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Spin dynamics in the antiferromagnetic phases of the Dirac metals AMnBi2 (A = Sr, Ca)
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The square Bi layers in AMnBi2 (A = Sr, Ca) host Dirac fermions which coexist with antiferromagnetic order
on the Mn sublattice below TN = 290 K (Sr) and 265 K (Ca). We have measured the spin-wave dispersion in
these materials by triple-axis neutron spectroscopy. The spectra show pronounced spin gaps of 10.2(2) meV (Sr)
and 8.3(8) meV (Ca) and extend to a maximum energy transfer of 61–63 meV. The observed spectra can be
accurately reproduced by linear spin-wave theory from a Heisenberg effective spin Hamiltonian. Detailed global
fits of the full magnon dispersion are used to determine the in-plane and interlayer exchange parameters as well
as well as the magnetocrystalline anisotropy constant. To within experimental error we find no evidence that the
magnetic dynamics are influenced by the Dirac fermions.
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I. INTRODUCTION

Following the observation of the topological properties of
electrons on the honeycomb layers of graphene, the universal
characteristics of massless dispersing low-energy quasipar-
ticles have been realized across a variety of condensed-
matter systems. The ternary bismuthides AMnBi2 (A = Ca,
Sr) [1–4] are a recent addition to this family of so-called
Dirac materials. The Bi square layers of AMnBi2 have been
found to show the same unusual transport characteristics
as graphene or topological insulators [5–8]. Due to the
suppression of backscattering processes, the electronic and
thermal conductivities are enhanced, and the large separation
of Landau levels produces a large linear magnetoresistance.
Indeed, angle-resolved photoemission spectroscopy (ARPES)
has provided direct evidence of the linear band crossings in
both SrMnBi2 and CaMnBi2 [9,10], with a highly anisotropic
Dirac cone.

Among other Dirac materials, these bismuthides attract
special interest because their Dirac fermions may couple
to magnetically active transition-metal states, promising an
indirect experimental handle to tune the topological bands.
Below T Sr

N � 290 K and T Ca
N � 265 K, the large divalent Mn

(3d5, S = 5/2) magnetic moments of magnitude ≈3.7 μB

in these materials align parallel to the c axis and form
antiferromagnetic structures [11]. The two compounds were
found to differ in the sign of their interlayer coupling, resulting
in ferro- and antiferromagnetic stacking of Néel-ordered layers
in CaMnBi2 and SrMnBi2, respectively [11]. An interpretation
based on first-principles calculations suggests that in the
ferromagnetically stacked case (CaMnBi2), the Dirac bands
may provide an itinerant interlayer exchange path and thus
directly couple to the magnetic ground state [11]. This
appeared to be supported by a weak resistivity anomaly
observed at TN in CaMnBi2, but not in SrMnBi2 [11]. Earlier
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transport studies, however, had not registered such an anomaly
in either SrMnBi2 [4] or CaMnBi2 [12,13].

In metallic magnets a coupling between the ordered mag-
netic moments and conduction electron states can reveal itself
in the magnetic excitation spectrum. For example, there can be
damping due to spin-wave decay into the Stoner continuum,
anomalies in the magnon dispersion due to modifications of
the exchange interactions by conduction electron states, or gap
formation due to an additional Kondo energy scale.

Here we report on a single-crystal neutron inelastic scat-
tering study of SrMnBi2 and CaMnBi2 in the magnetically
ordered state. Our analysis shows that the magnon spectrum in
both materials can be accurately reproduced from a Heisenberg
model describing a local-moment, quasi-two-dimensional
(2D) antiferromagnet. The model includes nearest- and next-
nearest-neighbor in-plane exchange interactions and a weak
interlayer exchange interaction, together with an easy-axis
anisotropy. We did not find any anomalies that would suggest
significant coupling between the magnons and conduction
electron states. The interlayer coupling is smaller than found in
the reference compound BaMn2Bi2, consistent with the larger
separation of the Mn spins along the c axis in AMnBi2.

