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Robust spin transfer torque in antiferromagnetic tunnel junctions
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We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of
two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes.
We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out
of plane, ∼ n × p, while the torque competing with the antiferromagnetic exchange is in plane, ∼ n × (p × n).
Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias
dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly
linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in
antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic
spin valves due to the tunneling nature of spin transport.
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I. INTRODUCTION

Intensive research has been achieved in the field of spin
transfer torque [1–3] in ferromagnetic materials in the past
two decades. Spin torque consists of the transfer of the spin
angular momentum from a spin-polarized flow of conduction
electrons to the local magnetic moments of a ferromagnet.
This spin transfer promotes magnetic excitations resulting in
magnetization switching [4–6] or self-sustained precessional
motion [7,8]. The typical device on which spin torque switch-
ing is commonly achieved is composed of two ferromagnets
separated by a spacer that can be either metallic or insulating.
The former is henceforth referred to as a metallic spin valve,
while the latter is called a (ferro)magnetic tunnel junction
(F-MTJ). In both devices, the spin torque is dominated by
an antidamping component of the form τ‖ ∼ m × (p × m),
where p is the magnetization direction of the reference layer
while m is the magnetization direction of the free layer. In
both cases, the torque is an interfacial process arising from the
destructive interference between incoming electron spins with
different incidences [9,10]. In the case of F-MTJs, a fieldlike
torque of the form τ⊥ ∼ m × p also emerges, which can be
as large as 10% to 30% of the in-plane torque [10–14], as
confirmed experimentally [15–17]. The bias dependence of
these two torque components can be tuned by engineering the
junction structural asymmetry [13,18,19] or in the presence of
interfacial electron-magnon scattering [20].

A few years ago, the presence of spin transfer torque in
metallic antiferromagnetic spin valves was predicted theoreti-
cally [21]. The authors considered a structure composed of two
antiferromagnetic layers spaced by a normal metal in analogy
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with the ferromagnetic spin valve. Experimentally, the search
for current-induced torque in antiferromagnetic layers has
been carried out by analyzing the alteration that occurs at the
level of the exchange bias between the ferromagnetic and the
antiferromagnetic layers in a conventional ferromagnetic spin
valve [22,23]. However, not much progress has been realized
experimentally since then due to the significant difficulty
of maintaining sizable torques in these structures, as well
as controlling and detecting independently the Néel order
parameter dynamics. As a matter of fact, it was recently
shown [24,25] that even a small amount of disorder dramat-
ically reduces the magnitude of the torque. Indeed, in order
to preserve large current-driven torques in antiferromagnetic
spin valves, the staggered spin density built up in the reference
antiferromagnetic layer has to be transported coherently to
the free antiferromagnetic layer. Disorder breaks translational
invariance and prevents the coherent transmission of this
staggered spin density through the spin valve.

A solution to this issue is to generate local torques,
i.e., spin currents and densities that do not need to be
transmitted from one part of the device to another. Several
strategies have been proposed to date, such as the use of
antiferromagnetic domain walls [26,27] and the exploitation
of spin-orbit torques [28]. Another approach is to exploit
spin-dependent tunneling transport (see Ref. [29]), which
is much less sensitive to momentum scattering. Recently,
tunneling anisotropic magnetoresistance has been reported in
IrMn/MgO junctions [30,31], demonstrating the high quality
that can be achieved in such systems. Antiferromagnetic
spintronics presents tremendous potential for applications and
is now gaining significant momentum [32].

In the present work, we investigate spin transfer torques
in antiferromagnetic tunnel junctions (AF-MTJs). We study
the voltage dependence of the spin torque components for a
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FIG. 1. (a) Schematic of the AF-MTJ consisting of two semi-
infinite antiferromagnets spaced by a tunnel barrier. Red and blue
atoms refer to the two antiferromagnetically coupled sublattices. (b)
Illustration of the energy spacial profile and its alteration by the
applied voltage. Dashed red and green lines represent the potential
profile for two specific Fermi energies, εf = 6.6 eV and εf = 1.1 eV,
as explained in the text.

junction composed of symmetric antiferromagnetic electrodes.
We finally explore the effect of disorder on the torque,
demonstrating that the torque in AF-MTJs is much more robust
against imperfections than that in antiferromagnetic metallic
spin valves [24].

