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NMR line shape of 29Si in single-crystal silicon
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We report measurements of the NMR line shape of 4.685% abundant 29Si in single-crystal silicon for four
different crystallographic orientations relative to the applied magnetic field. To avoid significant inhomogeneous
broadening, the sample crystals are immersed in a susceptibility-matched liquid and the proton NMR line shape
in the liquid is used to measure the residual susceptibility mismatch and to shim the applied field. The observed
line shapes are in good agreement with disorder-averaged spin dynamics simulations performed on a 4×4×4
unit-cell lattice with periodic boundary conditions. The splitting of resolved doublet features is used to measure
the asymmetry �J of the nearest-neighbor indirect dipole or J -coupling tensor, with the result �J = 90 ± 20 Hz.
All resolved doublets can be identified with specific nearest- and next-nearest-neighbor isolated spin pairs that
occur in the disorder ensemble.
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I. INTRODUCTION

Coherent many-body quantum dynamics of nuclear spins
in solids is an old subject, dating back to observations of the
free-induction decay in CaF2, a cubic array of spin-1/2 19F
nuclei coupled by magnetic-dipole interactions [1,2]. Coherent
spin transport has been observed directly in the same system
[3], and multipulse echo techniques have enabled observations
of the spread of many-spin correlations in CaF2 and other
extended systems dominated by magnetic-dipole interactions
[4–6].

Applying similar techniques to extended nuclear-spin sys-
tems with well-defined disorder is of interest for testing the-
ories of quantum many-body localization and thermalization
[7–11]. Spin-1/2 nuclear spins in hard solids are extremely
well isolated from any thermal bath and evolution is highly
coherent, even when the system temperature is much larger
than all interaction energies. These are attractive features for
experiments on quantum thermalization, but implementing
such experiments depends on a detailed knowledge of the
system Hamiltonian. The bare magnetic-dipole interactions
between spins are determined by geometry, but the indirect
magnetic-dipole interactions (J -coupling terms) in the Hamil-
tonian usually have to be measured. They are particularly
important for such experiments, because multipulse echo
sequences require that spin-spin interactions have the same
form for every spin pair, and this may not be the case if
J -coupling terms are significant.

Interest in nuclear-spin dynamics in solids, particularly in
single-crystal silicon and diamond, also arises from proposals
and experiments in quantum information processing [12–14].
In some proposals, the qubits are spin-1/2 29Si nuclei in
crystalline silicon and dipole coupling is used to implement
two-qubit operations [15,16]. Achieving adequate coherence
may depend on removing unwanted spins by isotopic purifica-
tion [12], and/or by active decoupling methods [17]. Accurate
models of spin-spin interactions and many-body dynamics are
essential to these ideas. Spin transport by dilute spins in solids
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is also relevant to hyperpolarization for quantum information
processing and medical imaging applications [18,19].

First-principles theory for many-body quantum dynamics in
extended spin systems is very challenging, and the dependence
of observables on geometry, dimensionality, and disorder
is poorly understood. The NMR free-induction decay is
the most tractable of the observable phenomena. When a
strong Zeeman field is present, the initial thermal equilibrium
state involves only single-spin operators. After a 90◦ pulse,
multispin correlations begin to appear in the density matrix,
but the magnetization may decay completely before a large
number of spins become correlated. If the number of correlated
spins needed to describe the signal is not greater than 10–20,
the problem may be simulated on a classical computer. For the
ordered cubic geometry of CaF2, a short-time expansion [20]
gives an excellent account of the free-induction decay, as the
number of terms required in the expansion corresponds to the
number of correlated spins that must be included.