II. EXPERIMENTAL DETAILS

The preparation and characterization of the single crystals
used in the experiments has been reported previously [11].
Polycrystalline AMnBi2 was first synthesized by solid-state
reaction of the elements. Single crystals were then grown from
self-flux in an alumina crucible. Electron-probe microanalysis
confirmed near-ideal stoichiometry, with a small (≈2%) Bi
deficiency in the Sr compound (for details, see Ref. [11]).
Laboratory x-ray-diffraction measurements confirmed the
tetragonal crystal structures reported previously [1,2], space
groups I4/mmm (SrMnBi2) and P 4/nmm (CaMnBi2) (see
Fig. 1). Magnetization measurements on the batch of crystals
used here were consistent with previous studies (see Ref. [14]).

Neutron inelastic measurements were performed at the
Institut Laue-Langevin on the triple-axis neutron spectrometer
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FIG. 1. The crystal and magnetic structures of SrMnBi2

(a ≈ 4.58 Å, c ≈ 23.14 Å, magnetic space group I4′/m′m′m)
and CaMnBi2 (a ≈ 4.50 Å, c ≈ 11.07 Å, magnetic space group
P 4′/n′m′m) [11]. The magnetic propagation vectors k indicated
in this figure describe the magnetic structures m(rj ) (in lattice
coordinates rj ) by the relation m(rj ) = m(0) exp(2π i k · rj ), where
m(0) is the magnetic moment at an arbitrary origin located on a Mn
site. For clarity, the origin of the SrMnBi2 unit cell has been shifted
by ( 1

2 ,0, 1
4 ) relative to the conventional cell. The exchange paths J1,

J2, and Jc are indicated by red lines.

IN8 [15] with the FlatCone detector [16]. By keeping the
outgoing energy fixed and recording rocking scans at various
incident energies, this setup allows an efficient collection
of constant energy-transfer maps covering a wide range of
reciprocal space. The FlatCone array of analyzer crystals and
helium tube detectors consists of 31 channels spaced by 2.5°,
thus covering a 75° range of scattering angle. Throughout
the study, the FlatCone was used with its Si (111) analyzer
crystals selecting a fixed outgoing wave vector of kf =
3 Å

−1
(Ef = 18.6 meV). For energy transfers below and above

40 meV (incoming energies Ei ≷ 58.6 meV), the double-
focusing Si (111) and pyrolitic graphite (002) monochromators
were used, respectively. In four separate experiments, the
scattering from the SrMnBi2 and CaMnBi2 single crystals
(of mass 3.3 and 1.6 g, respectively) was investigated in
the (HK0) (ab orientation) and (H0L) (ac orientation)
scattering planes. Throughout this paper we give wave vec-
tors in reciprocal lattice units (r.l.u.) q = (H,K,L) ≡ (H ×
2π/a,K × 2π/b,L × 2π/c). The samples were mounted in
a standard top-loading liquid helium cryostat. All spectra
were recorded at a sample temperature of approximately
5 K.
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FIG. 2. Temperature dependence of the difference intensity
I (T ) − I (315 K) at selected wave vectors (see legend), recorded
while cooling (a) SrMnBi2 and (b) CaMnBi2. Power-law fits to the
Bragg peaks yield transition temperatures of T Sr

N = 287(5) K and
T Ca

N = 264(2) K. Above TN, incipient in-plane correlations contribute
diffuse rods of magnetic scattering along (10L). These fluctuations
are enhanced towards TN (critical scattering) and then freeze out with
the onset of interplane order (blue symbols). The decrease in intensity
of the (100) reflection of CaMnBi2 below 200 K is not consistent with
previous data and should be disregarded (see main text).

III. RESULTS AND ANALYSIS

While cooling the samples in the ac orientation, we tracked
the intensities at selected positions in the (H0L) plane of
reciprocal space. Figures 2(a) and 2(b) show the resulting tem-
perature dependences for SrMnBi2 and CaMnBi2, respectively.
This includes the magnetic Bragg contribution at (101) and
(103) (for Sr) and (100) (for Ca), as well as the diffuse magnetic
scattering at another position along the (10L) direction away
from the Bragg condition. The data, here represented as
the relative change in the intensity, demonstrate the order-
parameter characteristics of magnetic Bragg scattering at the
antiferromagnetic transitions. We note that the decrease of
the CaMnBi2 (100) magnetic scattering below 200 K is not
consistent with our previous powder neutron-diffraction data
[11], which could be due to a shift of the peak between two
detector channels as the lattice contracts.

