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Antiferromagnetic films in weak magnetic and staggered fields
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We study the low-temperature behavior of antiferromagnets in two spatial dimensions that are subjected
to a magnetic field oriented perpendicular to the staggered magnetization order parameter. The evaluation
of the partition function is carried to two-loop order within the systematic effective Lagrangian technique.
Low-temperature series that are valid in weak magnetic and staggered fields are derived for the pressure,
staggered magnetization, and magnetization. Remarkably, at T = 0, the staggered magnetization is enhanced by
the magnetic field.
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I. MOTIVATION

The thermodynamic properties of antiferromagnets in two
spatial dimensions have been the topic of numerous studies.
Within microscopic, phenomenological, and numerical ap-
proaches, the free-energy density, staggered magnetization,
and other observables have been explored extensively at low
temperatures [1–17], in particular also in magnetic fields
[18–54]. Still, a fully systematic analysis of how a weak
magnetic field, in presence of a weak staggered field, affects the
low-energy physics of antiferromagnetic films, both at T = 0
and finite temperature, appears to be lacking.

Instead of relying on phenomenological or microscopic
techniques such as modified spin-wave theory, the present
analysis is based on the effective Lagrangian method that
has the virtue of being fully systematic. The crucial point is
that the relevant degrees of freedom in an antiferromagnet
at low temperatures, the spin waves or magnons, are the
Goldstone bosons of a spontaneously broken internal sym-
metry: O(3) → O(2).1 Goldstone boson effective field theory
has been developed in the 1980s in the context of quantum
chromodynamics [56,57], but the same universal principles
can be applied to condensed matter systems [58,59], where the
phenomenon of spontaneous symmetry breaking is ubiquitous.

Within effective field theory, the thermodynamic properties
of antiferromagnets in two spatial dimensions have been
analyzed in Refs. [60–63]. Some of these studies, apart from
the inclusion of a staggered field, also consider the effect of
an external magnetic field. However, a systematic discussion
of how the thermodynamic variables and the physics at T = 0
depend on these fields, has not yet been presented. In particular,
the situation where the magnetic field is oriented perpendicular
to the staggered field has not been discussed on the effective
level so far. This motivates this work where we systematically
investigate the impact of a perpendicular magnetic field
onto the low-energy behavior of antiferromagnetic films. We

1Strictly speaking, at finite temperature and in two spatial dimen-
sions, spontaneous symmetry breaking does not occur because of
the Mermin-Wagner theorem [55]. However, the low-temperature
physics is still dominated by the spin waves and the staggered
magnetization is different from zero at low T and weak fields. In
this sense, the staggered magnetization is still referred to as order
parameter in this study.

evaluate the partition function up to two-loop order, derive the
low-temperature series for the free-energy density, pressure,
staggered magnetization, and magnetization, and also consider
the behavior of the system at zero temperature.

In the absence of a magnetic field, the spin-wave interaction
does not yet manifest itself: up to two-loop order, the low-
temperature series just correspond to the free magnon gas. In
nonzero magnetic fields, however, the spin-wave interaction
leads to interesting effects. In the pressure, irrespective
of the strength of the magnetic and staggered field, the
interaction among the magnons is repulsive. Regarding the
order parameter at finite temperature,2 we also observe subtle
effects: if the temperature is raised from T = 0 to finite T ,
while keeping the strength of the staggered and magnetic field
fixed, the order parameter decreases as a consequence of the
spin-wave interaction. Remarkably, at zero temperature, the
staggered magnetization is enhanced in weak magnetic fields.
Finally, the perpendicular magnetic field, both at zero and
finite temperature, causes the magnetization to take positive
values, signaling that the spins get tilted into the magnetic
field direction.

Let us compare our effective field theory results with the
condensed matter literature. We comment on those papers
where the description of antiferromagnetic films is based on
the isotropic Heisenberg Hamiltonian, perturbed by magnetic
fields oriented perpendicular to the staggered magnetization.
The ground-state energy as well as the magnetization at zero
and finite temperature, in nonzero magnetic fields, have been
derived previously in Refs. [20,26,27] within the framework
of the nonlinear sigma model and spin-wave theory. However,
these studies are restricted to one-loop order (in effective field
language); in this work we include two-loop effects. Then,
the exact diagonalization study presented in Ref. [48] also
concerns the (uniform) magnetization in nonzero magnetic
field at T = 0. But, the focus is not the domain of weak
magnetic fields as in this work, such that a comparison
between their figures and ours is not really obvious. From
a conceptual point of view, we like to draw the attention
to the papers by Kopietz et al. [41,45], where they point
at an apparent disagreement of magnon dispersion results
obtained by the quantum nonlinear sigma model and spin-wave

2See footnote 1.
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theory. They argue that in the nonlinear sigma model, not
all relevant spin-wave interactions are included. It should be
noted that the nonlinear sigma model only represents the
leading term of the derivative expansion, such that from an
effective point of view it is clear that higher-order (interaction)
contributions are missing if one only considers the nonlinear
sigma model: these additional contributions are contained in
higher-order pieces of the effective Lagrangian (see below).
Finally, the properties of antiferromagnetic films at finite
temperature have also been explored by numerical simulations
in Refs. [28,34,54]. These studies, however, focus on a wide
range of temperature and magnetic field strength: they do
not extensively explore the low-temperature and weak-field
region. Again, a direct comparison with the results obtained
here is not straightforward.

The above comparison suggests that this work goes beyond
the condensed matter literature in various aspects. First, the
low-temperature and weak-field domain of antiferromagnetic
films is explored extensively up to two loop-order. These
two-loop results concerning free-energy density, pressure,
order parameter, and magnetization are entirely new. Then,
the effective Lagrangian method is completely systematic,
order by order in the derivative expansion. No approxima-
tions or ad hoc assumptions are made, meaning that we
are dealing with a high degree of rigor. Furthermore, the
effective field theory method is model independent: what
counts are the symmetries of the underlying model (here the
Heisenberg Hamiltonian describing quantum antiferromag-
nets) from where the effective field theory is systematically
constructed. The specific properties of antiferromagnetic films
then only reflect themselves in the numerical values of a few
effective coupling constants (see below), whereas the structure
of the low-temperature and weak-field expansion is completely
fixed by the symmetries.

