
PHYSICAL REVIEW B 95, 134302 (2017)

Solvable model for a dynamical quantum phase transition from fast to slow scrambling
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We propose an extension of the Sachdev-Ye-Kitaev (SYK) model that exhibits a quantum phase transition from
the previously identified non-Fermi-liquid fixed point to a Fermi-liquid-like state, while still allowing an exact
solution in a suitable large-N limit. The extended model involves coupling the interacting N -site SYK model to a
new set of pN peripheral sites with only quadratic hopping terms between them. The conformal fixed point of the
SYK model remains a stable low-energy phase below a critical ratio of peripheral sites p < pc(n) that depends on
the fermion filling n. The scrambling dynamics throughout the non-Fermi-liquid (NFL) phase is characterized by
a universal Lyapunov exponent λL → 2πT in the low-temperature limit; however, the temperature scale marking
the crossover to the conformal regime vanishes continuously at the critical point pc. The residual entropy at T → 0,
nonzero in the NFL, also vanishes continuously at the critical point. For p > pc the quadratic sites effectively
screen the SYK dynamics, leading to a quadratic fixed point in the low-temperature and low-frequency limit. The
interactions have a perturbative effect in this regime leading to scrambling with Lyapunov exponent λL ∝ T 2.
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I. INTRODUCTION

Kitaev [1] recently gave an intriguing new interpretation
to a model of many fermions with all-to-all interactions,
introduced originally by Sachdev and Ye as a solvable
example of a non-Fermi liquid [2]. The work of Sachdev and
Ye followed by Parcollet and Georges [3] investigated the
saddle-point solution, which is exact in the thermodynamic
(large-N ) limit and realizes a nontrivial conformal fixed
point. The more recent work on this problem, initiated by
Kitaev [1,4–6], used a simplified version henceforth called
the Sachdev-Ye-Kitaev (SYK) model and focused on the
dynamics leading to ergodicity, chaos, and scrambling of
quantum information. These studies uncovered a remarkable
structure of the 1/N fluctuations in the SYK model and
established a direct connection to quantum gravity with a
black hole in AdS2 [1,4,5,7,8]. As in the case of a black hole,
the scrambling in this system is characterized by a Lyapunov
exponent λL = 2πkBT/h̄ that saturates the universal bound
established in Ref. [9]. In light of these results it is natural to
ask if there is a broader classification of matter according to
how it scrambles information. In particular one may ask if the
SYK model can be tuned through a dynamical phase transition
to a different state that does not scramble like a black hole.

Here we begin to address these questions by generalizing
the SYK model in a way that allows one to drive a quantum
phase transition between two low-energy fixed points. The two
fixed points entail very different scrambling dynamics, which
can be computed exactly in the large-N limit. Specifically we
consider the model shown schematically in Fig. 1, with two
species of fermions:

H = Hc + Hψ + Hcψ , (1)

where

Hc = 1

(2N )3/2

∑
ijkl

Jijklc
†
i c

†
j ckcl − μ

∑
i

c
†
i ci , (2a)

Hψ = 1

M1/2

∑
αβ

tαβψ†
αψβ − μ

∑
α

ψ†
αψα, (2b)

Hcψ = 1

(NM)1/4

∑
iα

(Viαc
†
i ψα + V ∗

iαψ†
αci). (2c)

The c fermions, on sites i = 1, . . . ,N , are described by the
SYK model [Eq. (2a)] with random four-fermion coupling
Jijkl drawn from a Gaussian distribution with zero mean
and variance |Jijkl|2 = J 2; Jijkl are properly antisymmetrized,
i.e., Jijkl = −Jjikl = −Jijlk and Jijkl = J ∗

klij . Here we have
adopted a version [8] of the SYK model with complex fermions
where one can tune the fermion density by changing the
chemical potential μ. The ψ fermions reside on a separate set
of “peripheral” sites α = 1, . . . ,M connected with each other
via hopping tαβ . Finally, there is a coupling Viα between the two
species of fermions. Both tαβ and Viα are complex Gaussian
random variables with zero mean and variances |tαβ |2 = t2

and |Viα|2 = V 2, respectively. The N - and M-dependent
prefactors in Eqs. (2) ensure a proper thermodynamic limit
for N,M → ∞ with a fixed ratio M/N = p. Evidently, our
model reduces to the original SYK model for p = 0.