Above the ordering temperature, incipient in-plane mag-
netic correlations form diffuse rods of magnetic scattering
along the c∗ direction of reciprocal space, as revealed at the
(10L) non-Bragg positions. When cooling towards TN, this
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FIG. 3. Magnon spectrum of SrMnBi2 in the (a) (H0L) and (b) (HK0) planes in reciprocal space. The data are illustrated by a stacking plot
of constant-energy slices (left panels), and the best-fit spin-wave model is represented by the corresponding dispersion surface (right panels).
A more quantitative comparison between data and simulation is provided in Ref. [14].

diffuse scattering initially intensifies and then subsides when
the weaker interlayer correlations set in and neutron spectral
weight is confined to the Bragg peaks. Fitting a power law
to the thermal variation of the (101) (Sr) and (100) (Ca)
peaks yields Néel temperatures of T Sr

N = 287(5) K and T Ca
N =

264(2) K. These values are consistent with previous single-
crystal bulk measurements of transport and ARPES samples
[4,9,12,13], but differ slightly from the values found in our
earlier neutron powder diffraction study [11]. This difference
is likely due to small structural or compositional variations
among the samples. The critical exponents βSr = 0.15(3) and
βCa = 0.11(2) obtained from the power-law fit are much
smaller than the value β = 0.365 of the three-dimensional
Heisenberg model, indicating the reduced dimensionality
of the magnetism in these systems. Due to the additional
bismuth layers in the unit cells, the magnetism is more two
dimensional in AMnBi2 than in the related (122) manganese
arsenide BaMn2As2, β = 0.35(2) [17]. Instead, the interlayer
correlations compare well to the parent compounds of (122)
iron-based superconductors, e.g., β = 0.098(1) for SrFe2As2

[18] and β = 0.125 for BaFe2As2 [19]. A detailed description
of the power-law fit to this data is provided in Ref. [14].

The measured neutron spectra are summarized in Figs. 3
(SrMnBi2) and 4 (CaMnBi2). A more quantitative presentation
of the data is provided in Figs. S2–S5 of Ref. [14]. Due to the
periodicity of the antiferromagnetic order, the magnetic zone
centers are located at (HKL) positions with (H + K) and L

both odd integers for SrMnBi2, and at positions with (H + K)
odd and L any integer for CaMnBi2. For both compounds,
the spectra reveal a well-defined magnon dispersion above
spin gaps of approximately 10 meV (Sr) and 8 meV (Ca).
The magnons are highly dispersive parallel to the layers, but
only weakly dispersive perpendicular to the layers. For both
samples the magnon bandwidth is around 50 meV for spin
waves propagating in the (HK0) plane and 3–4 meV along
(10L). Figure 5 represents more quantitatively the magnon
dispersion in the (HK0) plane as obtained from Gaussian fits
to constant-energy cuts, and the left-hand panels of Figs. 6(a)
and 6(b) illustrate the out-of-plane dispersion by energy-wave-
vector slices of the data along the (10L) direction.

To obtain quantitative information on the magnetic cou-
plings we have compared the data with the linear spin-wave
spectrum calculated from an effective spin Hamiltonian that
includes a Heisenberg coupling term and an Ising-like single-
ion anisotropy:

Ĥ =
∑
〈i,j〉

Jij Ŝi · Ŝj −
∑

i

D
(
Ŝz

i

)2
, (1)

where we include nearest-neighbor (J1) and next-nearest-
neighbor (J2) exchange constants, an interlayer exchange
interaction Jc, and the anisotropy constant D. The exchange
paths are shown in Fig. 1. Using the Holstein-Primakoff
transformation of two interacting Bose fields, corresponding
to the two collinear antiferromagnetic sublattices, we obtain
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FIG. 4. Magnon spectrum of CaMnBi2 presented in the same way as in Fig. 3.

the dispersion relation

E(q) =
√

A(q)2 − B(q)2 (2)
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FIG. 5. Magnon dispersion along high-symmetry directions in
the (HK0) plane, for (a) SrMnBi2 and (b) CaMnBi2. The black line
indicates the best fit from the linear spin-wave model. Red markers
represent the position (vertical bars) and full width at half maximum
(horizontal lines) of Gaussian fits to cuts through the raw data along
the corresponding directions.