The paper is organized as follows. The incorporation of
the perpendicular magnetic field, along with some essential
information on the effective Lagrangian method, is discussed
in Sec. II. The perturbative evaluation of the free-energy
density up to two-loop order is provided in Sec. III. The
low-temperature series for various thermodynamic quantities
(pressure, staggered magnetization, and magnetization) in
presence of weak staggered and magnetic fields are derived
in Sec. IV. The role of the spin-wave interaction in these
observables is illustrated in various figures. In the same section,
we also consider the behavior at T = 0. Finally, in Sec. V we
present our conclusions. Technical details on vertices with an
odd number of magnon lines and the evaluation of a specific
two-loop diagram can be found in two separate appendixes.

II. MICROSCOPIC AND EFFECTIVE DESCRIPTION

Antiferromagnets in two spatial dimensions are described
by the quantum Heisenberg model

H0 = −J
∑

nn

�Sm · �Sn, J = const (2.1)

where the summation extends over all nearest-neighbor spins
on a bipartite lattice, and the exchange integral J is negative.
The Heisenberg Hamiltonian is invariant under global internal
O(3) symmetry. The antiferromagnetic ground state, however,

is only invariant under O(2). As a consequence of the spon-
taneously broken rotation symmetry, two spin-wave branches,
or two magnon particles, emerge in the low-energy spectrum.
If the O(3) symmetry is exact, the two degenerate spin-wave
branches follow the dispersion law

ω(�k) = v|�k| + O(�k3), �k = (k1,k2) (2.2)

with v as spin-wave velocity. According to Goldstone’s
theorem, both excitations obey

lim
�k→0

ω(�k) = 0, (2.3)

i.e., the spin-wave energy tends to zero if the wave vector �k
approaches zero: there is no energy gap.

The symmetric model can be extended by incorporating a
staggered field �Hs and a magnetic field �H ,

H = H0 −
∑

n

�Sn · �H −
∑

n

(−1)n �Sn · �Hs, (2.4)

that both explicitly break O(3) invariance. Now, the sponta-
neously broken symmetry is only approximate: the spin-wave
branches exhibit an energy gap, i.e., the magnons are no longer
Goldstone bosons as they become massive. In particle physics,
it is common to call such excitations pseudo-Goldstone
bosons.

Let us turn to the effective description of antiferromagnets
in presence of staggered and magnetic fields. This situation
has been discussed in detail in Secs. IX– XI of Ref. [64] (see
also Ref. [58]). Here, we merely list the relevant expressions.
The basic low-energy degrees of freedom, the two antiferro-
magnetic magnon fields, we denote by Ua = (U 1,U 2), and
collect them in a unit vector Ui :

Ui = (U 0,Ua), U 0 = √
1 − UaUa,

a = 1,2, i = 0,1,2. (2.5)

The ground state of the antiferromagnet is represented by
�U0 = (1,0,0), and the magnons correspond to fluctuations in
the orthogonal directions.

The low-energy effective theory is based on a systematic
expansion in powers of momenta, i.e., on a derivative expan-
sion of the effective Lagrangian. The leading termL2

eff contains
two space-time derivatives

L2
eff = ρs

2
DμUiDμUi + MsH

i
s U

i, (2.6)

where the time component D0 and the space component Dr of
the covariant derivative are

D0U
i = ∂0U

i + εijkH
jUk, DrU

i = ∂rU
i (r = 1,2).

(2.7)

The magnetic field Hi is incorporated through the time
component of the covariant derivative D0U

i . On the other
hand, the staggered field Hi

s couples to Ms that represents
the order parameter: the staggered magnetization at zero
temperature, zero external fields, and infinite volume. Apart
from Ms , a second low-energy effective constant appears in
L2

eff : the quantity ρs that is referred to as spin stiffness or
helicity modulus. Note that the magnetic field counts as order
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p like the time derivative, whereas the staggered field is of
order p2.

On the effective level, we will refer to antiferromagnetic
films also as d = 2 + 1 antiferromagnets. Here, d is the space-
time dimension that serves as a regularization parameter (see
below), and ds = 2 indicates that antiferromagnetic films are
objects defined in two spatial dimensions.

The subleading piece in the effective Lagrangian is of
order p4:

L4
eff = e1(DμUiDμUi)2 + e2(DμUiDνUi)2

+ k1
Ms

ρs

(
Hi

s U
i
)
(DμUkDμUk)

+ k2
M2

s

ρ2
s

(
Hi

s U
i
)2 + k3

M2
s

ρ2
s

H i
s H

i
s , (2.8)

and contains five next-to-leading-order (NLO) effective con-
stants (e1,e2,k1,k2,k3) whose numerical values have to be
determined or estimated to make the effective field theory
predictive (see below).

We now comment on an important issue related to
Lorentz invariance. The leading and next-to-leading effective
Lagrangians are Lorentz invariant. In view of the fact that
the underlying bipartite lattices are not even space-rotation
invariant, why is our approach legitimate? The first observation
is that the leading piece L2

eff is strictly (pseudo-)Lorentz
invariant, the spin-wave velocity v taking the role of the speed
of light. This accidental symmetry emerges because lattice
anisotropies only show up at order p4 (and beyond) in the
effective Lagrangian [61]. On the other hand, inL4

eff one should
include all additional terms that are permitted by the lattice
geometry. However, as we explain below, these effects only
start manifesting themselves at next-to-next-to leading order
in the low-temperature expansion which is beyond two-loop
accuracy we pursue in the present evaluation. This perfectly
justifies maintaining a (pseudo-)Lorentz-invariant structure
also in L4

eff .
In the following, we consider the scenario where the

magnetic field points into a direction perpendicular to the
staggered field

�H⊥ = (0,H,0), �Hs = (Hs,0,0). (2.9)

While we have chosen �H⊥ to point into the 1-direction, the
physics would be the same had we chosen the 2-direction. Note
that the staggered field points into the 0-direction, aligned with
the staggered magnetization order parameter or ground state
�U0 = (1,0,0).