In this work, we observe and analyze the NMR line
shape (Fourier transform of the free-induction decay) of
single-crystal silicon, an extended dipole-coupled nuclear-spin
system with well-defined disorder. Natural silicon consists of
two stable spin-0 isotopes, 28Si and 30Si, and one stable spin-
1/2 isotope, 29Si. The natural abundance of 29Si is 4.685%,
so that single-crystal silicon is an ordered lattice with that
fraction of the sites randomly occupied by NMR-active 29Si
nuclei. The known natural abundance is the only parameter
needed to specify the disorder in the system. The two Si
sites in the face-centered-cubic silicon lattice have the same
chemical shift (Zeeman energy) because they are related by an
inversion symmetry of the lattice. Thus, the rotating-frame
Hamiltonian of the system contains only magnetic-dipole
interactions between pairs of identical spin-1/2 nuclei. These
interactions vary in strength according to bond length and
orientation.

The NMR line shape in single crystals is often broadened by
inhomogeneity of the applied magnetic field. Field distortions
are not so serious in 100% abundant 1H and 19F systems, which
usually have dipolar linewidths of order 10 kHz. However,
all candidates for isotopically disordered systems (i.e., those
elements with a mixture of stable spin-1/2 and spin-0 isotopes)
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have much lower gyromagnetic ratios, will typically be at
lower concentration, and will thus have much smaller intrinsic
linewidths. Linewidths reported here are roughly 80 Hz, or
1 ppm at our 99.31 MHz Larmor frequency. This is comparable
to diamagnetic susceptibilities of pure liquids and solids.
Thus, if no special care is taken, susceptibility mismatch
will produce inhomogeneous broadening comparable to the
intrinsic linewidth, as was the case for previous line-shape
measurements of 29Si in single-crystal silicon [21–23]. More-
over, in solid-state NMR there may be no narrow reference
lines suitable for shimming (adjusting field homogeneity).
We describe a method below in which the sample crystal
is immersed in a susceptibility-matched liquid. The proton
line shape in the liquid is used both to shim the field and to
determine the residual field inhomogeneity within the crystal.

Our line shape results are compared to spin simulations
on a 128-site lattice in which spins are randomly placed
at natural abundance. The simulated spectrum is averaged
over 100 disorder configurations for each crystal orientation.
The predicted spectrum is in very good agreement with
our measurements, but only if a nearest-neighbor indirect
dipole interaction (J -coupling tensor) term is included in
the Hamiltonian together with the direct dipole interaction.
Doublet features in the spectrum are identified with specific
spin configurations in the disorder ensemble.

II. EXPERIMENT

A. Samples

The samples were made from (110)-oriented float-zone
silicon wafers [24], 50 mm diameter, 0.525 mm thick, and with
specified resistivity of 5–10 k� cm. The wafers were diced into
2.6 mm × 5.0 mm rectangular chips, with the longer edge of
the chip oriented relative to flats that were provided on the
wafers. On four different wafers, the longer edge was oriented
in each of the four directions shown in Fig. 1. These became
the magnetic field directions when the chips were mounted

FIG. 1. Silicon conventional cubic unit cell. The samples were
oriented with the applied magnetic field along the four directions
shown. Each direction is in a (110) plane.

in the spectrometer. Orientation of the chips was checked by
x-ray diffraction using the rotating crystal method to ensure
that no gross errors were made, but final alignment was relative
to the wafer flats, which were specified accurate to ±0.5◦.

For each orientation, a rectangular prism sample 2.6 mm ×
2.6 mm × 5.0 mm was assembled from a stack of five chips
using very small drops of epoxy. Each sample was attached,
again with a small drop of epoxy, to a 0.33-mm outside-
diameter capillary aligned with the longer dimension. The
whole assembly was slipped into a standard 5.0-mm-diameter
NMR tube. The capillary served to keep the sample at the
height of the probe coil and to keep the longer dimension of the
sample aligned with the tube axis. With the samples installed
in the spectrometer, we estimate that the four crystallographic
directions shown in Fig. 1 were aligned with the magnetic field
to ±2◦. The angular alignment accuracy was limited primarily
by our ability to align the stack of chips with the capillary and
the capillary with the NMR tube axis. The alignment accuracy
was estimated from measurements on photographs of several
samples.