where q is the magnon wave vector,

A(q) = S [JAF(0) − JF(0) + JF(q) + 2 D ],

B(q) = S JAF(q)

and

J (q) =
∑

n

Jn e2π i q·rn (3)

is the Fourier transform of the exchange interactions. The
subscripts F and AF refer to summation over ferromagnetically
and antiferromagnetically aligned pairs of spins, respectively.
The resulting differential scattering cross section for single-
magnon creation is

dσ

d�dω
= kf

ki

(
γ r0

2

)2

S(q,ω), (4)

S(q,ω) = g2NS
A(q) − B(q)

E(q)
{n(ω) + 1} δ{h̄ω − E(q)}

(5)

where h̄ω is the neutron energy transfer, kf and ki are the
outgoing and incoming neutron wave vectors, γ = 1.913, r0

is the classical electron radius, g is the spectroscopic splitting
factor, N is the number of magnetic ions per sublattice, S is
the spin quantum number, and n(ω) = (eh̄ω/kBT − 1)−1 is the
boson occupation number. Given the magnetic structures and
exchange paths defined in Fig. 1, the explicit Fourier exchange
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FIG. 6. Out-of-plane dispersion of the magnon spectra of (a) SrMnBi2 and (b) CaMnBi2, illustrated by slices along the (10L) direction
in reciprocal space (intensity averaged over the range H = 0.95–1.05 r.l.u.). The left-hand panels show interpolated plots of the data, and
the right-hand panels give the corresponding best-fit spin-wave spectra convoluted with the instrumental resolution (for details, see text and
Ref. [14]). The superimposed red dashed line indicates the theoretical dispersion using best-fit parameters.

terms for the case of SrMnBi2 are

J Sr
AF(q) = 2 J1 [cos (π H + π K) + cos (π H − π K)]

+ 2 Jc cos(π L),

J Sr
F (q) = 2 J2 [cos(2π H ) + cos(2π K)]

and, in the case of CaMnBi2,

J Ca
AF (q) = 2 J1 [cos (π H + π K) + cos (π H − π K)],

J Ca
F (q) = 2 J2 [cos(2π H ) + cos(2π K)] + 2 Jc cos(2π L).

This allows an analytical description of the spin gaps:

	Sr ≈ 	Ca ≈ 4
√

SJ1

√
SD, (6)

where we have applied the appropriate approximations for
the present case (J1 
 Jc, J1 
 D; for full expressions see
Ref. [14]). Similarly, the bandwidth W of the dispersion along
(10L) is given by

W Sr ≈ WCa ≈ 4
√

SJ1 (
√

SD + 2 |SJc| −
√

SD). (7)

If J1 is the dominant exchange, as is found to be the
case here, then the maximum of the in-plane dispersion is
∼ 4SJ1. Given J1, we see from Eqs. (6) and (7) that in
the relevant parameter regime the parameters D and Jc are
determined by the size of the gap 	Sr/Ca and bandwidth of
the out-of-plane modulation W Sr/Ca, respectively. On the other
hand, the balance between the parameters J1 and J2 determines
details of the dispersion at higher energies in the (HK0) plane.
For example, a local minimum of the dispersion at the M
point, ( 1

2 , 1
2 ,0), as observed in both materials, will only occur

for positive J2, indicating a competition (frustration) between
nearest- and next-nearest-neighbor exchange.

We find that the above model is able to reproduce very well
all features in the data. For quantitative analysis we folded and
averaged the raw constant-energy maps of reciprocal space into
tiles of 2 × 2 r.l.u. With the data in this reduced form we could
compare it to the model after convolution of the theoretical
spectrum, Eqs. (4) and (5), with an energy- and wave-
vector-dependent broadening function to take into account

the instrumental resolution. A phenomenological Gaussian
broadening of the analytical dispersion proved insufficient to
achieve a consistent global fit to the data, particularly for the
low-energy part of the magnetic dispersion in the ac plane.
Instead, it was necessary to take into account the resolution
of the triple-axis spectrometer, which was calculated with the
RESTRAX ray-tracing algorithm [20,21].