The leading-order effective Lagrangian L2
eff gives rise to

the following magnon dispersion relations:

ωI =
√

�k2 + MsHs

ρs

+ H 2,

ωII =
√

�k2 + MsHs

ρs

. (2.10)

These results coincide with the expressions derived within
microscopic or phenomenological descriptions (see, e.g.,
Refs. [65,66]). Remarkably, one of the magnons is not affected

by the magnetic field. The structure of the dispersion relation
is relativistic in both cases, and the corresponding “magnon
mass terms” are identified as

M2
I = MsHs

ρs

+ H 2, M2
II = MsHs

ρs

. (2.11)

Note that the staggered field emerges linearly while the
dependence on the magnetic field is quadratic. If the fields are
switched off, we reproduce the linear and ungapped dispersion
relation (2.2).3

It is convenient to utilize dimensional regularization in the
perturbative evaluation of the partition function. The zero-
temperature propagators for antiferromagnetic magnons, in
presence of �Hs = (Hs,0,0) and �H⊥ = (0,H,0), amount to

�I,II (x) = (2π )−d

∫
ddp eipx

(
M2

I,II + p2)−1

=
∫ ∞

0
dρ (4πρ)−d/2e−ρM2

I,II −x2/4ρ, (2.12)

where MI and MII are defined in Eq. (2.11). The corresponding
thermal propagators in Euclidean space are given by

GI,II (x) =
∞∑

n=−∞
�I,II (�x,x0 + nβ), β = 1

T
. (2.13)

We emphasize that the magnetic and staggered fields are
treated as perturbations that explicitly break O(3) invariance
of the Heisenberg Hamiltonian. As long as these fields are
weak, the O(3) symmetry still is approximate, and our basic
setting is valid: it is conceptually consistent to start from
the collinear antiferromagnetic ground state and interpret the
two magnons as oscillations of the staggered magnetization
order parameter. It is well known, however, that in presence of
magnetic fields perpendicular to the staggered magnetization,
the spins get tilted, creating a canted (noncollinear) phase
(see, e.g., Refs. [25,45,51]). If the canting angle is large,
the magnetic field can no longer be considered as a small
perturbation. Rather, the canted phase should be chosen as the
starting configuration underlying the perturbative expansion.
Most importantly, since the spontaneous symmetry-breaking
pattern then is O(3) → 1, not two, but three Goldstone
fields emerge in the low-energy spectrum. This scenario, i.e.,
the low-temperature physics of canted phases, we postpone
for future studies; in the present investigation, we consider
weak magnetic fields where only two spin-wave branches are
relevant.

III. EVALUATION OF THE PARTITION FUNCTION

We now evaluate the partition function for the d = 2 + 1
antiferromagnet subjected to the magnetic and staggered fields
defined in Eq. (2.9). The relevant Feynman diagrams up to
two-loop order are shown in Fig. 1.4 The crucial point is that

3We have set the spin-wave velocity v to one.
4The perturbative evaluation of the partition function is described

in more detail in Sec. 2 of Ref. [62] and in Appendix A of
Ref. [67]. Regarding the effective Lagrangian technique in general,
the interested reader may consult Refs. [68–70].
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2 3 4b4a

4

FIG. 1. Low-temperature expansion of the partition function for
the d = 2 + 1 antiferromagnet: Feynman diagrams up to two-loop
order T 4. Filled circles refer to L2

eff , while the vertex associated with
the subleading piece L4

eff is represented by the number 4. Each loop
is suppressed by one power of T .

we are dealing with a systematic low-temperature expansion of
the partition function where each magnon loop is suppressed
by one power of temperature. The free Bose gas contribution is
given by the one-loop graph 3 (order T 3), while the two-loop
graph 4b is of order T 4.

The incorporation of a perpendicular magnetic field gen-
erates extra vertices that involve an odd number of magnon
lines. With respect to L2

eff , the explicit terms are proportional
to one time derivative and read as

iρsH (U 0∂0U
2 − U 2∂0U

0). (3.1)

These contributions, along with those originating from L4
eff ,

create vertices with 1,3,5, . . . magnon lines: in presence of a
perpendicular magnetic field, the set of Feynman diagrams has
to be extended by the graphs depicted in Fig. 2. Note that in
the diagrams depicted in Fig. 1, the magnetic field manifests
itself implicitly in the thermal propagator GI (x) through MI .

Before we present the results for the individual graphs,
let us recall how the free-energy density is defined in the
effective field theory framework. The basic quantity is the
partition function that can be expressed as a functional integral
in Euclidean space as follows:5

Tr [exp(−H/T )] =
∫

[dU ] exp

(
−

∫
T

d3x Leff

)
. (3.2)

The integration extends over all magnon field configurations
that are periodic in Euclidean time U (�x,x0 + β) = U (�x,x0),
with β ≡ 1/T . The quantity Leff represents the (full) effective
Lagrangian: Leff = L2

eff + L4
eff + O(p6). The first two terms

of its derivative expansion, L2
eff and L4

eff , are provided by
Eqs. (2.6) and (2.8), respectively. Again, for technical details
on the perturbative evaluation of the partition function,
Eq. (3.2), in effective field theory, we refer to Appendix A of
Ref. [67]. The free-energy density z in the infinite-volume limit
(or infinite-area limit because here we are in two spatial di-
mensions), can then be obtained from the partition function by

z = − T lim
L→∞

L−2 ln [Tr exp(−H/T )]. (3.3)

We may decompose the free-energy density into two pieces:

z = z0 + z(T ). (3.4)

5Introductions to finite-temperature field theory can be found,
e.g., in Chaps. 2 and 3 of the standard textbook by Kapusta and
Gale [71].

4c 4d

FIG. 2. Low-temperature expansion of the partition function for
the d = 2 + 1 antiferromagnet: additional Feynman diagrams up to
two-loop order T 4 emerging in presence of a perpendicular magnetic
field. Filled circles refer to L2

eff . Each loop is suppressed by one
power of T .

By definition, the first term z0 involves all contributions in z

that do not depend on temperature. These T = 0 contributions
will be relevant for the staggered magnetization and the
magnetization, but not for the pressure: the pressure is related
to z(T ), i.e., to the finite-temperature part in the free-energy
density [see below, Eq. (4.3)].

The tree graphs 2 and 4a merely contribute to z0, i.e., to the
energy density at zero temperature:

z2 = −MsHs − 1

2
ρsH

2,

z4a = −(k2 + k3)
M2

s H 2
s

ρ2
s

− k1
MsHs

ρs

H 2 − (e1 + e2)H 4.

