near Q = (0,0,0.5 + δ) using
the RITA-II spectrometer and near Q = (0,1.5,0.5 − δ) using
the TASP spectrometer (Fig. 7). The integrated intensity,
the correlation length, and the wave-vector number δ were
determined by fitting a Lorentzian function to the diffuse
scattering measured along l. The correlation length was
corrected for the wave-vector resolution of the instrument and
is defined as ξc = 2/

√
�2

exp − �2
res, where �exp is the full width

at half maximum (FWHM) of the measured scattering and
�res is the FWHM expected from the instrumental resolution.
The instrumental resolution was calculated in the Popovici
approximation [32].

From T = 1.5 K down to 0.5 K, there is an increase
of the correlation length along the c axis. Simultaneously

0

1

2

3

4

5

In
te

gr
at

ed
 in

te
ns

ity
 (

a.
u.

) (a)

10
−2

10
−1

δ 
(r

.l.
u)

(b)|J
1
| = 0.3 meV

J
2
 = 0.2 meV

 

 

(0,0,0.5+δ) RITA−II

(0,1.5,0.5−δ) TASP

ANNNI model

0 0.5 1 1.5
10

0

10
1

10
2

T (K)

ξ c (
l.u

)

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 (d)

ξ a =
 1

/H
W

H
M

 a
lo

ng
 Q

h
 (

l.u
.) D7

0

0.5

1

1.5

(e)

ξ b =
 1

/H
W

H
M

 a
lo

ng
 Q

k (
l.u

.)

0 0.5 1 1.5
0

5

10

15

T (K)

ξ c =
 1

/H
W

H
M

 a
lo

ng
 Q

l (
l.u

.) (f)

FIG. 7. Temperature dependence of the diffuse scattering at
Q = (0,0,0.5 + δ) and (0,1.5,0.5 − δ), showing (a) the integrated
intensity, (b) the δ parameter of the incommensurability, and (c) the
peak width along l presented as the correlation length ξ along the
c axis. The analytical functions for δ and ξ from the 1D ANNNI
model with |J1| = 0.3 meV and J2 = 0.2 meV are shown as dashed
lines. (d)–(f) Correlation length represented as the inverse half width
at half maximum (HWHM) of the diffuse scattering along h, k, and l

measured on the D7 diffractometer.

with the increasing correlation length, there is a reduction
of the incommensurate wave-vector number δ. This shows
that the magnetic correlations converge towards long-range
commensurate order with decreasing temperature. However,
the incommensuration becomes less temperature dependent
below T = 0.5 K and remains around δ ≈ 0.01. The correla-
tion length surprisingly decreases with decreasing temperature
below T = 0.5 K. This is clearly visible for the correlation
length determined near Q = (0,1.5,0.5) that corresponds to
the putative ordering wave vector. This identifies T = 0.5 K
as a temperature where the magnetic properties change
qualitatively.

In SrEr2O4 and SrHo2O4, the value δ of the dif-
fuse scattering also does not reach zero at the lowest
temperatures [12,13]. For SrHo2O4 in particular, δ stabilizes at
0.001 below T = 0.52 K, but no reduction of the correlation
length is observed [12]. This behavior is explained by the
interaction between the short-range correlations on site 2 and
the long-range order on site 1. However, such a scenario cannot
explain the magnetic phenomena reported here in SrDy2O4
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because no magnetic long-range order is present at zero field
at any temperature.

The half width at half maximum (HWHM) was also
determined for the temperatures measured with the D7
diffractometer. The average HWHMs along k and l have been
obtained from the SF scattering in the (0kl) reciprocal plane
from all the peaks at l = 0.5 ± δ. The average HWHMs along
h have been obtained from the NSF scattering in the (h0l)
reciprocal plane from all the peaks at l = 0.5 ± δ. These
results are presented on Figs. 7(d)–7(f) as the correlation
length ξ ≈ 1/HWHM. Here we assumed that the instrumental
resolution is much smaller than the experimental widths. For
these three temperatures, the correlation lengths determined
from the D7 data agree with those obtained from TASP. New
information is obtained from the temperature dependence of
the correlation length along the a and b axes. Along the b

axis, the correlation length is short but finite at T = 1.3 K
and increases continuously down to 60 mK. Along the a axis,
the correlation length is negligible at T = 1.3 K and only
becomes significant between 700 mK and 60 mK. This means
that although SrDy2O4 is in first approximation a 1D magnet,
it features 2D correlations at T = 1.3 K and a crossover to 3D
correlations between T = 700 mK and 60 mK.