Our procedure to determine the parameters of the spin
Hamiltonian J1, J2, Jc, and D was carried out in three steps.
First, a global fit of all data, using phenomenological Gaussian
broadening of the dispersion, produced rough estimates of
all parameters. Using these as starting values and fixing the
in-plane exchange interactions J1 and J2, we obtained precise
bounds on the interlayer exchange Jc and anisotropy D by
fitting the resolution-convoluted spectrum for low energies
(0–20 meV) to an energy–wave-vector slice with wave vector
along (10L), as illustrated in Fig. 6. Finally, J1 and J2 were
refined by fitting the in-plane (ab) dispersion at high energies
(30–44 meV) using Gaussian broadening.

Figure 5 provides a quantitative plot of the fits of the
dispersions in the ab plane. A more detailed description
of the data processing, fitting, and error estimation, and an
explicit comparison of the data and best fits, are provided in
Ref. [14].

IV. DISCUSSION

The exchange parameters for SrMnBi2 and CaMnBi2
obtained from the fits are summarized in Table I. Apart from
the opposite sign of the interlayer exchange Jc, there are no
significant differences between the parameters of SrMnBi2
and CaMnBi2. The absolute values of J1 and J2 are slightly
larger in the case of CaMnBi2, consistent with the smaller
nearest-neighbor spacing (dNN). The magnitudes of Jc for
the two compounds, which are the same to within the error,
are much smaller than J1 and J2, confirming the quasi-2D
character of the magnetism in these materials. Notably, these
results are in good agreement with previous estimations based
on first-principles calculations of the electronic structure,

134405-5



M. C. RAHN et al. PHYSICAL REVIEW B 95, 134405 (2017)

TABLE I. Exchange parameters, magnetocrystalline anisotropy constants, and spin gaps of SrMnBi2 and CaMnBi2 obtained from a fit of
the linear spin-wave model, as described in the text. The parameters can be related to the nearest-neighbor (dNN) and interlayer (dc) Mn-Mn
atomic spacings, the ordered magnetic moment μ, and the ordering temperature TN [11]. The corresponding values for two related Mn pnictides
are reproduced below [22,23].

SJ1 (meV) SJ2 (meV) SJc (meV) SD (meV) 	 (meV) dNN (Å) dc (Å) μ(μB) TN (K)

SrMnBi2 21.3(2) 6.39(15) 0.11(2) 0.31(2) 10.2(2) 3.24 11.57 3.75(5) 287(5)
CaMnBi2 23.4(6) 7.9(5) − 0.10(5) 0.18(3) 8.3(8) 3.18 11.07 3.73(5) 264(2)
BaMn2Bi2 [22] 21.7(1.5) 7.85(1.4) 1.26(2) 0.87(15)a 16.29(26) 3.18 7.34 3.83(4) 387.2(4)
BaMn2As2 [23] 33(3) 9.5(1.3) 3.0(6) 2.95 6.73 3.88(4) 625(1)

aThe value of SD for BaMn2Bi2 was misquoted in Ref. [22]. In this table we give the correct value [24].

which gave an average in-plane exchange of SJab ≈ 30 meV
and |SJc| ≈ 0.3 meV [11].

Regarding the magnetocrystalline anisotropy, we observe
that D is enhanced by a factor 1.8 in SrMnBi2 compared with
CaMnBi2. According to the initial structure determinations
at room temperature [1,2], the local environment of the Mn
ion is similar in both compounds: The MnBi4 tetrahedra are
elongated by ≈14% along c and the ligand distances are
dCa

Mn−Bi = 2.87(1) Å and dSr
Mn−Bi = 2.89(1) Å. The significant

difference in anisotropy may therefore point to unknown
structural distortions at 5 K (at present, no full refinement of
crystallographic parameters at low temperatures is available).
The anisotropy is in good agreement with the result of our
earlier density functional prediction (SDCa

DFT = 0.3 meV [11]),
as was also the case with the exchange constants.