(3.5)

The dominant temperature-dependent contribution comes
from one-loop graph 3:

z3 =−1

2
(4π )−d/2


(
−d

2

){
Md

I + Md
II

} − 1

2

{
gI

0 + gII
0

}

=−1

2

{
gI

0 + gII
0

} − 1

12π

{(
MsHs

ρs

+ H 2

)3/2

+
(

MsHs

ρs

)3/2}
. (3.6)

Note that the Gamma function is finite in two spatial dimen-
sions,

lim
d→3

1

2
(4π )−d/2


(
−d

2

)
= 1

12π
. (3.7)

The quantities gI
0 and gII

0 are the kinematical functions related
to the free magnon gas:

gI,II
r (Hs,H,T ) = 2

∫ ∞

0

dρ

(4πρ)d/2
ρr−1 exp

(−ρM2
I,II

)

×
∞∑

n=1

exp(−n2/4ρT 2). (3.8)

Next, the two-loop graph 4b contributes with

z4b = −MsHs

8ρ2
s

(
GI

1 − GII
1

)2 − H 2

2ρs

(
GI

1

)2

= −MsHs

8ρ2
s

{(
gI

1

)2 − 2gI
1gII

1 + (
gII

1

)2} − H 2

2ρs

(
gI

1

)2
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+ MsHs

16πρ2
s

{√
MsHs

ρs

+ H 2 −
√

MsHs

ρs

}
gI

1

+ H 2

4πρs

√
MsHs

ρs

+ H 2 gI
1

− MsHs

16πρ2
s

{√
MsHs

ρs

+ H 2 −
√

MsHs

ρs

}
gII

1 − M2
s H 2

s

64π2ρ3
s

− 5MsHsH
2

128π2ρ2
s

− H 4

32π2ρs

+ M
3/2
s H

3/2
s

64π2ρ
5/2
s

√
MsHs

ρs

+ H 2,

(3.9)

where G
I,II
1 are the thermal propagators evaluated at the origin

G
I,II
1 = GI,II (x)|x=0 = g

I,II
1 − MI,II

4π
. (3.10)

In the absence of the magnetic field, we have GI
1 = GII

1 , such
that the entire two-loop contribution vanishes.

Finally, the explicit evaluation of diagram 4c yields zero:

z4c = 0, (3.11)

while the sunset diagram amounts to

z4d = 2H 2

ρs

∫
T

ddx GI (x) ∂0G
I (x) ∂0G

II (x). (3.12)

This integral over the torus T = Rds × S1, with circle S1

defined as −β/2 � x0 � β/2, is divergent in the ultraviolet.
The renormalization of this expression and the evaluation
of the thermal sums is described in Appendix B. The finite
contribution to the free-energy density is given by

z4d = 2

ρs

s(σ,σH ) T 4. (3.13)

The dimensionless function s(σ,σH ) is defined in Eq. (B14),
and the dimensionless parameters σ and σH are

σ =
√

MsHs

2π
√

ρsT
, σH = H

2πT
. (3.14)

A plot of s(σ,σH ) is provided in Fig. 3.
Remarkably, up to two-loop order, the NLO effective con-

stants e1,e2,k1,k2,k3 only show up in the tree graph 4a. These
constants, that are a priori unknown, hence only matter in
temperature-independent contributions. The low-temperature
expansion, in particular the impact of the spin-wave interac-
tion, is governed by the leading effective Lagrangian L2

eff . Up
to two-loop order, the thermal properties of the d = 2 + 1
antiferromagnet are thus rigorously captured by our effective
field theory approach that is based on (pseudo-)Lorentz
invariance. The specific geometry of the underlying bipartite
lattice is irrelevant as far as the structure of the low-temperature
expansion is concerned. Alternatively, this can be seen as
follows. Lattice anisotropies modify the dispersion relation

ω(�k) = v|�k| + O(�k3) (3.15)

at order �k3: the specific terms and coefficients indeed depend
on the lattice geometry. While the linear term in the dispersion
relation yields the dominant contribution of order T 3 in the

s Σ,ΣH

0.0

0.5

1.0

ΣH

0.0

0.5

1.0

Σ

0.04

0.02

0.00

FIG. 3. The function s(σ,σH ), where σ and σH are the dimen-
sionless parameters σ = √

MsHs/(2π
√

ρsT ) and σH = H/(2πT ).

free-energy density, the corrections ∝ �k3 contribute at order
T 5 which is beyond our scope. Therefore our (pseudo-)
Lorentz-invariant framework is perfectly legitimate: we make
no mistake by merely considering the leading term in the
dispersion relation.

The lattice structure only reflects itself in the numerical
values of the leading-order effective constants ρs and Ms

that have been determined with high-precision loop-cluster
algorithms. For the square lattice [72], they read as

ρs = 0.1808(4)J, Ms = 0.30743(1)/a2,

v = 1.6585(10)Ja
(
S = 1

2

)
, (3.16)

for the honeycomb lattice [73] they are

ρs = 0.102(2)J, M̃s = 0.2688(3),

v = 1.297(16)Ja
(
S = 1

2

)
, (3.17)

with

M̃s = 3
√

3

4
Ms a2. (3.18)

Note that the spin stiffness ρs as well as Ms , much like the spin-
wave velocity v, are given in units of J (exchange integral)
and a (lattice size).

IV. LOW-TEMPERATURE SERIES

The low-temperature physics of the system can be captured
by various dimensionless ratios. As independent quantities we
define the parameters m, mH , and t as

m ≡
√

MsHs

2πρ
3/2
s

, mH ≡ H

2πρs

, t ≡ T

2πρs

. (4.1)

For the effective low-energy expansion to be consistent, the
temperature as well as the staggered and magnetic field
must be small compared to the scale � that characterizes
the microscopic system. The natural scale in the Heisenberg
antiferromagnet is the exchange integral J . In this study, we
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ΞP
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0.20

mH

0.00

0.05

0.10

0.15

0.20

m
0.0

0.2

0.4

ΞP

0.0

0.1

0.2

0.3

mH

0.0

0.1

0.2

0.3

m
0.0

0.1

0.2

0.3

FIG. 4. Spin-wave interaction manifesting itself in the pressure, measured by ξP (T ,Hs,H ), of d = 2 + 1 antiferromagnets as a function of
magnetic and staggered field at the temperatures T/2πρs = 0.02 (left) and T/2πρs = 0.1 (right).

define low temperatures and weak fields by

T ,H,MII (∝
√

Hs) � 0.3 J. (4.2)

The factors 2π in Eq. (4.1) were introduced in analogy to the
relevant scale in quantum chromodynamics (see Ref. [62]).
The point is that for the antiferromagnet, both on the square
and honeycomb lattice, the denominator 2πρs is of the order
of J . The parameters m,mH ,t hence measure temperature and
field strength relative to the underlying microscopic scale.