B. Susceptibility matching

All NMR measurements were done in a 500-MHz Varian
Unity spectrometer using 5-mm-diameter silicate glass NMR
tubes. A Varian broadband probe with an inner X-nucleus coil
and an outer proton/deuterium coil allowed for observations
of protons near 500 MHz and 29Si near 100 MHz.

To avoid field distortion, the single-crystal silicon sam-
ples were immersed in a susceptibility-matched liquid. The
diamagnetic susceptibility of silicon, χSi = −3.4×10−6, is
relatively small in magnitude. (We use dimensionless SI
susceptibilities in this paper.) Because many solvents are more
diamagnetic than silicon, they can be matched by adding a
paramagnetic solute. To prepare a starting liquid, we first filled
a 5-ml volumetric flask with 80% fully deuterated acetone (by
volume) and 20% protonated acetone. We then added 51.5 mg
paramagnetic chromium(III) acetylacetonate [Cr(acac)3] and
two drops of tetramethylsilane (TMS) shift reference to the
flask. This produced a liquid that was less diamagnetic than
silicon, i.e., the Cr(acac)3 concentration was too high. An NMR
tube with a silicon sample as described above was filled so
that the liquid extended 2.5 cm above and below the center
of the silicon crystal. The tube was then inserted into the
spectrometer, and the proton singlet from the acetone was
observed and shimmed.

A typical example of the proton line shape of the starting
liquid is shown in Fig. 2(a) (black curve). The main peak is
similar to what was observed in a tube filled with only the
liquid. The linewidth is about 5 Hz, due to relaxation from
the Cr(acac)3. There is also a second smaller peak 50 Hz
above the main peak, which moves to lower frequency if the
Cr(acac)3 concentration is lowered by adding acetone to the
tube. By adding small amounts of acetone to the tube, and
repeatedly observing the line shape, the smaller peak can be
made to merge with the main peak, resulting in the line shape
shown in Fig. 2(b) (black curve).

To understand this behavior, we simulated the line shape
due to field distortion using the boundary-element magnetics
package RADIA [25,26]. The liquid volume within the probe
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FIG. 2. Observed (black) and simulated (blue) 1H line shape in
susceptibility-matching liquid; simulated (red) 29Si line shape in solid
due to field inhomogeneity. (a) Starting liquid, line shapes simulated
with susceptibility difference �χ = χSi − χliquid = −0.92×10−6. (b)
Matched liquid, line shapes simulated with �χ = −0.10×10−6.

coil was modeled as a cylinder 4.0 mm in diameter and
20 mm long, with the 2.6 mm × 2.6 mm × 5.0 mm crystal
centered on the cylinder and aligned with the cylinder axis.
Both the liquid and solid regions were magnetized along
the cylinder axis in proportion to their susceptibilities. The
simulated magnetic field was sampled at 224 000 points within
the simulation volume. The component parallel to the axis
was converted to frequency units, histogrammed and line
broadened with a 5 Hz Lorentzian to include the effects
of relaxation. The simulated proton line shape is shown in
Fig. 2(a) (blue curve) for a susceptibility difference �χ =
χSi − χliquid = −0.92×10−6 and in Fig. 2(b) (blue curve) for a
susceptibility difference �χ = χSi − χliquid = −0.10×10−6.
By inspecting the simulated magnetic field, we find that the
smaller peak is due to return flux in the liquid volume between
the crystal and the inner wall of the tube. With �χ negative,
the crystal is more diamagnetic than the liquid, so the induced
field within the crystal is antiparallel to the applied field and
the return flux is parallel to the applied field. Thus the smaller
peak appears at a higher frequency than the main peak. The
simulated main peak in Fig. 2(a) also shows a tail to lower

frequency, due to the opposing induced field above and below
the crystal. The tail is less prominent in the observed line
shape than in the simulation, probably because the shim fields
are able to partly compensate this distortion. However, the
smaller peak is a robust feature whose position provides an in
situ measurement of the susceptibility difference between the
crystal and the liquid. When the small peak merges with the
main peak, the liquid is susceptibility matched to the crystal.