We used the SF scattering in the (0kl) reciprocal plane to
determine the nature of the correlations with a propagation
vector k1/2 = (0, 1

2 , 1
2 ). The integrated intensities of the short

range peaks at (0,m
2 , n

2 ) for T = 60 mK were obtained by
summing up the counts over �l = 0.4 and fitting the k de-
pendence of the resulting intensity with Lorentzian functions.
The integrated intensities were corrected for absorption, which
was estimated through finite element analysis based on the
sample geometry, and then used to determine the nature of
the short-range correlations. Since these intensities arise from
SF scattering of neutrons polarized along the a axis, they are
only sensitive to magnetic moments in the bc plane. The NSF
scattering in the (0kl) reciprocal plane is necessary to describe
the components along the a axis.

To determine the symmetry of the short-range magnetic
correlations, the representation analysis for k1/2 has been
performed using BASIREPS [26] and SARAh [33]. The little
group of k1/2 contains two 2D irreducible representations, both
having six basis vectors represented as Ax,y,z and Bx,y,z, where
the indices refer to the crystallographic axes (Table II). By

TABLE II. Six basis vectors represented as Ax,y,z and Bx,y,z are
listed for the two 2D irreducible representations with the propagation
vector k1/2 = (0, 1

2 , 1
2 ) at Wyckoff position 4c in space group Pnam.

�1 �2

x,y,z
(+Ax,+Ay,+Az)
(−Bx,−By,+Bz)

(+Ax,+Ay,+Az)
(−Bx,−By,+Bz)

x + 1
2 ,−y + 1

2 ,−z + 1
2

(−Ax,+Ay,+Az)
(+Bx,−By,+Bz)

(+Ax,−Ay,−Az)
(−Bx,+By,−Bz)

−x + 1,−y + 1,z + 1
2

(+Ax,+Ay,+Az)
(+Bx,+By,−Bz)

(+Ax,+Ay,+Az)
(+Bx,+By,−Bz)

−x + 1
2 ,y + 1

2 ,−z + 1
(−Ax,+Ay,+Az)
(−Bx,+By,−Bz)

(+Ax,−Ay,−Az)
(+Bx,−By,+Bz)
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FIG. 8. Result of the magnetic structure refinement at
T = 60 mK, represented as the observed squared structure factors
|Fobs|2 obtained from the diffuse scattering (see text) vs the calculated
squared structure factors |Fcalc|2.

restricting the refinement to the SF scattering, only moments
in the bc plane are relevant. The number of refined parameters
was further reduced by assuming that the moment on site 1
points along c and the one on site 2 points along b. This
assumption is supported by the anisotropy of the g tensor
of both sites presented in Sec. III A. Therefore, only four
parameters are adjustable: Az, Bz on site 1, which we denote
as A1

z and B1
z , and Ay , By on site 2, which we denote as A2

y

and B2
y . Assuming that all moments on site 1, and all moments

on site 2, have the same size, the model is restrained to one
free parameter per inequivalent site (A1

z or B1
z must be zero for

site 1, and A2
y or B2

y must be zero for site 2). Based on these
assumptions, a good agreement with the data is obtained from
the coexistence of two domains generated from different basis
vector of the �2 representation. One domain is described by
(A1

z,A
2
y) and the other one by (B1

z ,B
2
y ). We further assumed

that the modulus of A1
z and B1

z are the same for both domains,
as well as for A2

y and B2
y . Assuming an equal population of

domains, this magnetic structure refinement gives χ2 = 0.43.
The refinement was performed using FULLPROF [26] and the
result is presented in Fig. 8. The moment size on site 2 along
the b axis is about twice the one on site 1 along the c axis, in
good agreement with the expectation from the g factors. The
absolute moment sizes were not obtained because the nuclear
peaks intensity could not be extracted accurately.