Whereas temperature and magnetic field can be arbitrarily
small, it should be noted that the staggered field can not be
switched off. This is a consequence of the Mermin-Wagner
theorem [55] and the fact that the staggered magnetization,
unlike the magnetization, represents the order parameter. As
we have discussed on previous occasions, the domain where
the effective expansion fails due to the smallness of the
staggered field is tiny. The interested reader is referred to
Figs. 2 and 3 of Ref. [63].

A. Pressure

If the system is homogeneous as in the present case, the
pressure is determined by the temperature-dependent part of
the free-energy density

P = −z(T ) = z0 − z. (4.3)

The quantities z0 and z(T ) are defined in Eq. (3.4). Introducing
dimensionless functions hi(m,mH,t) as

g0(m,mH,t) = T 3 h0(m,mH,t),

g1(m,mH,t) = T h1(m,mH ,t),

g2(m,mH,t) = h2(m,mH,t)

T
,

g3(m,mH,t) = h3(m,mH,t)

T 3
, (4.4)

the structure of the low-temperature series becomes more
transparent because powers of temperature are explicit. For

the pressure we get

P (T ,Hs,H ) = p̃1 T 3 + p̃2 T 4 + O(T 5),

p̃1(T ,Hs,H ) = 1

2

{
hI

0 + hII
0

}
,

p̃2(T ,Hs,H ) = m2

8ρst2

(
hI

1 − hII
1

)2 + m2
H

2ρst2

(
hI

1

)2

− m2

16πρst3
{
√

m2 + m2
H − m}(hI

1 − hII
1

)

− m2
H

4πρst3

√
m2 + m2

H hI
1 − 2

ρs

s(σ,σH ).

(4.5)

The dominant term of order T 3 (graph 3) corresponds to
the free Bose gas. The term of order T 4 (graphs 4b and 4d)
represents the leading interaction contribution. In the absence
of a perpendicular magnetic field, the spin-wave interaction
does not manifest itself at two-loop order: the corresponding
coefficient p̃2 is zero. On the other hand, if a perpendicular
magnetic field is present, the behavior of the system is quite
interesting: in Fig. 4 we depict the ratio

ξP (T ,Hs,H ) = Pint(T ,Hs,H )

PBose(T ,Hs,H )
= p̃2T

4

p̃1T 3
(4.6)

that measures strength and sign of the spin-wave interaction in
the pressure relative to the free Bose gas contribution. The plots
refer to the temperatures T/2πρs = 0.02 (left) and T/2πρs =
0.1 (right). As the figure suggests, irrespective of the strength
of the magnetic and staggered field, the interaction among
antiferromagnetic magnons is repulsive.6

6It has been argued previously that the limit Hs → 0 becomes
problematic in any thermodynamical observable. However, according
to Ref. [63], the error introduced in the pressure is tiny and not visible
in Fig. 4 of this work.
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FIG. 5. Spin-wave interaction manifesting itself in the staggered magnetization, measured by ξMs
(T ,Hs,H ), of d = 2 + 1 antiferromagnets

as a function of magnetic and staggered field at the temperatures T/2πρs = 0.02 (left) and T/2πρs = 0.1 (right).

B. Staggered magnetization

The staggered magnetization order parameter can be ex-
tracted from the free-energy density by

Ms(T ,Hs,H ) = −∂z(T ,Hs,H )

∂Hs

. (4.7)

The low-temperature series takes the structure7

Ms(T ,Hs,H ) = Ms(0,Hs,H ) + σ̃1T + σ̃2T
2 + O(T 3),

σ̃1(T ,Hs,H ) = − Ms

2ρs

(
hI

1 + hII
1

)
. (4.8)

The spin-wave interaction comes into play at order T 2. Again,
in zero magnetic field, there is no interaction term at two-loop
order: σ̃2(T ,Hs,0) = 0.

To explore the impact of the spin-wave interaction in the
order parameter, we consider the ratio

ξMs
(T ,Hs,H ) = Ms,int(T ,Hs,H )

|Ms,Bose(T ,Hs,H )| = σ̃2T
2

|σ̃1|T , (4.9)

that we depict in Fig. 5 for the temperatures T/2πρs =
{0.02,0.1}. The quantity ξMs

(T ,Hs,H ) is negative in the
parameter region we consider. Negative ξMs

means that if the
temperature is raised from T = 0 to finite T , while keeping
Hs and H fixed, the order parameter decreases due to the
spin-wave interaction.

Recall that it makes no sense to address the two-dimensional
system in very weak staggered fields within our framework
because the effective expansion breaks down when one
approaches the limit Hs → 0.8 In our plots we have chosen

7We do not display the coefficient σ̃2 since the expression is rather
lengthy; it can trivially be obtained from z4b given in Sec. III.

8A detailed discussion of how this relates to the Mermin-Wagner
theorem can be found at the end of Sec. 4 in Ref. [74].

the staggered field strength as

0.05 � m � 0.3, m =
√

MsHs

2πρ
3/2
s

. (4.10)

This guarantees that the effects we observe are indeed physical
and not just artifacts of our effective calculation extrapolated
to a forbidden parameter region.