The red curves in Fig. 2 show the simulated line shapes
for 29Si within the crystal, due to contributions from field
distortion only. The rms widths for the cases illustrated are
8.6 Hz for the starting fluid and 0.93 Hz for the matched
fluid, assuming �χ has the values given in the figure caption.
Based on proton line shapes measured for each sample,
corresponding simulations, and similar simulations aimed at
estimating field distortion due to small glue drops, we conclude
that the inhomogeneous broadening of 29Si within the crystal
is in all cases less than 3 Hz rms. This susceptibility-matching
approach can be used for other diamagnetic solids as long
as their susceptibility is not below about −14×10−6, beyond
which no sufficiently diamagnetic solvents are available.

C. 29Si line shape

Because of the very long longitudinal relaxation time T1 of
undoped silicon, data collection methods were chosen to avoid
unnecessary recovery intervals. The 29Si signal from TMS in
the liquid was used to find the 90◦ pulse width, which was
always close to 15 μs. T1 in the crystal was determined by first
accurately zeroing the polarization with a sequence of three 90◦
pulses separated by 1 s delays, then waiting a repolarization
time from 0.5 to 23 h, and then recording the free induction
decay after a 90◦ pulse. This sequence was repeated for various
repolarization times and the integrated signal intensity versus
repolarization time was fit to an exponential to find T1. This
method is insensitive to small errors in the 90◦ pulse width
and a good estimate of T1 can be obtained from only a few
data points. T1 values in the range 5–7 h were found for all
orientations.

A calculation was done to find the best data collection
strategy to maximize the signal-to-noise ratio in a given data
collection period. For T1 = 5 h and a 24-h data collection
period, the optimal choice is to use a 70◦ pulse and a 4 h
recovery time. Each free-induction-decay (FID) signal was
recorded at a 50 kHz sampling rate for 1 s. The total amount
of data collected was 216, 380, 240, and 164 h for the [100],
[112], [111], and [110] orientations, respectively.

For the results presented here, the FIDs are multiplied by
exp(−t/τ ) with τ = 32 ms (10 Hz exponential apodization),
Fourier transformed, individually phased, centered, and base-
line corrected before all of the spectra for each orientation
are averaged together. In some cases where not all individual
spectra have equal integrated intensity, the average is weighted
by the integral to maximize the final signal-to-noise ratio. The
resulting line shapes are shown in Fig. 3 (black curves). The
spectra are plotted relative to their center frequencies, which
are close to 99.314 MHz. The chemical shift of 29Si in silicon
is found to be −82.5 ppm relative to the TMS 29Si signal
in the matching liquid. There is a 2.1 kHz wide background
signal at −112 ppm due to silicon in the sample tube and the
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FIG. 3. Observed (black) and simulated (blue) line shape for the
four crystal orientations. The J -coupling parameters are J = 70 Hz
and �J = 90 Hz. Red lines indicate doublet splittings for isolated
spin pairs, evaluated with Eq. (7) and discussed in Sec. III C. Solid
red lines are for nearest-neighbor pairs and dotted red lines are for
next-to-nearest-neighbor pairs.

probe structure. This background is sufficiently displaced from
the silicon crystal signal so that it does not interfere with our
measurements.

III. ANALYSIS

A. Hamiltonian

The general NMR Hamiltonian for a homonu-
clear spin-1/2 system (in angular frequency units) is

[27,28]

H = −
∑

i

γ Sz
i B

z

−
∑
i<j

bij

(
3

(�Si · �rij )(�Sj · �rij )

r2
ij

− �Si · �Sj

)

+ 2π
∑
i<j

�SiJij
�Sj , (1)

where the three terms are the Zeeman interaction with an
applied magnetic field in the ẑ direction, the direct magnetic-
dipole interaction, and the tensor J -coupling or indirect
magnetic-dipole interaction. The dipole coupling constant is
given by

bij = μ0γ
2h̄

4πr3
ij

. (2)

The gyromagnetic ratio for 29Si is

γ = −53.190×106 rad s−1 T−1, (3)

and rij is the length of the coordinate vector �ri − �rj extending
from spin j to spin i. We omit the small chemical shift part of
the Zeeman interaction which is isotropic and equal for every
spin in the silicon lattice.