Without the term in Eq. (2c), the model describes two
decoupled systems. The SYK Hamiltonian Hc is solvable in
the large-N limit and has an emergent conformal symmetry
at low energies [1,5,8]. As mentioned above, the model gives
rise to thermalization and many-body quantum chaos with
Lyapunov exponent, λL = 2πT (kB = 1,h̄ = 1), that saturates
the quantum limit, like a black hole in Einstein gravity [1,9].
The quadratic model alone is also solvable and of course it
does not exhibit scrambling.

In this paper we discuss the fate of the coupled system at
finite coupling strength V and show that the model leads to an
exactly solvable example of a transition between a non-Fermi
liquid (NFL) and a Fermi liquid (FL). Since the paper is long
and some parts are rather technical, we give an overview of
our results here. Our main results are summarized in Fig. 2.
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FIG. 1. The generalized SYK model. The SYK sites at the center
are coupled through random four-fermion coupling Jijkl . The sites at
the periphery are connected to the SYK sites and to each other via
random hoppings Viα and tαβ , respectively.

Overview of the results

The low-energy dynamics in the coupled system of SYK
fermions coupled to a cloud of noninteracting fermions is
crucially determined by the ratio of peripheral sites to SYK
sites, p = M/N . As shown in Fig. 2, if p is smaller than
a critical value pc(n), with n the fermion density, then the
dynamics is still controlled by a strong-coupling SYK-like
or NFL fixed point with the universal Lyapunov exponent
λL = 2πT . On the other hand, for p > pc the quadratic
fermions effectively screen the SYK interactions, leading to a
free low-energy fixed point, essentially a FL, characterized at
low temperatures by a Lyapunov exponent λL = AT 2 with a
nonuniversal prefactor, which is what one may expect if the
scrambling occurs via weak inelastic quasiparticle collisions.
The two phases are separated by a continuous quantum phase
transition at p = pc.

Interestingly, the critical ratio pc depends only on the
fermion density and not on the coupling V or the hopping

strength t . These couplings, however, determine the crossover
energy scales below which the two fermion species are
effectively coupled and the low-energy fixed-point behavior
ensue on the two sides of the transition. The crossover scales,
ωNFL and ωFL for the NFL and FL fixed points, respectively,
are shown schematically in Fig. 2(b) for the particle-hole
symmetric case at half filling, where pc = 1. The surprising
insensitivity of the NFL-FL phase boundary to any of the
basic energy scales of the model results from the fact that
the transition is between two fixed points, each with an
emergent low-energy conformal symmetry. As a result the
bare couplings drop out from the problem at low energies and
the transition is only dictated by entropic factors, as we discuss
later.

As depicted in Fig. 2(b), we explicitly show that λL = 2πT

in the entire NFL phase for p < 1 at half filling. This is not
a priori obvious as the marginal coupling V to peripheral
fermions could have given rise to correction to linear-T
coefficient of λL. We note that a strong-coupling fixed point
itself does not ensure the saturation of the chaos bound [10]. We
further extend our calculation of the Lyapunov exponent away
from the particle-hole symmetric situation, where there is an
additional emergent low-energy U(1) gauge symmetry [8,11],
and show that the entire NFL phase in Fig. 2(a) saturates the
upper bound on λL [9]. To our knowledge, this is the first
explicit calculation of λL for the SYK model [8] away from
half filling. Our results for λL imply that, even in the presence
of marginal coupling V and/or U(1) gauge symmetry, there
is an emergent SL(2,R) symmetry that leads to an effective
Schwarzian derivative action at low energy, as studied ex-
tensively for the original SYK model [5]. The direct transition
from a phase with fast scrambling, which saturates the quantum
bound to a slow scrambling phase, suggests there may be a dual
picture in terms of a phase transition involving the emergence
of a black hole at a critical point of quantum gravity.