II. METHODOLOGY

A. Tight-binding model

The system we consider consists in two semi-infinite
antiferromagnetic electrodes spaced by an insulating barrier
(see Fig. 1). The two-dimensional antiferromagnets are square
lattices in a G-type magnetic configuration, i.e., each mag-
netic moment is surrounded by nearest-neighbor moments
of opposite direction. This configuration is different from
the ones reported in previous theoretical works [21,29]), in
which the authors consider L-type antiferromagnets composed
of uncompensated layers with magnetic moments pointing
in opposite directions. The width of the junction’s layers
is 20 atomic sites, while the barrier extends over three
monolayers. In order to compute the transport properties of
this system, we exploit the nonequilibrium Green’s function
formalism implemented in the tight-binding code KWANT [34],
a procedure described in detail in Ref. [24]. The tight-binding
Hamiltonian reads

Ĥ =
∑

i

εi ĉ
+
i ĉi −

∑
i,i ′

ti,i ′ ĉ
+
i ĉi ′ +

∑
i

�i
exĉ

+
i mi · σ̂ ĉi . (1)

The indices i = (xi,zi) refer to the two-dimensional coor-
dinates of the sites. εi is the on-site energy, ti,i ′ = t is the
hopping parameter between site i and site i ′, restricted to

nearest neighbors, and �i
ex is the exchange energy between

the staggered local magnetic moment mi at site i and the
itinerant electron spin (�i

ex = �ex in the antiferromagnetic
electrodes and �i

ex = 0 in the barrier). σ̂ is the vector of
Pauli spin matrices, where the caret denotes a 2×2 matrix
in spin space and ĉ+

i is the creation operator of an electron
at site i, such that ĉ+

i = (c+
i↑,c+

i↓), where ↑ and ↓ refer to
the spin projection along the quantization axis. The on-site
energy of the antiferromagnetic electrodes is constant and
set to εi = ε0. Throughout this study, the tunnel barrier has
a height of 6t so that the on-site energy in the barrier at
zero bias reads εi = ε0 + 6t . The nonequilibrium regime is
promoted by applying a potential difference eVb in the range
[−0.9t,0.9t] across the junction. The chemical potential of
the left (right) antiferromagnetic electrode reads eμL(R) =
ε0 ± eVb/2. Hence, the on-site energy in the tunnel barrier
reads εi = ε0 + 6t + eVb[1/2 − xi/(NB − 1)], where NB is
the number of insulating layers and xi = 0 denotes the position
of the first layer of the tunnel barrier.

B. Torques and currents

The nonequilibrium properties are computed from the lesser
Green’s function Ĝ<

i;i ′ (ε) = ∑
l f (ε,μl)

∑
n iψl

n,i(ψ
l
n,i ′ )

∗ (see
Ref. [35]), ψl

n,i being the scattering wave functions originating
from lead l, with a Fermi-Dirac distribution f (ε,μl). In the
present work, we calculate the spin torque components from
the local spin density Si , which reads

Si = 1

2π

∫
Trσ [σ̂ Ĝ<

i;i]dε. (2)

The integration runs over the full energy bandwidth up to the
chemical potential of the left and right electrodes. The local
torque at a particular lattice site reads τ i = 2�exmi × Si .

In antiferromagnets composed of collinear sublattices, two
types of torques can be defined at the level of the diatomic
unit cell: torques arising from uniform spin densities (i.e.,
when the spin density is equal on the two sublattices) and
torques arising from staggered spin densities (i.e., when the
spin density is opposite on the two sublattices). In our previous
work [24], we called these two types of torque “rotating”
and “exchange” torques, respectively. In systems without
translational invariance, such as spin valves, both types of
torques exist in principle and possess components in and
out of the (n,p) plane, where p and n are the Néel order
parameters of the polarizer and analyzer, respectively. At this
stage, we want to point out a mistake in the discussion in
our previous work, Ref. [24]. We claimed that the rotating
torque (stemming from a uniform spin density) is responsible
for the switching of the Néel order parameter, while the
exchange torque (stemming from a staggered spin density)
competes with the antiferromagnetic exchange and is therefore
inefficient. This claim is incorrect since dc external magnetic
fields (and, hence, uniform spin densities) are unable to
manipulate the direction of Néel order parameters and result
only in induced magnetization. This confusion comes from
the assumption that antiferromagnetic dynamics somewhat
resembles ferromagnetic dynamics, which is clearly untrue
since precession about the antiferromagnetic exchange field
is the driving force in antiferromagnetic dynamics [33].
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Therefore, only staggered spin densities (producing exchange
torques) are efficient in controlling the Néel order parameter
direction in the stationary transport regime [32,33].