Because the 29Si Larmor frequency is much greater than
the (≈1 kHz) nearest-neighbor dipole interaction, we may
make the usual secular approximation. This is done by first
transforming to the interaction representation with respect
to the Zeeman term, and then dropping all terms in the
transformed Hamiltonian with coefficients that oscillate at the
Larmor frequency or at twice the Larmor frequency.

The terms involving Jij can be simplified if we take
advantage of symmetries. As far as we are aware, no results
have been reported in the literature for the tensor elements
Jij in silicon crystals. In general, the J -coupling is expected
to be weaker than the direct dipole interaction and to fall
off rapidly with bond order. Therefore, we consider here
only the nearest-neighbor J coupling. In the silicon structure,
the lattice has an inversion center at the midpoint of each
nearest-neighbor bond, the bond is a threefold rotation axis,
and three mirror planes intersect along the bond. Because
of these symmetries, the nearest-neighbor Jij is a symmetric
matrix [29] and it has axial symmetry with one principle axis
along the bond and two equal axes perpendicular to the bond.
Switching temporarily to Cartesian coordinates with ẑ along
the bond, we have

J =
⎡
⎣Jxx 0 0

0 Jyy 0
0 0 Jzz

⎤
⎦, (4)

and Jxx = Jyy . It is conventional to describe an axial J -
coupling tensor in terms of J and the asymmetry �J , defined
as

J = 1
3 (Jxx + Jyy + Jzz),

�J = Jzz − 1
2 (Jxx + Jyy). (5)
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With this simplification, the secular Hamiltonian becomes

H = −
∑
i<j

bij

(
3 cos2 θij − 1

2

)(
3Sz

i S
z
j − �Si · �Sj

)

+ 2π
∑
i<j

′ �J

3

(
3 cos2 θij − 1

2

)(
3Sz

i S
z
j − �Si · �Sj

)

+ 2π
∑
i<j

′
J �Si · �Sj , (6)

where the primes on the second and third sums indicate that
they are to be taken over nearest-neighbor pairs only, and θij

is the angle between the magnetic field direction ẑ and �ri − �rj .
We find that the asymmetry �J has an effect equivalent to
changing the strength of the direct dipole interaction between
nearest neighbors.

In Sec. III C below we relate features in the spectrum to
specific pairs of nearby spins. For this task, it is helpful to
have an explicit formula for the splitting �fij (in hertz) of
a doublet due to an isolated pair of spins. When only two
spins are present, �Si · �Sj commutes with Sz

i S
z
j and with the

initial density operator representing uniform polarization. As
a consequence, the splitting depends only on the Sz

i S
z
j terms

in Eq. (6) and is given by

�fij =
∣∣∣∣
(

�J − 3

2π
bij

)(
3 cos2 θij − 1

2

)∣∣∣∣, (7)

for nearest neighbors. For isolated pairs other than nearest
neighbors, the same formula applies with �J = 0.

B. Spin dynamics simulations

We attempt to describe our data by numerically computing
the FID of finite clusters of spins representing members of a
disorder ensemble. To generate a member of the ensemble,
spins are placed at random on a silicon lattice containing
4×4×4 primitive unit cells and 128 silicon sites. The number
of spins in a member of the ensemble is Poisson distributed
and has a mean of 6.0 at the natural abundance of 4.685%.
For the main results presented here, a disorder ensemble with
100 members containing a maximum of 11 spins is used. The
probability of an ensemble member containing more than 11
spins is 2%, so if the ensemble is regenerated it will sometimes
contain members with more spins. Computation time increases
very rapidly with the number of spins, so such ensembles are
not used. This choice slightly biases our results toward low
density.