The NSF scattering observed in the (0kl) reciprocal plane
provides information about the magnetic correlations polar-
ized along the a axis. The presence of weak intensity near
Q = (0,1.5,0.5) and (0,2.5,0.5) in NSF scattering provides
evidence for such correlations. For the �2 representation, this
scattering is attributed unambiguously to a moment along the
a axis on site 2, which is consistent with the easy axis of
the calculated g tensor. A moment along the a axis on site 1
would lead to NSF scattering at Q = (0,0.5,0.5), which is
experimentally not observed. This is evidence that there is
no ordered moment along the a axis on site 1, although the
calculated g tensor would allow this. This indicates that either
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FIG. 9. Magnetic structure of the coexisting domains in the zero-
field short-range order of SrDy2O4 with k1/2. The chemical unit cell
is outlined in gray lines and the magnetic unit cell in red lines. The
shaded areas shown in the bc plane enlighten the difference between
both domains. Moments on site 1 point along the c axis and moments
on site 2 point nearly along the b axis in the ab plane.

the XY anisotropy on site 1 at low temperatures is weak, or
that the ordering of this spin component is frustrated by the
interactions.

The short-range correlations at T = 60 mK are well
described by the coexistence of the two resulting arrangements
of magnetic moments shown in Fig. 9. These spin correlations
decay with a correlation length of about 20 sites along the
c axis, three sites along the b axis, and one site along the
a axis. The two arrangements are very similar, showing a
double Néel state on both chains, and could be considered
as different domains if they were long ranged ordered. The
difference between the two arrangements appears in the shaded
area illustrated in the bc plane in Fig. 9: all the moments
in the nonshaded area point in the same direction for both
arrangements, while the shaded ones point in the opposite
direction in one arrangement relative to the other. Both
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FIG. 10. Q scan of the magnetic diffuse scattering along h and l

at T = 1.4 K on the IN22 spectrometer (a),(b) measured by spin-flip
scattering polarized along X, Y , and Z and (c),(d) the extracted
magnetic vector components My , Mz, and My + Mz.

arrangements must be present in equal amounts to account
for the observed scattering. This reflects a decoupling of
the moments in the shaded area relative to the ones in the
nonshaded area, indicating two independent sublattices.

The diffuse scattering in the (h0l) reciprocal plane was not
used to determine the nature of the spin correlations. This is
because the propagation vector k1/2 lies outside this plane.
Nevertheless, the observed scattering in the (h0l) reciprocal
plane also arises from the magnetic correlations described
by k1/2 because the correlation length along the b axis is
short and leads to peak broadening in reciprocal space along
k. The magnetic scattering near Q = (h,0,l) originates from
Q = (h, − 0.5,l) and (h,0.5,l). At these positions, the model
predicts strong NSF scattering for even h values and strong SF
scattering at odd h values, in agreement with the observations
in the (h0l) reciprocal plane.

Detailed polarized measurements of the diffuse scatter-
ing have also been measured on the IN22 spectrometer at
T = 1.4 K (Fig. 10) and show that already at this temperature
both inequivalent sites contribute to the magnetic correlations.
The magnetic diffuse SF scattering was measured for neutrons
polarized along X, Y , and Z, where X is parallel to Q,
Y is perpendicular to X in the scattering plane, and Z

is perpendicular to the scattering plane. These different
cross sections were combined to remove the nuclear spin-
incoherent background and extract the components of the mag-
netic scattering vector [34]: My + Mz = 2σ SF

x − σ SF
y − σ SF

z ,
My = σ SF

x − σ SF
y , and Mz = σ SF

x − σ SF
z . Since the sample

was oriented in the ac scattering plane, Mz is the magnetic
component along the b axis, while My measures contribution
of components along the a and c axes. The sensitivity of My

to these two contributions depends on the direction of Q.
Near Q = (0.9,0,1.45), magnetic scattering is only ob-

served for Mz, indicating a strong component along the b
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FIG. 11. ac susceptibility measurements showing the temperature
dependence of (a) the real part χ ′ and (b) the imaginary part χ ′′ at
different excitation frequencies of H = 1 Oe applied along the b axis.
In the limit of low frequency, χ ′ converges to the dc susceptibility.

axis and implying dominant correlations on site 2 [Fig. 10(c)].
Along Q = (h,0,0.5), the strongest scattering is observed for
the Mz channel but there is also a nonzero contribution in My ,
which is mostly sensitive to moments along the c axis that
are related to site 1. This shows that the diffuse scattering
arises from magnetic correlations on both sites 1 and 2.
The presence of the same correlations on both inequivalent
sites distinguishes SrDy2O4 from the analogous compounds
SrHo2O4 and SrEr2O4 where both inequivalent sites have
different orderings and temperature dependences [11–13].