C. Beyond the idealized model

To conclude this section, let us stress the limitations of our
model. First, spin-orbit coupling in the bulk of the materials
as well as at interfaces is neglected. As a result, the electronic
bands are spin degenerate and momentum scattering due to
impurities is not accompanied by spin relaxation. In addition,
tunneling anisotropic magnetoresistance and associated spin-
orbit torques are absent [30]. Second, the magnetic texture
of the antiferromagnets is collinear, i.e., the spin angular
momentum is a good quantum number in each metallic lead.
In the case of noncollinear antiferromagnets, spin dephasing
is enhanced [36] and spin-independent disorder is sufficient
to induce spin relaxation, a mechanism that is absent in our
study. Finally, the band structure of the antiferromagnetic leads
is kept as simple as possible and no resonant states exist at the
interface between the leads and the barrier. Such interfacial
states have been identified in thin Fe(100)/MgO(100)/Fe(100)
magnetic tunnel junctions [37,38] and, more recently,
in Cr(001)/MgO(001)/Cr(001) antiferromagnetic tunnel
junctions [39], associated with the surface states of Cr. Such
states are believed to be responsible for tunneling magnetic
coupling between the Cr electrodes [40] and could have an
influence on spin transport.

III. RESULTS AND DISCUSSION

A. Premises

Before discussing the theoretical results, it is instructive
to consider the band structure of a prototypical G-type
antiferromagnet. The tight-binding Hamiltonian, Eq. (1), can
be rewritten in the {|A〉,|B〉} ⊗ {|↑〉,|↓〉} space, where A and
B refer to the antiferromagnetically coupled sublattices, and ↑
and ↓ refer to up and down spin projections, respectively. One
obtains

ĥ = γkτ̂x ⊗ 1̂ + �exτ̂z ⊗ σ̂z, (3)

γk = −2t(cos kxa + cos kza). (4)

Here, we chose the Néel order parameter to lie along z, and τ̂

and σ̂ are Pauli spin matrices acting on the sublattice {|A〉,|B〉}
and spin {|↑〉,|↓〉} subspaces, respectively. This Hamiltonian
supports the eigenstates

εs
k = s

√
γ 2

k + �2
ex, (5)

ψσ
s = 1√

2
(
√

1 + sσβk|A〉 + s
√

1 − sσβk|B〉) ⊗ |σ 〉, (6)

and βk = �ex√
γ 2

k +�2
ex

. Here, s = 1 (s = −1) denotes the top

(bottom) band, and σ = 1 (σ = −1) corresponds to spin up
(spin down). The band structure, Eq. (5), is plotted in Fig. 2(a)
for different values of the exchange energy �ex. One obtains
the usual gapped electronic structure of antiferromagnets.

FIG. 2. (a) Band structure and (b) sublattice-resolved spin polar-
ization of a two-dimensional G-type antiferromagnet for �ex = 0.5t

(black curves), �ex = t (red curves), �ex = 2t (blue curves), and
kz = 0.

Upon increasing the exchange, the band gap increases and
the bandwidth is compressed.

Although spin-up and spin-down subbands are degenerate,
one can define a local spin polarization on each sublattice.
The density of states on sublattice η (η = 1 corresponds to
sublattice A and η = −1 corresponds to sublattice B) is indeed

N η
s,σ = 1

2

(
1 + sησ

�ex

ε

)∫
d2k
4π2

δ
(
ε − εs

k

)
, (7)

which produces a polarization on sublattice η and band s,

P η
s = (

N η

s,↑ − N η

s,↓
)/(

N η

s,↑ + N η

s,↓
) = sη�ex/ε. (8)

Therefore, the sublattice-resolved polarization is perfect
(P η

s = ±1) at the band edges (ε = ±�ex) and decreases to a
minimum at the extrema of the bands, as illustrated in Fig. 2(b).
Since εs

k remains finite, the minimum polarization never van-
ishes. It is also remarkable that the polarization is essentially
flat, i.e., energy independent, close to k = 0. This trend is
opposite to that of ferromagnets, whose density-of-states po-
larization reads P = (

√
ε + �ex − √

ε − �ex)/(
√

ε + �ex +√
ε − �ex) and decreases when the energy increases away

from the bottom of the bands. These features are essential to
understand the robustness of spin torque against disorder in
the tunnel barrier, as discussed further below.
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FIG. 3. (a) Spacial profile of the three components of the spin
density Sx (blue symbols), Sy (red symbols), and Sz (green symbols)
throughout the junction. The tunnel barrier is located between position
100 and position 103. Parameters are εf = 1.1 eV and �ex = 2 eV.
Spatial profiles (b, c) of Sx and (d, e) of Sy in the right antiferromagnet,
normalized to their magnitude at the right interface, at different
exchange energies �ex and for εf = 1.1 eV (b, d) and εf = 6.6 eV
(c, e). The bias voltage is 0.6 eV for all the calculations. Note that
the solid blue line in (b) and (c) is not visible due to the very strong
dephasing.