For the initial state, we use the thermal density operator in
the high temperature limit

ρ(0) = 1

2N

(
I + h̄ωL

kT
Mz

)
, (8)

where N is the number of spins, ωL is the Larmor frequency,
and Mz is the z component of the total spin operator

�M =
∑

i

�Si. (9)

After a 90◦ pulse, the initial deviation density operator Mz is
converted to Mx , and then it propagates under the Hamiltonian

equation (6). The FID is computed as the expectation value
of Mx :

〈Mx(t)〉 = Tr[Mx exp(−iH t)Mx exp(iH t)]. (10)

Simulations are implemented using the spin dynamics
package SPINACH [30,31], which includes features that improve
the speed and accuracy of our calculations. We use the
spherical tensor operator basis set and restrict the basis [32]
to include only coherence order +1 and −1. (In other words,
the density matrix contains coherent superpositions between
states whose angular momentum differs by +1 or −1.) This
restriction does not introduce any approximation because only
these coherence orders are present in the initial state and
the secular Hamiltonian equation (6) commutes with Mz

and therefore conserves coherence order. SPINACH includes
features for further restricting the basis set in various ways,
but the main results reported here include all product operators
(with coherence order +1 and −1) and are essentially exact.
The Hamiltonian and density matrix are stored in sparse form.
The Liouville-space propagation algorithm in SPINACH uses
the Krylov method to improve efficiency and includes features
that ensure numerical accuracy. For the dipole interactions,
a 15 Å cut-off distance is used and contributions due to
periodic boundary conditions are evaluated by periodically
extending the lattice twice in each direction along each lattice
vector. Periodic boundary conditions are also used for the
nearest-neighbor J -coupling interactions.

For each member of the disorder ensemble, the spin system
is propagated and the FID is stored at 0.2 ms intervals for a
total time of 0.1 s. Before the individual FIDs are averaged
together, they are normalized so that the initial amplitude
is proportional to the number of spins in the ensemble
member. After averaging, the FID is apodized with a 10 Hz
exponential (τ = 32 ms), and then Fourier transformed. This
is the same processing that is applied to generate spectra from
the experimental FIDs. All experimental and simulated spectra
are normalized to have the same integral over frequency,
corresponding to the fact that they all represent the same spin
density.

Figure 4 shows the experimental (black) and simulated
(blue) results for [111] orientation of the crystal, with the
J -coupling parameters J = �J = 0. All qualitative features
of the line shape are reproduced in the simulation, but it is
evident that the wide doublet with a splitting of 1005 Hz in the
experiment is too wide in the simulation. In Sec. III C below,
we show that this doublet is due to a specific nearest-neighbor
pair in the disorder ensemble. According to Eq. (7) above,
the splitting of an isolated nearest-neighbor pair includes
a term proportional to �J . Repeating the simulation with
�J = 90 Hz brings it in line with experiment, as shown in
Fig. 3. We estimate that �J is determined with an accuracy
of ±20 Hz. The uncertainty was estimated by superimposing
the experimental line shape on the simulated line shape
for several values of �J and for several different disorder
ensembles. Note from Eq. (7) that positive �J will reduce
the splitting magnitude for any value of θij , as long as the
J -coupling contribution is small compared to the direct dipole
contribution.

Liquid-phase measurements [33,34] suggest that the
isotropic J -coupling parameter is likely to be in the range
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FIG. 4. Observed (black) and simulated (blue) line shapes for
[111] orientation, with J -couping parameters J = �J = 0.

50–100 Hz. The simulations reported here are insensitive
to the value of J within this range. This is not surprising,
because J does not influence the splitting of an isolated
nearest-neighbor pair, and it can only be significant for a
three-spin configuration where two are nearest neighbors and
the third is in close proximity. Such configurations are rare in
the disorder ensemble. For the main results reported here we
use J = 70 Hz.