The jump of λL across the NFL-FL phase boundary
might naively suggest a first-order transition, reminiscent
of first-order transition in AdS involving the emergence of
a black hole at finite temperature [12]. However, we show
that two-point functions for the fermions evolve continuously
across the transition. The original SYK model has a residual
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FIG. 2. (a) Phase diagram of the generalized SYK model in the plane of the average fermion filling n and the ratio p = M/N . The entire
NFL phase saturates the chaos bound, λL = 2πT [9]. The dashed line indicates half filling. (b) Phase diagram at half filling as a function of
p. A quantum phase transition separates the NFL and FL at p = 1. The latter scrambles with a much slower rate ∝ T 2. The NFL phase has a
residual zero-temperature entropy density S0 that vanishes continuously at the transition. The crossover scales ωNFL and ωFL for the respective
fixed-point behaviors collapse approaching the transition from both sides in the manner shown in the figure panel.
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zero-temperature entropy density S0 [1,8,13]. Using a thermo-
dynamic Maxwell relation and a Luttinger theorem for the NFL
fixed point, we show that the residual entropy continuously
vanishes at the transition, thereby signaling a fundamental
change of the low-energy many-body spectrum across the
transition.

We also would like to emphasize that having a transition at
a nonzero p in our model is rather unexpected. To demonstrate
this fact, we stress the difference between our model and
another natural extension of the SYK model. It is tempting
to consider a model with both quadratic and quartic couplings
of fermions on the same N sites. Since a model with only
quadratic coupling between the sites gives rise to a different
fixed point than the SYK model, one might naively expect a
phase transition separating the two fixed points at some finite
ratio of the quadratic-to-quartic couplings. However, in this
case the quadratic couplings are relevant and always lead to a
free fixed point in the low-energy limit [14]. Hence, in contrast
to the model we propose, such a system would not exhibit a
quantum critical point (QCP).

Before proceeding we mention that other generalizations of
the SYK model were introduced to explore different aspects of
the physics [15–17]. For example, Gu and Qi [15] considered a
chain of SYK sites coupled through local quartic interactions,
which allows one to study the relation between transport
coefficients and the butterfly effect in extended systems. Our
goal with the model we introduce is different. It is to allow
tuning of a quantum critical point separating phases with
distinct chaotic behavior.

The rest of the paper is organized as follows. In Sec. II we
discuss the coupled self-consistent equations for the Green’s
functions of the SYK fermions and the peripheral fermions.
From the solution we identify the critical point separating
the SYK-like phase from the weakly coupled Fermi liquid.
In Sec. III we compute the T = 0 entropy of the model,
showing how it vanishes continuously at the critical point.
The weak-coupling phase, unlike the SYK-like phase, has
vanishing zero-point entropy. In Sec. IV we turn to com-
pute four-point out-of-time-order (OTO) correlation functions,
which encapsulate the scrambling dynamics. The results are
discussed and summarized in Sec. V. We also describe
the contents of the respective sections in simple terms at
the beginning of each section so that readers could in principle
skip the technical parts. Some details of the calculations and
numerical computations are given in Appendixes A, B, and C
and in the Supplemental Material [18].

II. TWO-POINT FUNCTION AND THE QUANTUM
CRITICAL POINT

In this section we discuss the Green’s functions for
the two species of fermions and show how the quantum
phase transition as a function p is manifested in the single-
particle spectral properties. Here we are interested in the
disorder-averaged Green’s functions, G(τ ) = −〈Tτ c(τ )c†(0)〉
and G(τ ) = −〈Tτψ(τ )ψ†(0)〉, where τ is the imaginary time
and the overbar in 〈 · · · 〉 denotes averaging over realizations
of {Jijkl,tαβ,Viα}. For N → ∞ the Green’s functions can be
obtained either diagrammatically or, equivalently, from the

+
√

pΣc =

Σψ = 1√
p +

J2 V 2

t2V 2

FIG. 3. Self-energy diagrams that contribute at leading order in
1/N for a fixed ratio p = M/N . The bold lines represent Green’s
function G of the SYK sites and the double line the Green’s function
G for the peripheral sites. The dashed, dotted, and dashed-double
lines imply disorder averaging over Jijkl , Viα , and tαβ , respectively.

saddle point of an effective action functional obtained via the
replica formalism (see Supplemental Material [18]). In either
way we obtain the following self-consistent Schwinger-Dyson
equations:

G−1(iωn) = iωn + μ − 	J (iωn) − V 2√pG(iωn), (3a)