At zero temperature, the order parameter is given by

Ms(0,Hs,H )

Ms

= 1 + m

4
+

√
m2 + m2

H

4
+ m2

8
+ 5m2

H

32

− m3

8
√

m2 + m2
H

− 3m m2
H

32
√

m2 + m2
H

+ 8π2ρs(k2 + k3) m2 + 4π2ρsk1 m2
H ,

m =
√

MsHs

2πρ
3/2
s

, mH = H

2πρs

,

Ms = Ms(0,0,0). (4.11)

In contrast to finite temperature, at T = 0, next-to-leading
order effective constants arise in the low-energy expansion
of the staggered magnetization. The actual values of these
constants depend on the underlying system and are not fixed
by the symmetries. They should be determined by numerical
simulations, comparison with microscopic calculations, or
through experiments. Unfortunately, in the case of the d =
2 + 1 antiferromagnet, none of these options seems to be
available.9 Still, their magnitude can be estimated. According
to Ref. [75] they are very small, of order

|k1| ≈ |k2| ≈ |k3| ≈ 1

64π3ρs

≈ 0.0005

ρs

, (4.12)

9The exception is Ref. [72] where the combination k2 + k3 of NLO
effective constants was determined using a loop-cluster algorithm.
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FIG. 6. Temperature-dependent part of the magnetization, measured by MT (T ,Hs,H ), of d = 2 + 1 antiferromagnets as a function of
magnetic and staggered field at T/2πρs = 0.02 (left) and T/2πρs = 0.1 (right).

much like the other NLO effective constants e1 and e2. It should
be noted that the above estimate concerns their magnitude, but
leaves open their signs. However, these corrections are small,
moreover, the dominant contributions in the series (4.11) do
not involve NLO effective constants.

At T = 0 and in zero magnetic field, the series is charac-
terized by powers of

√
Hs ,

Ms(0,Hs,0) = Ms + Ms
3/2

4πρ
3/2
s

√
Hs + 2Ms

2

ρ2
s

(k2 + k3) Hs

+O
(
H 3/2

s

)
, (4.13)

and in zero staggered field10 by powers of H ,

Ms(0,0,H ) = Ms + Ms

8πρs

H + Ms

ρs

{
k1 + 5

128π2ρs

}
H 2

+O(H 3). (4.14)

While the order parameter is indeed expected to increase
when the staggered field becomes stronger, the behavior with
respect to the magnetic field comes rather unexpectedly: in
the series (4.14), the term linear in H is small, but positive.
The order parameter thus increases when a weak perpendicular
magnetic field is applied. Notice that the subleading correction
(order H 2) involves the NLO effective constant k1 whose sign
remains open. Still, the behavior of the order parameter in weak
magnetic fields is dominated by the leading term that is strictly
positive. We emphasize that this result is universal in the sense
that the term of order H is the same for any bipartite lattice:
the only difference between, e.g., the square and honeycomb
lattice, concerns the actual values of the effective constants Ms

and ρs .
The phenomenon that the order parameter is enhanced by

an external magnetic field when the order parameter is already
present in zero magnetic field is called magnetic catalysis

10It is perfectly legitimate at T = 0 to consider the limit Hs → 0.
Only at finite T it is inconsistent to switch off the staggered field in
our effective field theory approach.

according to Ref. [76]. It has been observed in quantum
chromodynamics, where the quark condensate, i.e., the order
parameter of the spontaneously broken chiral symmetry,
increases at T = 0 in presence of a magnetic field [76–79].
Magnetic catalysis has also been reported in condensed matter
systems like graphene [80] and three-dimensional topological
insulators [81]. The fact that the staggered magnetization is
enhanced at T = 0 in square lattice antiferromagnets subjected
to a magnetic field perpendicular to the order parameter has
been reported in Ref. [48].

It should be pointed out, however, that the phenomenon of
magnetic catalysis, as it is discussed in the context of QCD or,
e.g., graphene, involves charged particles and Landau levels.
The mechanism of magnetic catalysis is thus rather subtle
and different from the mechanism that enhances the order
parameter in d = 2 + 1 antiferromagnets where no charged
particles are involved in its low-energy description. The fact
that the staggered magnetization grows in presence of a weak
perpendicular magnetic field is simply due to the suppression
of quantum fluctuations of the order-parameter vector by the
magnetic field. Therefore, although formally we are dealing
with “magnetic catalysis” according to the broad definition
given in Ref. [76], we rather refrain from using the term
“magnetic catalysis” in the present context of d = 2 + 1
antiferromagnets.

C. Magnetization

The low-temperature expansion of the magnetization,

M(T ,Hs,H ) = −∂z(T ,Hs,H )

∂H
, (4.15)

takes the form11

M(T ,Hs,H ) = M(0,Hs,H ) + σ̂1T + σ̂2T
2 + O(T 3),

σ̂1(T ,Hs,H ) = −HhI
1. (4.16)

11The coefficient σ̂2 can trivially be obtained from z4b given in
Sec. III.
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FIG. 7. Spin-wave interaction manifesting itself in the magnetization, measured by M int
T (T ,Hs,H ), of d = 2 + 1 antiferromagnets as a

function of magnetic and staggered field at the temperatures T/2πρs = 0.03 (left) and T/2πρs = 0.08 (right).

The free Bose gas contribution is proportional to one power
of temperature, while the spin-wave interaction is contained in
the T 2 term.

In Fig. 6, for the temperatures T/2πρs = {0.02,0.1}, we
plot the total temperature-dependent part of the magnetization

MT (T ,Hs,H ) = σ̂1T + σ̂2T
2

ρ2
s

. (4.17)

The quantity MT is negative in the entire parameter domain we
consider. Negative MT means that the magnetization decreases
when we go from from T = 0 to finite T while keeping Hs

and H fixed. This is what one would expect.
Remarkably, the quantity

M int
T (T ,Hs,H ) = σ̂2T

2

ρ2
s

, (4.18)

that only takes into account the spin-wave interaction part, is
positive as we illustrate in Fig. 7 that refers to the temperatures
T/2πρs = {0.03,0.08}. Positive M int

T (T ,Hs,H ) means that if
the temperature is raised from T = 0 to finite T , while keeping
Hs and H fixed, the magnetization grows due to the spin-wave
interaction. This result appears to be rather counterintuitive.
But, it is important to point out that we are dealing with
weak effects originating from the spin-wave interaction. The
dominant behavior at finite temperature is given by the
free Bose gas term. Indeed, the total temperature-dependent
magnetization (not just the interaction part), is strictly negative
according to Fig. 6.