C. ac magnetic susceptibility

The real part of the ac susceptibility χ ′ and the imaginary
part χ ′′ are presented as a function of temperature in Fig. 11
and as a function of frequency in Figs. 12(a)–12(b). There is a
maximum in χ ′ at T = 0.8 K that shifts to higher temperatures
with increasing frequency. This maximum as a function of
temperature is also visible in the dc susceptibility shown in
Fig. 11(a) for comparison. A frequency-dependent maximum
in the susceptibility is often observed in spin glass systems
where the fluctuation rate is slow. Spin freezing in frustrated
magnets like the spin ices also show similar dependencies on
the frequency [35].

We also observed broad peaks in the frequency dependence
of χ ′′, indicating a characteristic relaxation time longer than
1 ms below T ≈ 1 K. The relaxation time given by the χ ′′
peak maximum follows an Arrhenius law τ = τ0 exp(Ea/kBT )
as shown on Fig. 12(d). This indicates thermally activated
processes with an activation energy Ea ≈ 9.4 K and a charac-
teristic time τ0 ≈ 7.1 × 10−8 s. The lowest crystal-field level
occurs at 4 meV (∼ 45 K) and the energy scale of the magnetic
interactions is about 3 K (see Sec. IV A). This suggests that
the activation energy results from multiple spin-flip processes
governed by magnetic interactions.

The peak observed in the frequency dependence of χ ′′ is
broader at T = 0.6 K compared to T = 0.8 K, indicating a
larger distribution of relaxation times below T = 0.5 K. This
can be quantified by tracing χ ′′ as a function of χ ′, which
should be semicircular for a single relaxation time (usually
called Debye relaxation) but is flattened in the presence of
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FIG. 12. Frequency dependence of (a) the real part of the ac
susceptibility χ ′ and (b) the imaginary part χ ′′ from T = 0.6 to 1.1 K
with an excitation amplitude of 1 Oe. (c) χ ′′ as function of χ ′ for
T = 0.71, 0.8, and 0.91 K fitted using the Cole-Cole formalism
[Eq. (2)]. (d) Temperature dependence of the relaxation peaks
maximum fitted with the Arrhenius equation (blue circle) and
temperature dependence of the fitted parameter α of the Cole-Cole
function (green square).

a distribution of relaxation times. This is described in the
Cole-Cole formalism by

χ ′′(χ ′) = − χ0 − χs

2 tan
[
(1 − α)π

2

]
+

√
(χ ′ − χs)(χ0 − χ ′) + (χ0 − χs)2

4 tan2
[
(1 − α)π

2

] ,

(2)

where χ0 is the susceptibility for very low frequencies, χs for
very high ones, and α is a parameter related to the distribution
of relaxation times [36]. The Debye relaxation with a single
relaxation time is characterized by α = 0, while nonzero
values of α represent a distribution of relaxation times which
is infinitely broad at α = 1. Plots of χ ′′(χ ′) at T = 0.71 K,
0.80 K, and 0.91 K are shown in Fig. 12(c) and the fitted α
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values in Fig. 12(d). For these temperatures, a single relaxation
time is not sufficient to describe the data, confirming the
existence of a distribution of relaxation times which broadens
with decreasing temperature.

IV. DISCUSSION

A. ANNNI model

It has been previously pointed out that SrDy2O4 and other
members of the family can be described by two inequivalent
zigzag chains with Ising-like spins [9]. The Hamiltonian of a
single Ising zigzag chain is that of the 1D axial next-nearest-
neighbor Ising (ANNNI) model, which is given as

H =
∑

i

J1Ŝ
z
i Ŝ

z
i+1 + J2Ŝ

z
i Ŝ

z
i+2. (3)

Here J1 is the nearest-neighbor interaction and J2 is the next-
nearest-neighbor interaction. This model is exactly solvable in
zero field [37]. The correlations of the ↑↑↓↓ type observed by
neutron scattering in SrDy2O4 correspond to the double Néel
ground state, which is predicted in the 1D ANNNI model
for J2/|J1| > 0.5. Furthermore, a magnetization plateau at
1
3Ms is stabilized only for antiferromagnetic J1 > 0 in this
model. The presence of such a plateau for a field applied
along the b axis at T = 0.5 K indicate an antiferromagnetic
J1 interaction on site 2, where moments lie close to the b axis.
The interactions for site 2 can be estimated from the critical
fields Hp = 0.16 T at the plateau onset and Hs = 2.03 T at the
saturation [14]. The interactions are given by J1 = M(Hs −
Hp)/3 = 0.35 meV, J2 = M(Hs + 2Hp)/6 = 0.22 meV, and
J2/J1 = 0.63, assuming the moment M to be the b component
of site 2 easy axis.