It is instructive to compare the present results to two
available inelastic neutron scattering studies of the related
compounds BaMn2Bi2 [22] and BaMn2As2 [23]. The corre-
sponding parameters for these materials are quoted in Table I.
The pnictide-coordinated magnetic Mn2+ layers in BaMn2Bi2
and BaMn2As2 (“122 materials”) are analogous to those in the
112 materials investigated in the present paper. However, the
I4/mmm 122 compounds do not feature additional pnictide
layers (which carry the Dirac bands in the present case).
Hence, while the in-plane Mn-Mn spacing is very similar, the
spacing of the magnetic layers in the 122 compounds is only
58–66% of that in CaMnBi2 and SrMnBi2. Both BaMn2Bi2
and BaMn2As2 form antiferromagnetically stacked layers of
Néel-type order, in analogy to SrMnBi2. As may be expected
from these circumstances, we find that the in-plane exchange
interactions in 122 compounds are similar or identical to those
in 112 compounds. On the other hand, in the present 112
materials the interplane exchange is significantly reduced. This
is consistent with the much higher transition temperatures and
the smaller separation of the Mn layers in the 122 materials
compared with the 112 compounds.

We find no evidence that the additional Bi layers in 112
materials, which host the Dirac fermions, cause any qualitative
changes in the magnon spectrum, such as anomalous broaden-
ing or dispersion. The instrument’s simulated energy resolu-
tion provides an upper bound on the influence of such effects.
The characteristics of the Bragg (0.5–1.0 meV) and vanadium
(1–4 meV) widths of energy resolution are illustrated in
Ref. [14]. By contrast, neutron inelastic measurements of many
iron-based superconductors show obvious signatures of a
strong hybridization of magnetic and itinerant states. A typical
example is SrFe2As2 [25], which shows a crossover into the

regime of itinerant (Stoner) spin fluctuations. This manifests
itself as an increased dampening of spin fluctuations (i.e., a
broadening of the neutron spectrum) above a characteristic
energy of approximately 80 meV.

As in the 122 compounds, both J1 and J2 are positive (anti-
ferromagnetic) in SrMnBi2 and CaMnBi2, resulting in frustra-
tion between nearest- and next-nearest-neighbor interactions.
The theoretical phase diagram of the frustrated J1-J2 model on
a square lattice has been investigated extensively in the context
of iron-based superconductors [26–28]. There is special
interest in this phase diagram owing to a possible quantum
critical point and spin-liquid phase around J2/J1 ≈ 1

2 . This
regime separates two distinct ordered magnetic phases, with
Néel-type order for J2/J1 < 1

2 and stripe antiferromagnetic
order for J2/J1 > 1

2 . Both 112 and 122 Mn-based compounds
exhibit dominant nearest-neighbor exchange, with J2/J1 ≈
0.3. According to one study the exchange and anisotropy
parameters for AMnBi2 place these materials close to the phase
boundary between Néel-ordered and frustrated paramagnetic
phases [28]. The resulting quantum fluctuations could explain
some of the observed reduction in ordered magnetic moment
(� 3.7 μB) compared to the ideal local-moment value of
5 μB [23]. By contrast, in parent compounds of iron-based
superconductors such as BaFe2As2 and SrFe2As2, J1 and J2

are of similar magnitude, resulting in stripe-antiferromagnetic
order.

V. CONCLUSIONS

In summary, we have performed a comprehensive triple-
axis neutron-scattering study of the anisotropic Dirac materials
SrMnBi2 and CaMnBi2, with the aim of searching for possible
influences of the unusual band topology at their Fermi surfaces
on their magnetism. In particular, for CaMnBi2 our previous
findings had indicated that the Bi 6px,y bands may play a role
in mediating the magnetic exchange between Mn layers.

In both compounds, we observed well-defined magnon
spectra consistent with local-moment, semiclassical antifer-
romagnetism. Using linear spin-wave theory to describe the
neutron spectra we have identified and quantified all relevant
exchange and anisotropy parameters of a Heisenberg model for
the two compounds. In both cases, all details of the dispersion
are well reproduced by the model and there is no indication
of anomalous broadening or dispersion to within experimental
precision. The absolute values of the exchange parameters
indicate no substantive differences between the compounds
(aside from opposite interlayer coupling).
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These results suggest that different routes have to be found
to achieve an entanglement of magnetic order and nontrivial
band topology. One very promising option is the substitution
of magnetic rare-earth ions on the A site, providing a more
direct interaction with the relevant Bi layers. In particular,
a strong response of the transport properties to rare-earth
magnetic order has recently been observed in EuMnBi2 [29],
along with the trademark signatures of Dirac transport [30].
Furthermore, recent high-resolution ARPES results and first-
principles calculations identify YbMnBi2 as a type-2 Weyl
semimetal with canted antiferromagnetic order [31]. The latter
study further suggests that this state would be tuned to a Dirac
metal by spin alignment. Naturally, it would be of great interest
to perform analogous inelastic neutron studies of the magnetic
ground states in those materials.