B. Spin density profile

Let us now compute the spin torque components at antifer-
romagnetic tunnel junctions. In the following, we fix the Néel
order parameter direction of the left antiferromagnet along the
p = x direction, while that of the right antiferromagnet points
along the n = z direction, as illustrated in Fig. 1. To get better
insight into the physics at stake, we consider two band filling
situations: (i) εf = 1.1t , where the Fermi energy is located
in the middle of the bottom band; and (ii) εf = 6.6t , where
the Fermi energy is located in the middle of the top band (see
Fig. 1). In the following, we take t = 1 eV and the Fermi
energy is defined from the bottom of the valence band.

With a finite bias voltage, electrons originating from the left
antiferromagnetic electrode acquire a staggered spin density
along x that is injected into the right electrode, as represented
by the blue symbols in Fig. 3(a). In the right, downstream
antiferromagnet the itinerant electron spins reorient along the
local Néel order parameter, i.e., along the z direction [see
green symbols in Fig. 3(a)]. During this reorientation, the
spin density component transverse to the local Néel vector
is transferred to the local magnetic moments of the right
antiferromagnet. The two spin components transverse to the
local Néel order parameter of the right layer are reported

FIG. 4. Bias dependence of (a) in-plane and (b) out-of-plane
torques at an AF-MTJ, calculated in the right antiferromagnet for
different exchange energies �ex and εf = 1.1 eV.

in Figs. 3(b) and 3(d) and Figs. 3(c) and 3(e) at different
exchange energies �ex and for εf = 1.1 eV and εf = 6.6 eV,
respectively. For the sake of readability, we report the value of
the spin densities normalized to their magnitude at the right
interface (actual values of the torque are reported in Fig. 4).

The spin density Sx displays a clear oscillatory decay
[Fig. 3(b)], which resembles the behavior observed in F-MTJs
(see, e.g., Ref. [10]) but is in sharp contrast with our previous
calculations in metallic spin valves [24], where no such decay
is observed. The decay increases when the Fermi energy is
increased to εf = 6.6 eV [Fig. 3(c)] and when the exchange
energy �ex is decreased. We attribute this decay to spin dephas-
ing arising from destructive interference between incoming
electrons. Indeed, tunneling involves interference between
different subbands below the Fermi level. Increasing the Fermi
level from 1.1 eV [Fig. 3(b)] to 6.6 eV [Fig. 3(c)] increases
the number of subbands involved in the tunneling process and
thereby enhances the spin dephasing. Furthermore, reducing
the exchange �ex widens the bandwidth (see Fig. 2), which also
participates in the enhancement of the destructive interference
by allowing more states to tunnel.

The Sy component presents a markedly different behavior
[Fig. 3(d)]. It also decays away from the interface but does not
present oscillations. As a matter of fact, while Sx arises from
the direct injection of the staggered spin density from the left to
the right antiferromagnet, Sy stems from the precession of Sx

about the local staggered magnetic moments. This staggered
precession results in a uniform Sy component that presents
the same decaying characteristics as Sx . Moreover, in the
case εf = 1.1 eV, Sy reaches a constant value away from the
interface, while for εf = 6.6 eV, it completely vanishes within
a few atomic planes [Fig. 3(e)]. The latter is also a consequence
of strong spin dephasing.