The spin-spin correlation function G(r) was calculated
analytically for the 1D ANNNI model by Stephenson [38]
and for J2/|J1| > 0.5, it can be expressed in the simple form:

G(r) = Ae
− r

ξ cos(2πqr + φ), (4)

where r is the spin site, A is a scaling factor, ξ is the
correlation length, q is the wave number, and φ is a phase
factor. All these parameters have complex dependence on J1,
J2 and the temperature. Neutron scattering probes directly
the wave number q and the correlation length ξ . Therefore,
the experimental values of these parameters can be compared
with the analytical expressions for the 1D ANNNI model.
The experimental temperature dependences of the incommen-
surability and the correlation length are compared with the
expectations of the 1D ANNNI model for |J1| = 0.3 meV and
J2 = 0.2 meV in Figs. 7(b)–7(c). The interactions determined
from the critical fields of the magnetization plateau were used
as starting parameters, and only a qualitative agreement of
both the incommensurability and the correlation length with
the model can be achieved by adjusting the strength of the
interactions. The sign of J1 does not affect the temperature
dependence of q and ξ for J2/|J1| > 0.5 as is the case here.
It is assumed that Si = ±1, leading to Jij |SiSj | = Jij . Below
T = 0.5 K, both parameters diverge significantly from the
model, which we attribute to a dimensionality crossover, as
will be discussed in the next section.

FIG. 13. Comparison between the experimental diffuse scattering
in the (0kl) reciprocal plane and the Fourier transform of the 1D
ANNNI model correlation function [Eq. (4)] on the zigzag chain
structure for J1 = ±0.3 meV and J2 = +0.2 meV.

The position of the diffuse scattering maximum in l (+δ or
−δ) is dependent on h and k, suggesting that it arises from the
presence of 3D correlations. However, this shift in reciprocal
space is attributed to the geometry of the zigzag chains in
the presence of 1D correlations only. This observation has
previously also been made in SrHo2O4 by Wen et al. [12].
The Fourier transform of the correlation function [Eq. (4)]
on the zigzag chain has been calculated for {J1 = +0.3,
J2 = +0.2 meV} and {J1 = −0.3, J2 = +0.2 meV} and
compared to the experimental results (Fig. 13). The alternation
of the scattering maximum position above and below l = 0.5
as a function of k is well taken into account when J1 is
antiferromagnetic, while it is inverted for a ferromagnetic J1.
The same applies as a function of h (not shown). This com-
parison therefore confirms that J1 must be antiferromagnetic,
as expected from the presence of the magnetization plateau.
Even though this alternation of the maximum position around
l = 0.5 does not indicate 3D correlations, the amplitude
modulation along the h and k directions are signatures of
interchain interactions which are discussed in Sec. IV B.

The diffuse scattering shown in Fig. 13 is relatively well
described by a single type of correlations originating from
a zigzag chain with effective interactions J1 = +0.3 meV
and J2 = +0.2 meV. We can therefore speculate that both
inequivalent sites have similar interactions. The neutron
polarization analysis also confirms that both sites contribute
to the observed correlations up to T = 1.4 K. Similar but
not identical interactions on both inequivalent chains could
cause additional frustration in this system. The presence of
a single type of correlation can alternatively be understood
by strong interactions on one inequivalent chain and weak
interactions on the other one. In that case, one chain would
dominate the correlations and the other chain would be driven
by interchain interactions. However, this would mean that the
energy scale on one chain is much larger than on the other,
which is inconsistent with the magnetization data showing
similar saturation fields for the two sites [14].
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Assuming that both inequivalent chains have similar inter-
actions, the magnetization plateau at 1

3Ms that is predicted for
J2/|J1| > 0.5 should be observed for both sites. It is stabilized
for fields applied along the b axis and can be related to site 2
from its easy axis. However, there is no clear observation of a
magnetization plateau for fields applied along the c axis [14],
the direction of the ordered moment on site 1. This may arise
from a weak XY anisotropy on site 1 with an easier axis along
the c axis than along the a axis, as suggested by magnetization
measurements [14].