G−1(iωn) = iωn + μ − V 2

√
p

G(iωn) − t2G(iωn), (3b)

where ωn = (2n + 1)πT is the fermionic Matsubara fre-
quency and n an integer. The last two terms of each of the
equations above correspond to the self-energy diagrams of
Fig. 3. Due to the large-N limit and the disorder averaging,
only the “rainbow” diagram (Fig. 3), with the bare Green’s
function lines replaced by the dressed ones, contributes to the
interaction correction to the self-energy at leading order in
1/N [1,4], i.e.,

	J (τ ) = − J 2G2(τ )G(−τ ). (3c)

As in Refs. [2,8] we define the shifted self-energy 	̂(iω) =
	(iω) − μ in order to eliminate the chemical potential from
the equations. This shift only affects the behavior at τ = 0 and
therefore does not affect Eq. (3c) in the long time limit we are
interested in.

Below we show that the coupled self-consistency equa-
tions (3) lead to two distinct phases at T = 0, tuned by
the ratio p. Both phases enjoy an emergent low-energy
conformal symmetry, but with distinct scaling dimensions of
the fermions. In the NFL phase the SYK fermion spectral
function diverges at low frequency as 1/

√
ω, whereas the

self-energy is proportional to
√

ω. For the peripheral fermions
the situation is inverted; their spectral function is suppressed at
zero bias as

√
ω. The FL, on the other hand, exhibits a constant

spectral function at low energies for both species, whereas the
interaction self-energy Im	R

J (ω) ∼ ω2 is characteristic of a
FL. We show that the NFL-FL phase boundary in the n-p
plane [Fig. 2(a)] is determined by a Luttinger sum rule for the
NFL fixed point and completely impervious to bare energy
scales of the model, as discussed earlier. At the end of the
section, we verify our analytical results via numerical solution
of the self-consistency equations (3).
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A. Non-Fermi liquid

The solution for p < pc is found by first neglecting the
terms iωn and t2G(iωn) in Eqs. (3), with the expectation that
the solution will justify this omission in the low-frequency
limit. Without the omitted terms the equations assume the
following simple form in imaginary time:

∫ β

0
dτ1G(τ,τ1)[	̂J (τ1,τ

′) + V 2√pG(τ1,τ
′)] = −δ(τ − τ ′),

(4a)

V 2

√
p

∫ β

0
dτ1G(τ,τ1)G(τ1,τ

′) = −δ(τ − τ ′). (4b)

As in the pure SYK model, these equations along with
Eq. (3c) are invariant under arbitrary reparametrization of
imaginary time τ = f (σ ) with the following scaling of Green’s
functions and self-energy 	̂J :

G̃(σ,σ ′) = [f ′(σ )f ′(σ ′)]�cG(f (σ ),f (σ ′))
g(σ ′)
g(σ )

, (5a)

G̃(σ,σ ′) = [f ′(σ )f ′(σ ′)]�ψG(f (σ ),f (σ ′))
g(σ ′)
g(σ )

, (5b)

	̃J (σ,σ ′) = [f ′(σ )f ′(σ ′)]�	 	̂J (f (σ ),f (σ ′))
g(σ ′)
g(σ )

, (5c)

with f ′(σ ) = ∂f/∂σ . Here the scaling dimension for SYK
fermions is �c = 1/4, the peripheral fermions have the scaling
dimension �ψ = 3/4, and �	 = 3/4. The factor g(σ ), real in
imaginary time, is due to an additional emergent U(1) gauge
symmetry for the complex fermions as discussed in Ref. [8].

The conformal symmetry of the equations leads to solutions
with power-law forms

GR(ω) = �
e−i(π/4+θ)

√
Jω

, (6a)

GR(ω) = −
√

p

V 2�
ei(π/4+θ)

√
Jω, (6b)

	̂R
J (ω) = −π−1�3ei(π/4+θ) cos 2θ

√
Jω, (6c)

where we have performed the analytic continuation iωn →
ω + iη to obtain the retarded Green’s functions. The constant
�, determined by direct substitution of the power-law forms
into the conformal self-consistency equations (4), is given by

� =
(

(1 − p)π

cos 2θ

)1/4

. (7)

The parameter θ in Eqs. (6) is related to spectral asymmetry
and fermion filling through a Luttinger theorem [2,8]. We show
in Appendix B that for our model in the NFL fixed point the
Luttinger relation takes the form

n = 1

1 + p

[(
1

2
− θ

π

)
+ p

(
1

2
+ θ

π

)
− (1 − p)

sin 2θ

4

]
.