C. Voltage dependence

We now turn our attention towards the bias dependence of
the spin transfer torque. From Fig. 3, one can anticipate that Sx

(which produces the out-of-plane torque, ∼ n × p) provides a
dominant staggered spin density since it oscillates away from
the interface. This staggered spin density corresponds to an
exchange torque in our denomination in Ref. [24] and enables
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manipulation of the Néel order parameter [33]. In contrast, Sy

[which produces the in-plane torque, ∼ n × (p × n)] provides
a dominant uniform spin density since it has the same sign on
the two opposite sublattices. This uniform spin density corre-
sponds to a “coherent” torque in our denomination in Ref. [24]
and acts like an external field on the antiferromagnetic order
parameter. In other words, the two dominant torques exerted
on the right antiferromagnetic electrode are

Tu
R = TOPn × p, (9)

Tst
R = TIPn × (p × n), (10)

where

TOP = 2�ex

∑
i∈�R

(Sx(x2i−1,zi) − Sx(x2i ,zi)), (11)

TIP = −2�ex

∑
i∈�R

(Sy(x2i−1,zi) + Sy(x2i ,zi)). (12)

In Eqs. (9) and (10), Tu
R is the uniform torque stemming from

Sx , while Tst
R is the staggered torque stemming from Sy . In

Eqs. (11) and (12), the subscript OP (IP) stands for the out-of-
plane (in-plane) torque component, and �R is the volume of
the right antiferromagnetic layer. The unit is eV · a−2, where
a is the lattice parameter (typically 0.4 nm). These torques are
reported in Figs. 4(a) and 4(b), respectively, for εf = 1.1 eV
as a function of the bias voltage.

The bias dependence of these two torques is very similar
to what is usually observed in F-MTJs [10–13]: the in-plane
torque displays a bias dependence of the form TIP = a1V +
a2V

2, while the out-of-plane torque is mostly quadratic, TOP =
b0 + b2V

2. The latter, which is insensitive to the bias polar-
ity, dominates in antiferromagnetic tunnel junctions. If one
introduces structural asymmetries in the junction, additional
linear dependence should appear [13,18,19]. Remarkably, the
magnitude of the torques reported in Fig. 4 is comparable
to that reported for F-MTJs with similar parameters (see,
e.g., Ref. [11]). Following Ref. [33], the critical current
needed to switch the Néel order parameter of a uniaxial
antiferromagnet reads jAF

c = (γα/ξ )
√

HkHE , where α is the
phenomenological damping parameter, ξ = ∂jT is the torque
efficiency, Hk is the magnetic anisotropy, and HE is the
antiferromagnetic exchange. For the sake of comparison,
the critical switching current in ferromagnetic spin valves
reads jF

c = (γα/ξ )Hk [41]. Therefore, jAF
c scales with the

antiferromagnetic resonance frequency, which is typically two
orders of magnitude larger than the ferromagnetic resonance.
As a result, the critical switching current in antiferromagnetic
junctions is expected to be two orders of magnitude larger
than in ferromagnetic junctions, which is in agreement with
the estimation of Cheng et al. [42] and still achievable
experimentally.

Finally, following the angular momentum conservation law,
the torque exerted on the left antiferromagnet simply reads

Tu
L = −TOPn × p, (13)

Tst
L = TIPp × (n × p), (14)

where n and p play the role of the polarizer and free layer
magnetic order directions, respectively.

D. Effect of the disorder

In realistic materials, a wide range of effects contributes
to momentum and spin scattering: dislocations, grain bound-
aries, vacancies and substitutional impurities, canted magnetic
moments, and interfacial roughness, but also phonons and
magnons. These various imperfections have a different impact
on spin transport depending on the nature of the orbitals
involved in the scattering process (e.g., more localized d

orbitals versus more delocalized s and p orbitals). These
effects are difficult to implement in our simple two-band square
lattice system and in this work we choose to model disorder as
random spatial fluctuations of the on-site energy. This on-site
potential randomizes the linear momentum of the carriers and
constitutes a basic test of spin transport robustness against
disorder, as previously demonstrated in the case of metallic
spin valves [24].

To implement disorder in our system, we follow the
same procedure as in Ref. [24] and introduce a random
on-site potential γi such that γi ∈ [−�

2 , �
2 ], where � is the

disorder strength [43]. At this stage, the computation becomes
extremely demanding, as both a large disorder configurational
average and an accurate energy integration are required. In
order to ensure the good convergence of our calculation, the
Fermi energy is taken at εf = 6.6 eV such that a large number
of modes is present in the system, thereby increasing spin
dephasing and improving numerical accuracy.