B. Dimensionality crossover

In order to understand the system dimensionality, it is
important to establish the possible interaction pathways,
especially for the interchain interactions. The shortest bonds
between zigzag chains appear between the two inequivalent
sites and are probably the dominant interchain interactions.
A possible interaction mechanism is the isotropic exchange
interaction which couples together the moment components
along the same direction. However, since our results suggest
that the effective spin direction on the inequivalent sites
are orthogonal, the isotropic exchange is expected to be
weak between the zigzag chains. The interchain coupling
could therefore originate from anisotropic interactions such
as Dzyaloshinskii-Moriya, dipolar, and/or multipolar inter-
actions. Concerning the Dzyaloshinskii-Moriya interaction
[Dij = (Si × Sj )], the symmetry allows only a Dz

ij component
for the nearest-neighbor interchain bonds, coupling moment
components in the ab plane. Since our results indicate that the
moment on site 1 has no significative component in this plane,
this interaction probably does not contribute to the interchain
coupling.

The presence of large moments suggests that the dipo-
lar interactions will be relevant. Assuming the moments
from the easy axis of the g factors [M1 = (0,0,4.2)μB

and M2 = (1.8,9.7,0)μB], the strongest interchain dipolar
interaction is Jb = 0.0376 meV, coupling the zigzag chains
along the b axis (Fig. 9). All the other dipolar interchain
interactions are at least twice weaker. The strongest coupling
along the a axis is Ja = 0.0086 meV as shown in Fig. 9. This
suggests that stronger correlations are expected along the b

axis than the a axis. This is indeed what is observed with a
correlation length at least twice as large along the b axis than
along the a axis [Figs. 7(d)–7(e)]. This qualitative agreement
indicates that the dipolar interactions are likely the dominant
interchain interactions. The energy of the Ja and Jb interactions
is minimized by the arrangements of magnetic moments of the
correlations described in Sec. III B, supporting the conclusion
that the dipolar interactions play an important role.

Since the correlation length is much longer along the
chain (c axis) than along the a and b axes at T = 1.3 K,
the system can be described as 1D zigzag chains in first
approximation. This explains why the temperature dependence
of the incommensurability parameter δ and the correlation
length ξc is well described by the 1D ANNNI model above
T = 0.7 K. However, the presence of an intensity modulation
along k at T = 1.3 K shows that the correlations are in fact
2D at this temperature. The Jb interaction, coupling the two

inequivalent sites, probably plays the leading role in these
correlations.

There is multiple evidence for a change of regime below
T ∗ ≈ 0.7 K, which we associate with a crossover from 2D
to 3D short-range correlations, and which is responsible for
a significant slowing down of the fluctuations. The most
prominent features are the reduction of ξc and the freezing
of the incommensurability at low temperatures. Both can
be understood from a rearrangement of the 2D short-range
ordered clusters to satisfy the coupling along the a axis. Large
number of moments must therefore flip, partially reducing
ξc in the process and also affecting the incommensurability
along the c axis. This is supported by the increase of the
correlation length along the a and b axes at low temperatures
[Figs. 7(d)–7(e)].

This crossover is also apparent in susceptibility measure-
ments. For fields applied along the a axis, Hayes et al. observed
a difference in the field cooled and zero-field cooled (ZFC)
susceptibility data below T = 0.7 K [14]. They also report
long relaxation times (several hours) of the magnetization at
T = 0.5 K when a field is applied to a sample from ZFC
conditions. Furthermore, our ac susceptibility measurements
indicate a freezing temperature of TF ≈ 0.8 K, supporting the
presence of slow fluctuations in the 3D regime of SrDy2O4.
The rearrangement of 2D spin clusters into 3D correlated
structures at these low temperatures can be expected to be a
slow process and trap defects on a long time scale, precluding
long-range order. The decoupling of the two sublattices
presented earlier increases the degeneracy of the system, also
reducing the tendency to long-range order.

C. Domain walls in zigzag chains

At very low temperatures, the system is in a regime of slow
fluctuations, as evidenced by the ac susceptibility. For a time
scale shorter than the fluctuations, the system can be described
by different magnetic domains separated by domain walls. The
dynamics of these domain walls can help to understand how
the system avoids long-range order. We will discuss first in
detail the 1D case and then consider the 2D and 3D cases. We
will limit ourselves to the case of J2/J1 > 0.5 with J1 and
J2 being antiferromagnetic featuring a double Néel ground
state at T = 0 K. A very similar discussion was made for
ferromagnetic J1 by Redner and Krapivsky [39].