Finally, at zero temperature, the magnetization amounts to

M(0,Hs,H )

ρ2
s

= 2π mH + π mH

√
m2 + m2

H + πm3
H

+ 5π

8
m2 mH − π

8

m3 mH√
m2 + m2

H

+ 32π3ρs(e1 + e2) m3
H + 16π3ρsk1 m2mH,

m =
√

MsHs

2πρ
3/2
s

, mH = H

2πρs

. (4.19)

Again, NLO effective constants e1,e2,k1 show up in subleading
corrections. If the magnetic field is switched off, the magneti-
zation tends to zero as it should:

lim
H→0

M(0,Hs,H ) = 0. (4.20)

In the limit Hs → 0, the expansion in the magnetic field
involves integer powers of H :

M(0,0,H ) = ρsH + H 2

4π
+

{
4(e1 + e2) + 1

8π2ρs

}
H 3

+O(H 4). (4.21)

The leading contributions are positive, whereas the sign of the
H 3-term remains open. The leading terms, however, do not
involve NLO effective constants, such that the magnetization
takes positive values in presence of the magnetic field. As
one would expect, the magnetization in the direction of the
magnetic field no longer is zero since the spins get tilted.

V. CONCLUSIONS

We have considered the low-energy properties of antifer-
romagnetic films subjected to magnetic fields perpendicular
to the staggered magnetization order parameter. Within ef-
fective field theory we have systematically derived the low-
temperature expansions for the free-energy density, pressure,
order parameter, and magnetization.

In presence of a weak magnetic field, the spin-wave
interaction in the pressure is repulsive, irrespective of the
strength of the magnetic and staggered field. The order
parameter decreases due to the spin-wave interaction, when
the temperature is raised from T = 0 to finite T , while keeping
Hs and H fixed. Finally, the magnetization, both at zero and
finite temperature, takes positive values: the spins get tilted
into the direction of the external perpendicular magnetic field.
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At zero temperature, both the magnetization and staggered
magnetization grow when a perpendicular magnetic field is
applied. While this behavior is expected for the magnetization,
the enhancement of the order parameter in presence of the
magnetic field comes rather unexpectedly.
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APPENDIX A: VERTICES WITH AN ODD NUMBER
OF MAGNON LINES

Magnetic fields perpendicular to the staggered magnetiza-
tion order parameter give rise to vertices that involve an odd
number of magnon lines. Explicitly, vertices with one magnon
line originate from

iρsH∂0U
2 + 2ik1

MsHs

ρs

H∂0U
2, (A1)

while vertices with three magnon lines are generated by

iρsH
{
U 2U 1∂0U

1 − 1
2∂0U

2U 1U 1 + 1
2∂0U

2U 2U 2
}

+ 2ik1
MsHs

ρs

H {U 1∂0U
1U 2 − ∂0U

2U 1U 1}

− 4i(e1 + e2)H∂0U
2∂0U

a∂0U
a + i(e1 + e2)

×H 3{4U 1∂0U
1U 2 + 2U 2∂0U

2U 2 − 6∂0U
2U 1U 1}

− 4ie1H∂0U
2∂rU

a∂rU
a − 4ie2H∂rU

2∂0U
a∂rU

a. (A2)

Note that we only consider contributions from L2
eff and L4

eff ;
higher-order pieces of the effective Lagrangian also yield such
vertices, but they do not contribute up to order p4 in the
partition function, as we argue below. The additional Feynman
diagrams that can be constructed from the expressions (A1)
and (A2) are depicted in Fig. 2. According to (A1), the
line emitted (or absorbed) by a one-magnon vertex always
corresponds to U 2. In case of a three-magnon vertex, according
to (A2), we either have U 2U 2U 2 or U 1U 1U 2; in particular,
three magnons of the same type U 1 are never emitted or
absorbed simultaneously.

An important observation that drastically reduces the
number of additional Feynman graphs is that the one-magnon
vertices from L2

eff and L4
eff are irrelevant. In the evaluation of

the partition function they lead to integrals of the form∫
d3x d3y d3z . . . (∂0)2GII (x − y)F(y,z, . . . ),

x = (x0,x1,x2), (A3)

where ∂0 is the Euclidean time derivative corresponding to
the coordinate x0. The function F(y,z, . . . ), depending on the
topology of the diagram, may contain an arbitrary number of
propagators that involve additional time and space derivatives.
But, the point is that,- irrespective of the complexity of the
diagram, the integration over the coordinates of the first
vertex, i.e., integration over the coordinates x0,x1,x2 of the
one-magnon vertex, is identically zero. One concludes that the
relevant new diagrams must involve vertices with at least three
magnon lines.

This then leads to the two-loop diagrams 4c and 4d of
Fig. 2. Any other diagram that involves vertices with an odd
number of magnon lines is at least of order p5, i.e., beyond
the scope of this study. Remarkably, the explicit evaluation of
diagram 4c yields zero,

z4c = 0, (A4)

while the sunset diagram contributes with

z4d = 2H 2

ρs

∫
T

ddx GI (x) ∂0G
I (x) ∂0G

II (x). (A5)

This integral over the torus T = Rds × S1, with circle S1

defined as −β/2 � x0 � β/2, is divergent in the ultraviolet.
In the subsequent appendix we show how to isolate the
singularities and how to evaluate the finite pieces.

APPENDIX B: EVALUATION OF THE SUNSET DIAGRAM

In order to process the integral (A5), we decompose the
thermal propagators GI,II (x) as

GI,II (x) = �I,II (x) + G
I,II

(x), (B1)

where the �I,II (x) are the zero-temperature propagators
defined in Eq. (2.12). The integral then takes the form

∫
T

ddx (G
I
∂0G

I
∂0G

II + �I ∂0G
I
∂0G

II + G
I
∂0�

I ∂0G
II + G

I
∂0G

I
∂0�

II + �I ∂0G
I
∂0�

II + �I ∂0�
I ∂0G

II

+G
I
∂0�

I ∂0�
II + �I ∂0�

I ∂0�
II ). (B2)

The first four integrals over the torus are convergent in d → 3. The four remaining integrals that involve two or three zero-
temperature propagators, however, are singular in the limit d → 3, and need to be considered in detail. Following Ref. [82], we
cut out a sphere of radius |S| � β/2 around the origin and write the respective integrals over the torus as

∫
T

ddx �I ∂0G
I
∂0�

II =
∫
S

ddx �I ∂0G
I
∂0�

II +
∫
T \S

ddx �I ∂0G
I
∂0�

II ,

∫
T

ddx �I ∂0�
I ∂0G

II =
∫
S

ddx �I ∂0�
I ∂0G

II +
∫
T \S

ddx �I ∂0�
I ∂0G

II
,
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∫
T

ddx G
I
∂0�

I ∂0�
II =

∫
S

ddx G
I
∂0�

I ∂0�
II +

∫
T \S

ddx G
I
∂0�

I ∂0�
II ,

∫
T

ddx �I ∂0�
I ∂0�

II =
∫
S

ddx �I ∂0�
I ∂0�

II +
∫
T \S

ddx �I ∂0�
I ∂0�

II . (B3)