1. Disorder in metallic leads

Let us first introduce disorder in the antiferromagnetic
leads. Figures 5 and 6 display the spatial profile of Sx and
Sy , respectively, for different disorder strengths and exchange
energies. The clean regime is also reported for comparison
(solid lines in Figs. 5 and 6). Symbols represent the disordered
regime, with � ranging from 0.1 to 0.4 eV. Since the spin
density decreases dramatically within two monolayers from
the interface (see Fig. 3), we focus on the impact of disorder

FIG. 5. (a) Spatial profile of Sx in the right antiferromagnet for
� = 0 (solid line), 0.2 eV (red symbols), and 0.4 eV (blue symbols)
with �ex = 1 eV. (b) Spatial profile of Sx in the right antiferromagnet
for � = 0 (solid line), 0.1 eV (red symbols), and 0.3 eV (blue
symbols) with �ex = 2 eV. Calculated quantities are averaged over
2000 disorder configurations.
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FIG. 6. (a) Spatial profile of Sy in the right antiferromagnet for
� = 0 (solid line), 0.2 eV (red symbols), and 0.4 eV (blue symbols)
with �ex = 1 eV. (b) Spatial profile of Sy in the right antiferromagnet
for � = 0 (solid line), 0.1 eV (red symbols), and 0.3 eV (blue
symbols) with �ex = 2 eV. Calculated quantities are averaged over
2000 disorder configurations.

on the oscillatory decay of the spin density in the bulk
of the antiferromagnet. For weak disorder (red symbols) in
Figs. 5(a) and 5(b), the oscillation of Sx remains weakly
affected, while increasing the disorder results in enhanced
deviations (blue symbols). However, Figs. 5(a) and 5(b) show
that disorder mostly affects the spin density in the bulk of the
antiferromagnet, away from the interface. As a result, since the
torque mostly occurs at the interface where the spatial decay
is stronger, the overall torque magnitude remains only weakly
affected by disorder. A similar conclusion can be drawn for
Sy , displayed in Fig. 6. Again, the magnitude of Sy is mostly
affected by bulk disorder, while its value close to the interface
remains robust. In conclusion, the overall impact of disorder
on spin torque is much less dramatic than in metallic spin
valves since in AF-MTJs the torque is mainly an interfacial
effect.

2. Disorder in the tunnel barrier

The impact of disorder in the tunnel barrier on spin transport
has been reported in the case of tunneling magnetoresistance
in F-MTJs [44]. In these structures, the disorder inside the
tunnel spacer is detrimental to spin transport properties since a
local reduction in the barrier height or thickness enhances
the tunneling current while reducing its spin polarization.
In other words, the presence of disorder in the tunnel
barrier introduces hot spots of weakly polarized current that
dominate the magnetoresistance signal. Let us now consider
the impact of disorder in the barrier on spin torque in F-MTJs.
Figure 7(a) shows the torkance—or torque efficiency—defined
as the torque normalized to the conductance, exerted on the
right ferromagnetic layer. The torkance (proportional to the
interfacial polarization) dramatically decreases in the presence
of disorder, which is consistent with the behavior previously
observed for tunneling magnetoresistance [44].

We now turn our attention to the effect of disorder on
the spin transfer torque in AF-MTJs, reported in Fig. 7(b)

FIG. 7. Impact of disorder on the torkance components in (a)
F-MTJs and (b) AF-MTJs. Black and red symbols refers to in-plane
and out-of-plane components, respectively. The exchange splitting
is set to �ex = 2 eV, the width of the junctions is 10 monolayers,
the bias voltage is 0.6 eV, and the torque computed here is the total
torque.

[the parameters are the same as in Fig. 7(a)]. Surprisingly,
the torkance remains mostly unaffected by the disorder,
in sharp contrast with F-MTJs. This illustrates the major
difference between AF-MTJs and F-MTJs: since up and down
spins are degenerate [see Fig. 2 and related discussion],
the hot spots introduced by the disorder results only in an
enhancement of the tunneling current, without altering the
sublattice polarization. As a consequence, the spin torque
efficiency in AF-MTJs is much more robust against disorder
than in F-MTJs.

IV. CONCLUSION

In the present work we have studied the spin transfer torque
in AF-MTJs using a real-space tight-binding model. We have
shown that, similarly to the case of F-MTJs, the antiferro-
magnetic torque is interfacial and possesses both in-plane and
out-of-plane torques, the former being mostly linear in bias
voltage while the latter is quadratic for a symmetric system.
However, two main differences have been identified. First,
since only staggered spin densities are efficient in manipulating
the Néel order parameter, the efficient torque is out of plane.
Second, because up- and down-spin subbands are degenerate
in antiferromagnets, the torque efficiency in AF-MTJs is much
more robust against disorder than in F-MTJs. This shows that
AF-MTJs, such as Cr/MgO/Cr [39,40], are solid candidates
for the realization of spin transfer torque in antiferromagnets.
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