Note added. After submission of this paper, a Raman
spectroscopic study of SrMnBi2 and CaMnBi2 was reported
by Zhang et al. [32]. Raman spectroscopy probes the spin
dynamics through a small number of characteristic frequencies
which are associated with van-Hove singularities in the two-
magnon density of states. The authors of Ref. [32] interpret
their data using a similar spin Hamiltonian as in the present
paper but without the magnetocrystalline anisotropy term (D in
our study). Their analysis yields values for the spin-exchange
parameters J1 and J2 that are similar to our results, but
produces anomalously large values of the interlayer exchange

Jc for both materials (one order of magnitude larger than in our
paper or in other related materials). The authors of Ref. [32]
suggest that this enhanced coupling is caused by the Bi Dirac
bands. We would like to draw attention to the fact that the
parameters J1, Jc, and D are strongly correlated in modeling
key features of the magnon dispersion [see Eqs. (6) and (7)],
so the neglect of D in the Raman analysis could significantly
affect the obtained values of Jc. We note that the Raman value
of Jc would imply an interlayer dispersion of the one-magnon
spectrum at a factor of 11 (Sr) or 7 (Ca) larger than that found
here directly by neutron spectroscopy [Fig. 6, Eq. (7)].
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[26] M. Mambrini, A. Läuchli, D. Poilblanc, and F. Mila, Phys. Rev.
B 74, 144422 (2006).

[27] J. Richter and J. Schulenburg, Eur. Phys. J. B 73, 117 (2010).
[28] H.-Y. Wang, Phys. Rev. B 86, 144411 (2012).
[29] A. F. May, M. A. McGuire, and B. C. Sales, Phys. Rev. B 90,

075109 (2014).

[30] H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake,
J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y.
Murakami, T.-H. Arima, Y. Tokura, and S. Ishiwata, Sci. Adv.
2, e1501117 (2016).

[31] S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T.
Kim, M. N. Ali, B. Buechner, M. Hoesch, and R. J. Cava,
arXiv:1507.04847.

[32] A. Zhang, C. Liu, C. Yi, G. Zhao, T.-l. Xia, J. Ji, Y. Shi, R. Yu, X.
Wang, C. Chen, and Q. Zhang, Nat. Commun. 7, 13833 (2016).

134405-8

https://doi.org/10.1103/PhysRevB.83.214519
https://doi.org/10.1103/PhysRevB.83.214519
https://doi.org/10.1103/PhysRevB.83.214519
https://doi.org/10.1103/PhysRevB.83.214519
https://doi.org/10.1103/PhysRevB.74.144422
https://doi.org/10.1103/PhysRevB.74.144422
https://doi.org/10.1103/PhysRevB.74.144422
https://doi.org/10.1103/PhysRevB.74.144422
https://doi.org/10.1140/epjb/e2009-00400-4
https://doi.org/10.1140/epjb/e2009-00400-4
https://doi.org/10.1140/epjb/e2009-00400-4
https://doi.org/10.1140/epjb/e2009-00400-4
https://doi.org/10.1103/PhysRevB.86.144411
https://doi.org/10.1103/PhysRevB.86.144411
https://doi.org/10.1103/PhysRevB.86.144411
https://doi.org/10.1103/PhysRevB.86.144411
https://doi.org/10.1103/PhysRevB.90.075109
https://doi.org/10.1103/PhysRevB.90.075109
https://doi.org/10.1103/PhysRevB.90.075109
https://doi.org/10.1103/PhysRevB.90.075109
https://doi.org/10.1126/sciadv.1501117
https://doi.org/10.1126/sciadv.1501117
https://doi.org/10.1126/sciadv.1501117
https://doi.org/10.1126/sciadv.1501117
http://arxiv.org/abs/arXiv:1507.04847
https://doi.org/10.1038/ncomms13833
https://doi.org/10.1038/ncomms13833
https://doi.org/10.1038/ncomms13833
https://doi.org/10.1038/ncomms13833