The evaluation of the integrals over the complement of the torus T \ S poses no problems in d = 3. In the integral over the

sphere in line three, we subtract the piece gI
1 = G

I |x=0,

G
I → G

I − gI
1 , (B4)

while in the integrals over the sphere in lines one and two, we perform the subtractions

∂0G
I,II → ∂0G

I,II − ∂2
0 G

I,II |x=0 × x0. (B5)

Making use of

∂2
0 G

I,II
(x)|x=0 = g

I,II
0 + M2

I,II g
I,II
1 (d = 3), (B6)

we end up with∫
S

ddx �I ∂0G
I
∂0�

II =
∫
S

ddx �I
(
∂0G

I − x0
(
gI

0 + M2
I gI

1

))
∂0�

II +
∫
S

ddx �I x0
(
gI

0 + M2
I gI

1

)
∂0�

II ,∫
S

ddx �I ∂0�
I ∂0G

II =
∫
S

ddx �I ∂0�
I
(
∂0G

II − x0
(
gII

0 + M2
II gII

1

)) +
∫
S

ddx �I∂0�
I x0

(
gII

0 + M2
II gII

1

)
,∫

S
ddx G

I
∂0�

I ∂0�
II =

∫
S

ddx
(
G

I − gI
1

)
∂0�

I ∂0�
II +

∫
S

ddx gI
1 ∂0�

I ∂0�
II . (B7)

The subtracted integrals over the sphere on the right-hand side are convergent in d → 3. The second integrals on the right-hand
side we decompose further as∫

S
ddx �I x0

(
gI

0 + M2
I gI

1

)
∂0�

II =
∫
R

ddx �I x0
(
gI

0 + M2
I gI

1

)
∂0�

II −
∫
R\S

ddx �I x0
(
gI

0 + M2
I gI

1

)
∂0�

II ,

∫
S

ddx �I∂0�
I x0

(
gII

0 + M2
II gII

1

) =
∫
R

ddx �I∂0�
I x0

(
gII

0 + M2
II gII

1

) −
∫
R\S

ddx �I∂0�
I x0

(
gII

0 + M2
II gII

1

)
,

∫
S

ddx gI
1 ∂0�

I ∂0�
II =

∫
R

ddx gI
1 ∂0�

I ∂0�
II −

∫
R\S

ddx gI
1 ∂0�

I ∂0�
II . (B8)

The integrals over the complement R \ S are well defined. The integrals over all Euclidean space are finite in dimensional
regularization in the limit d → 3:

lim
d→3

∫
R

ddx �I x0
(
gI

0 + M2
I gI

1

)
∂0�

II = − MI + 2MII

12π (MI + MII )2

(
gI

0 + M2
I gI

1

)
,

lim
d→3

∫
R

ddx �I∂0�
I x0

(
gII

0 + M2
II gII

1

) =− 1

16πMI

(
gII

0 + M2
II g

II
1

)
,

lim
d→3

∫
R

ddx gI
1 ∂0�

I ∂0�
II = −M2

I + MIMII + M2
II

12π (MI + MII )
gI

1 . (B9)

Finally, the last integral in Eq. (B2) that contains three zero-temperature propagators is decomposed as∫
T

ddx �I ∂0�
I ∂0�

II =
∫
T \S

ddx �I ∂0�
I ∂0�

II +
∫
R

ddx �I ∂0�
I ∂0�

II −
∫
R\S

ddx �I ∂0�
I ∂0�

II . (B10)

The integrals over T \ S and R \ S are finite, but the integral over all Euclidean space is singular in d → 3. The corresponding
counterterm C,

C =
∫
R

ddx �I ∂0�
I ∂0�

II , (B11)

can be absorbed by NLO effective constants in z4a , Eq. (3.5).
In conclusion, the first four integrals in the sunset contribution (B2) are well defined and can be evaluated numerically in a

straightforward manner, using the fact that the integrals are two dimensional:

d3x = 2πr dr dt. (B12)
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The evaluation of the remaining four integrals in Eq. (B2) is more subtle, but can be handled within dimensional regularization
using the method established in Ref. [82]. In the limit d → 3, the final, and finite, representation for the free-energy density
originating from the sunset diagram 4d reads as

z4d = 2H 2

ρs

(∫
T
d3x T +

∫
T \S

d3x U +
∫
S
d3x V −

∫
R\S

d3x W + R

)
,

T = G
I
∂0G

I
∂0G

II + �I ∂0G
I
∂0G

II + G
I
∂0�

I ∂0G
II + G

I
∂0G

I
∂0�

II ,

U = �I ∂0G
I
∂0�

II + �I ∂0�
I ∂0G

II + G
I
∂0�

I ∂0�
II + �I ∂0�

I ∂0�
II ,

V = �I
(
∂0G

I − x0
(
gI

0 + M2
I gI

1

))
∂0�

II + �I ∂0�
I
(
∂0G

II − x0
(
gII

0 + M2
II gII

1

)) + (
G

I − gI
1

)
∂0�

I ∂0�
II ,

W = �I x0
(
gI

0 + M2
I gI

1

)
∂0�

II + �I∂0�
I x0

(
gII

0 + M2
II gII

1

) + gI
1 ∂0�

I ∂0�
II + �I ∂0�

I ∂0�
II ,

R = − MI + 2MII

12π (MI + MII )2

(
gI

0 + M2
I gI

1

) − 1

16πMI

(
gII

0 + M2
II g

II
1

) − M2
I + MIMII + M2

II

12π (MI + MII )
gI

1 . (B13)

In a last step, we collect all the above contributions in the dimensionless function s(σ,σH ),

z4d = 2

ρs

s(σ,σH ) T 4, (B14)

where the dimensionless ratios σ and σH are defined as

σ =
√

MsHs

2π
√

ρsT
= m

ρs

T
, σH = H

2πT
= mH

ρs

T
. (B15)

A plot of s(σ,σH ) is provided in Fig. 3. Note the final result for the function s(σ,σH ) must be independent of the size of the
sphere, which is an academic invention. We have verified that different sizes of the sphere indeed lead to the same s(σ,σH ).
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