The zigzag chain with the double Néel ground state has
four degenerate states obtained by shifting the ↑↑↓↓ pattern.
For simplicity, the moment patterns are presented in the 1D
ANNNI model description, i.e., on a linear chain with nearest-
neighbor interaction J1 and next-nearest-neighbor J2. Four
types of domain walls (or defects) can be formed, shown in
Fig. 14(a) along with their associated energy cost relative to
the ordered ground state. Defects of type A and B are the basic
elements because C and D defects are simply the combination
of two A and B defects, respectively. On both sides of these
defects, there are always two free spins, depicted by green bold
arrows on Fig. 14(a). These free spins can flip without changing
the energy since the interaction energy at their position cancels
out exactly. A single flip of a free spin results in a shift of type
A and B defects, as shown on Fig. 14(b). These defects can
therefore propagate freely along the chain and their motion
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Δ = J1 − 2J2

Δ = −J1 − 2J2

Δ = 2J1 − 4J2

Δ = −2J1 − 4J2

FIG. 14. (a) Four different types of domain walls for the double
Néel state of the 1D ANNNI model. The domain walls are schema-
tized by the box and the bold green arrows represent free spins (see
text). (b) Propagation of A and B domain walls by single spin flip.
The circled spin is flipped. (c) Example of the configuration in the bc

plane without defects. The gray dashed lines represent the decoupling
of the spins on one zigzag chain due to the double Néel state. The
resulting 1D stripes are nonfrustrated zigzag chains formed from
both inequivalent sites represented in red and blue. (d) Example of
configuration in the bc plane in the presence of a pair of A defects.
The defects are circled by dashed lines and free spins are represented
by bold green arrows.

resulting from multiple spin-flip processes is related to the
activation energy observed in the ac susceptibility.

When two A defects meet, they form a type C defect without
energy cost, which can split back to two A defects. When two
B defects meet, they form a type D defect without energy
cost, which can split back to B defects but can also lower its
energy by splitting into two A defects. These two processes are
summarized by (1) A + A → C → A + A and (2) B + B →
D → A + A, where the energy reduction decay is favored.
When one A defect collides with one B defect, they annihilate
and create a defect-free state [(3) A + B → 0]. Processes 2
and 3 thus represent the main decay channels of the B defects.

However, only process 3 can remove A defects and it can
only happen in the presence of B defects which have a higher
decay rate. More complex processes are needed to describe
completely the decay of A defects. It can happen through
the three-body process A + A + A → B, which is energet-
ically favored for J2/J1 > 1. However, for the regime with
0.5 < J2/J1 < 1, four-body processes have to be taken into
account [40]. In such a case the decay rate of A defects is
significantly lower and the formation of large domains can be
very long. The ratio J2/J1 = 0.63 of SrDy2O4 places it in this
regime.

We now consider the behavior of these defects in 2D
and more precisely in the bc plane assuming that Jb is the
interaction responsible for the correlations along the b axis and
that both inequivalent sites have the double Néel ground state.
The topology of the interactions leads to a perfect decoupling
between nearest-neighbors in the double Néel state. Therefore,
the system in its ground state can be described as independent
1D ordered stripes [Fig. 14(c)]. The presence of a single A or B
defect on a chain is unstable because all Jb interactions on one
of the chain segments will be unsatisfied. It can be stabilized
by adding the appropriate defect on the neighboring zigzag
chain to have Jb interactions satisfied on both sides of the
defect pair [Fig. 14(d)]. A single spin flip process allows this
pair to propagate freely along the direction of the zigzag chain.
These defects are strongly bound and experience a confinement
potential E = NJb for a separation of N sites. The pair can be
formed of type A, B or both. The decay processes are expected
to be the same as for the purely 1D case. There is no binding
between pairs of defects and therefore no proper 2D domain
walls but only defect pairs propagating freely along the c axis.