(8)

The derivation of this Luttinger relation only uses information
about G(ω), G(ω), and 	J (ω) for ω → 0, known from
the conformal limit, and ω → ∞, determined by fermion

anticommutation. Hence, the relation does not depend on a
cutoff or any other parameter of the model like V , t , or J .
To ensure −ImGR(ω), − ImGR(ω) > 0, θ is restricted to the
range [−π/4,π/4], which through the above Luttinger relation
determines the range of densities over which the solutions (6)
exist, namely,

p

1 + p
�n � 1

1 + p
. (9)

This defines a region on the p-n plane, shown in Fig. 2(a), in
which the NFL fixed point exists. We have verified numerically
that the above region coincides with the NFL phase (see the
Supplemental Material [18]). This implies that the NFL-to-FL
transition is only dictated by the constraint on analytical
properties of the Green’s function instead of the relative
strength of the bare coupling constants J , t , and V . The phase
θ changes continuously as the density is varied between the
lower phase boundary of the NFL, where θ = π/4, to the
upper boundary, where θ = −π/4. θ = 0 corresponds to the
particle-hole symmetric line at half filling, where the model
of Eq. (1) is essentially equivalent to a model of Majorana
fermions discussed in Sec. IV A.

We should further verify that the conformal Green’s
functions (6) solve the full self-consistency equations (3)
at low frequency by directly substituting them in the full
equations. This shows that the terms omitted from Eqs. (3)
to obtain Eq. (4) become negligible below a cutoff scale
ωNFL (see Appendix A). For example, at half filling ωNFL ∼
(V 4/t2J )(

√
1 − p/p) for p → 1. Hence, this characteristic

frequency scale associated with emergence of conformal
symmetry vanishes continuously at a critical point pc = 1 (at
half filling). As discussed in the introduction, the location
of the critical point depends only on n and p regardless of
the coupling strength V between the two species. However,
the coupling V does control the frequency scale at which the
low-energy fixed point emerges.

A defining feature of the NFL phase of this model, both
at half filling and away from half filling, is the singularity at
ω → 0 in the single-particle spectral functions. The density
of states (DOS) of the c fermions behaves as 1/

√
ω, as found

in the original model by Sachdev and Ye [2], whereas that
of the ψ fermions is suppressed at low frequency as

√
ω.

The latter is similar to the well-known zero-bias suppression
due to the combined effect of interaction and disorder [19].
The constant �, which determines the strength of the low-
frequency singularity, has a singular behavior as the system is
tuned toward the phase transition p → pc (or n → nc if the
density is used as a tuning parameter).

On the particle-hole symmetric line the strength of the
1/

√
ω peak in GR vanishes as (1 − p)1/4. At the same time the

strength of the
√

ω singularity in the DOS of the peripheral
fermions diverges as (1 − p)−1/4. The evolution of the low-
frequency singularity is quite different when approaching the
transition near top and bottom phase boundaries, away from
half filling. There, as θ → ±π/4, the singularities acquire a
strong asymmetry between positive and negative frequencies.
For example, near the lower phase boundary we take θ =
π/4 − δθ to find the leading behavior of the spectral functions
in the small detuning parameter δθ . The strength of the 1/

√
ω

singularity in the DOS of the c fermions diverges as 1/δθ1/4
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FIG. 4. Fermion density n, below half filling, as a function of the
chemical potential μ for p = 0.1, . . . ,0.9 (bottom to top curves) at
T = 0.025J . The dashed lines indicate respective critical densities
nc’s at the lower phase boundary in Fig. 2(a). The plateaus for
p = 0.1,0.3 imply the presence of an incompressible state at nc.

for ω > 0, but vanishes as δθ3/4 for ω < 0, whereas the DOS
of the peripheral ψ fermions vanishes as δθ1/4 for ω > 0
and as δθ5/4 for ω < 0. At the same time, the cutoff for the
conformal behavior collapses approaching the critical point as
∼ Jδθ1/2 for positive frequencies and as ∼ Jδθ5/2 for negative
frequencies.