The experimental line shapes (black curves) and cor-
responding simulations (blue curves) for all four crystal
orientations are compared in Fig. 3 above. The only significant
adjustable parameter in the simulations is �J . The widths and
shapes of the central peaks agree well with the simulations,
as do the locations and widths of the resolved doublet peaks.
We emphasize that the simulations involve unitary evolution
without relaxation parameters; the resulting disorder-averaged
FIDs have only been line broadened by 10 Hz in the same way
as the experimental data. The results are not sensitive to the
exact line broadening used because all real features in the data
are broader than 10 Hz. There is a tendency in the simulations
for some doublet peaks and also the feature at the very center of
the line to be somewhat too sharp. In addition, the simulated
doublet splittings in [112] orientation are slightly too wide.
These discrepancies are discussed further below.

In Fig. 5 we show [111] orientation line shape simulations
for three statistically independent disorder ensembles with 30,
100, and 300 members. The 100-member case is the same
simulation as in Fig. 3 above. In the 300-member case the inner
doublet peaks are less prominent than in the 100-member case.
This suggests that our simulations are not quite converged with
respect to the size of the disorder ensembles.

Simulated line shapes for lattices containing 3×2×2,
3×3×3, and 4×4×4 primitive unit cells are shown in Fig.
6. The simulations are for [111] orientation and in each case
the disorder ensemble contains 100 members. The number of
sites for these cases are 24, 54, and 128 and the corresponding
mean number of spins in the ensemble members are 1.13, 2.53,
and 6.00. We see a very rapid change in the line shape as lattice
size is increased, and a marked reduction in the sharpness of
the peaks, especially at the center of the line. It is likely that
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FIG. 5. Simulated line shape in [111] orientation for disorder en-
sembles with 30, 100, and 300 members. The J -coupling parameters
are J = 70 Hz and �J = 90 Hz.

our simulations are not fully converged with respect to lattice
size.

The features that are too sharp in the simulations in
comparison with experimental data may be due in part to
the simulated lattice size being too small and in part to
the ensembles being too small. The simulations presented
here took about 100 h on a six-core, 3.5-GHz desktop
processor. It seems likely that larger scale spin simulations
could significantly improve the agreement.

One may ask if the basis set we are using might be larger
than it has to be. In Fig. 7 we show simulations in [111]
orientation with the basis set restricted to only include products
of up to P single-spin operators, where P is 4, 8, or 11. The
case P = 11 is exact because no member of the ensemble
contains more than 11 spins. For P = 8, members of the
ensemble with eight or fewer spins are simulated exactly, but
members with more spins are simulated with a restricted basis
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FIG. 6. Simulated line shape in [111] orientation for three
different lattice sizes. Each case is simulated with a disorder ensemble
with 100 members and with J -coupling parameters J = 70 Hz and
�J = 90 Hz.
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FIG. 7. Simulated line shape in [111] orientation for three
different basis sets. The basis sets contain all states with products of
up to P spin operators, where P is 4, 8, or 11. Each case is simulated
with a disorder ensemble with 100 members and with J -coupling
parameters J = 70 Hz and �J = 90 Hz.

containing all products of up to eight spin operators. When
the basis is restricted, the Liouvillian is also modified so that
the system will remain in the restricted subspace under time
evolution, ensuring that evolution remains unitary [30]. We
see that products of up to four operators is not a large enough
basis, but restriction to products of up to eight operators is
almost as good as an exact calculation.

C. Structure identification

Following Ref. [21], we can associate the wide resolved
doublets in Fig. 3 with specific isolated pairs that occur in the
disorder ensemble.