When introducing the Ja interaction along the a axis,
the system is 3D and the defect pairs are bound creating
2D-like domain walls in the ac plane. It is possible to
move the domain walls around freely by single spin flip
processes. However, this implies many flips that need to occur
in the appropriate sequence for a significant displacement.
Therefore, the dynamics are expected to be significantly slower
in a 3D correlated regime. This scenario is consistent with the
dimensionality crossover discussed in the previous section.
The system is effectively 2D above T ∗ and defect pairs are
free to propagate. Therefore, the fluctuations along the zigzag
chains are not significantly affected by 2D correlations and the
1D ANNNI model is a good description of the system. Below
T ∗, the 3D correlations lead to the formation of extended
domain walls that hinders the propagation of defects along
the chains and slows down the dynamics. This leads to the
signature of spin freezing in ac susceptibility around T ∗, as
seen in Fig. 11.

V. CONCLUSIONS

Our results indicate that the low-temperature state of
SrDy2O4 originates from a complex interplay of a dimension-
ality crossover and competing magnetic interactions. In the
“high-temperature” regime above T ∗ ≈ 0.7 K, the system is
well described by the 1D ANNNI model. As the temperature
is lowered, the spin fluctuation rate reduces and long-lived
magnetic domains start to be stabilized. Domain walls are free
to propagate but two types of elementary domain walls have
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different decay rates. The type A domain wall is expected to
decay very slowly for 0.5 < J2/J1 < 1. As the temperature is
lowered below T ∗, weaker interchain interactions such as the
dipolar interactions start to be significant and the system cannot
be considered one dimensional anymore. This dimensionality
crossover leads to competition between the domain walls
decay processes and the interchain interactions, precluding
long-range ordering on experimental time scales in SrDy2O4.

This compound shares many similarities with the spin ices
Dy2Ti2O7 and Ho2Ti2O7. In these systems, the short-range
correlations are dictated by the ice rules that lead to a
macroscopical degeneracy. At low temperatures, these spin
liquids have slow fluctuations that are dominated by defects
which are described as magnetic monopoles [41]. In SrDy2O4,
the short-range correlations are described by the 1D ANNNI
model and each chain has four degenerate configurations of
the double Néel state. At low temperatures, the fluctuations
are slow as seen in ac susceptibility and can be described by
defects in the chains. We have evidenced that the dynamics of
defects is of great importance in the low-temperature physics
in SrDy2O4, a general principle which is also relevant in the
spin ices.
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APPENDIX: CALCULATION OF THE ZEEMAN
SPLITTING TENSOR

For a doublet ground state, it is possible to write the Zeeman
energy Hamiltonian in terms of an effective spin S = 1

2 . The
original Hamiltonian is defined by HZeeman = ∑

α HαM̂α ,

where the index α indicates the axes x, y, and z, Hα is the
magnetic field, and M̂α is the magnetization operator. The
magnetization operator is defined as M̂ = L̂ + 2Ŝ, where L̂
and Ŝ are the orbital and spin operators, respectively. The
Hamiltonian can be rewritten for an effective spin S = 1

2 as
HZeeman = μB

∑
αβ HαgαβŜβ , where Ŝα is the effective spin- 1

2
operator and gαβ forms the g tensor. Assuming that the doublet
wave functions are |+〉 and |−〉, the elements of the g tensor
can be evaluated from the matrix elements of M̂:

gαx = 2 Re〈+|M̂α|−〉/μB,

gαy = −2 Im〈+|M̂α|−〉/μB,

gαz = 2〈+|M̂α|+〉/μB.

(A1)

The g factors along the principal axes are obtained from the
matrix G = g · gT . The square root of the eigenvalues of G are
the g factors along the principal axes, which are themselves
defined by the eigenvectors [31,43].

In the presence of a mirror plane perpendicular to z at the
magnetic ion site, the matrix G simplifies to

G =
⎡
⎣Gxx Gxy 0

Gxy Gyy 0
0 0 Gzz

⎤
⎦. (A2)

In that case, one of the principal axes points along z, while
the two others are in the xy plane. This is the case for the
magnetic ions in SrDy2O4 with a mirror plane perpendicular
to the c axis.

To evaluate the g tensor of the Dy3+ ions in SrDy2O4, the
matrix elements of the magnetization operator M̂ have to be
calculated for the doublet ground state. The wave functions
obtained by the multiX software were used for this calculation.
The multiX software [29] calculates the single-ion energy
levels in the presence of crystalline electric fields. Slater
determinants of the electronic configuration are used as the
wave function basis. The matrix elements of M̂ have been
calculated from this basis by using the Slater-Condon rules for
the doublet ground state of the two inequivalent Dy3+ sites.
The g tensor, g factors, and principal axes were then calculated
according to equations presented here.
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