In [111] orientation, one nearest-neighbor bond is at 0◦
relative to the applied field, producing the largest possible
splitting. As discussed above, the J -coupling asymmetry
�J = 90 Hz was chosen so that the 1005 Hz splitting for
this isolated pair, obtained from Eq. (7), would agree with the
data. The other three nearest neighbors are at 70.5◦ with a
predicted splitting of 335 Hz, which agrees well with the data.
The calculated splittings are indicated by the red lines in Fig. 3.
They also agree well with our many-spin simulation, showing
that the positions of these resolved peaks can be understood
by considering only isolated pairs. In [111] orientation, six
next-to-nearest neighbors are at 90.0◦ and six are at 35.3◦. All
12 have the same predicted splitting of 126 Hz, as indicated by
the dotted red lines in the figure. Although not fully resolved,
these pairs correspond well with the prominent shoulders on
the central peak.

In [112] orientation, there is one nearest neighbor at 19.5◦,
one at 90.0◦, and two at 61.9◦, giving predicted splittings of
838, 503, and 167 Hz, respectively. The wider two doublets
are clearly visible in the data and in the simulation, but the
predicted splittings for the wider doublet appears about 40 Hz
too wide. This is likely due to alignment error. If the bond
angle is increased from 19.5◦ to 21.5◦, the splitting from
Eq. (7) for the wider doublet agrees with the data. An error

of this size is consistent with our ±2◦ alignment uncertainty.
Alignment uncertainty does not contribute significantly to the
determination of �J = 90 Hz from the widest [111] doublet,
because in that case the bond angle is 0◦ and Eq. (7) is
insensitive to small orientation errors. The pairs in [112]
orientation at 61.9◦ may contribute to the shoulder on the
central peak, but there are several other next and next-to-
next-nearest-neighbor bond orientations with about the same
splitting.

For [110] orientation, all four nearest-neighbor bonds are at
90.0◦, with predicted splitting of 503 Hz, in good agreement
with the data and simulation. The narrower doublet appears
to correspond to two of the 12 next-to-nearest neighbors at 0◦
with predicted splitting of 252 Hz.

Finally, in [100] orientation, all nearest-neighbor bonds are
at the magic angle 54.7◦ and no wide doublets appear. Four
next-nearest neighbors at 90.0◦ and four next-to-next-nearest
neighbors at 25.2◦ may contribute to the shoulder on the central
peak.

IV. SUMMARY AND CONCLUSIONS

We present measurements of the NMR line shape of 4.685%
abundant 29Si in single-crystal silicon for four different crystal
orientations. To avoid inhomogeneous broadening due to
distortion of the applied field by the sample susceptibility,
we immerse the sample in a susceptibility-matched liquid. The
proton NMR line shape in the liquid is used to directly measure
the susceptibility difference between the liquid and the sample,
to shim the applied field, and to infer an upper bound of 3 Hz
on inhomogeneous broadening for 29Si nuclei in the samples.
This degree of inhomogeneous broadening is small compared
to the width of all real features in the line shape, a condition
which was not met in previous experiments.

The observed line shapes are compared to spin dynamics
simulations averaged over a disorder ensemble, which is
populated by placing spins at random in a 4×4×4 unit-cell
lattice with periodic boundary conditions. The Hamiltonian in-
cludes direct dipole interactions and an axisymmetric nearest-
neighbor J -coupling tensor. The simulations are insensitive to
the isotropic J parameter, but the splitting of wide doublets due
to isolated nearest-neighbor spin pairs provides a measurement
of the asymmetry parameter �J = 90 ± 20 Hz, which has not
been reported previously. The simulated line shapes are in
good agreement with the data, reproducing all major features
with no adjustable parameters other than �J , and doing so
without any relaxation parameters.

Resolved doublet features can be associated with specific
nearest-neighbor and next-nearest-neighbor isolated spin pairs
that occur in the disorder ensemble. All such doublets are
identified, as are some prominent shoulders on the central
peaks. By choosing a doublet with a bond angle of 0◦ to
measure �J , the result becomes insensitive to small crystal
alignment errors.

The methods described here might be applied to better
understand the NMR line shape and spin Hamiltonian of other
isotopically disordered crystals containing 29Si, as well as
those containing other dilute spin-1/2 nuclei such as 13C, 77Se,
and 207Pb.
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