The vanishing of the spectral functions for ω → 0± on the
upper (lower) boundaries may indicate a phase transition into
an incompressible state. To assess this possibility we solved
the self-consistency equations (3) numerically and obtained
the fermion density as a function of the chemical potential at
a fixed value of p. The results displayed in Fig. 2(b) indicate
a transition to an incompressible state, seen as a plateau in
the density. This incompressible state appears as a line in the
canonical phase diagram (part of the top and bottom phase
boundaries), but it covers a nonvanishing area in the grand-
canonical phase diagram μ versus p. For values of p closer to
1, we find a direct transition to a metallic (compressible) Fermi
liquid as is also seen in Fig. 4. See the Supplemental Mate-
rial [18] for more details of the transition away from half filling.

Our discussion so far pertained only to the T = 0 Green’s
functions. Later, for the sake of calculating the out-of-time-
order correlation functions, we need the analytic continuation
to low nonvanishing temperature. These Green’s functions are
obtained from the T = 0 solutions (6) using the conformal
symmetry as shown in Appendix A.

B. Fermi liquid

A different T = 0 solution of the self-consistency equations
[Eqs. (3)] emerges for p > pc(n). In this regime we first solve
Eqs. (3) by neglecting the interaction self-energy 	J (iωn) as
well as the free iωn terms. In the particle-hole symmetric case
μ = 0 (n = 1/2), we obtain the following Green’s functions:

GR(ω) = −i
1√

p(p − 1)

t

V 2
, (10a)

GR(ω) = −i

√
p − 1

p

1

t
, (10b)

which correspond to constant DOS. The above is a valid
physical solution of the full equations for p > pc = 1 and
frequencies much lower than an emergent cutoff scale ω0 ∼
(V 2/t)

√
p(p − 1) that vanishes at p = 1. Also on approaching

pc = 1 from above, the low-frequency DOS of the SYK
sites diverges as (p − 1)−1/2 and the DOS of the peripheral
sites vanishes as (p − 1)1/2, continuously merging with the
singularities G(ω) ∼ 1/

√
ω and G(ω) ∼ √

ω, respectively, on
the other side of the transition (p < pc).

To obtain the low-energy free fixed-point solution (10)
we have omitted the self-energy 	J (iωn) from the self-
consistency equations (3). We can now feed the solutions back
to a calculation of the low-frequency behavior of 	J . The
result will be valid for ω � ω0. Our starting point for this
calculation is the Fourier-transformed Eq. (3c),

	J (iωn) =
∫ β

0
dτeiωnτ	(τ )

= −J 2

β2

∑
n1,n2

G(iωn1 )G(iωn2 )G(iωn1 + iωn2 − iωn).

(11)

Carrying out the Matsubara summations and the analytical
continuation iωn → ω + iη gives (see Supplemental Mate-
rial [18])

Im	R
J (ω > 0)

= −J 2π

∫ ω1+ω2�ω

0
dω1dω2ρc(ω1)ρc(ω2)ρc(ω − ω1 − ω2)

(12)

for T = 0. In the low-frequency limit, ω � ω0, the in-
tegral can be evaluated using the constant DOS ρc =
−(1/π )ImGR(ω) = t/(π

√
p(p − 1)V 2), leading to

Im	R
J (ω) ≈ − J 2t3

2π2V 6

1

[p(p − 1)]3/2
ω2. (13)

Hence, the T = 0 quasiparticle decay rate becomes irrelevant
and vanishes as ω2 for ω → 0, as expected for a Fermi liquid.
At the same time the prefactor of the ω2 dependence diverges as
(p − 1)−3/2 for p → pc = 1, indicating the breakdown of the
Fermi liquid at the critical point. We obtain the FL crossover or
coherence scale to be ωFL ∼ (V 4/J t2)(p − 1) for p → 1 by
estimating the energy scale above which the interaction self-
energy effect becomes important, i.e., by comparing Im	R

J (ω)
with the V 2√pG(ω) term, which dominates in Eq. (3a) at the
FL fixed point (10). ωFL is shown schematically in Fig. 2(b).
At the FL fixed point, the saddle-point equations (3) have a
trivial emergent conformal symmetry with scaling dimensions
�c = �ψ = 1/2, corresponding to noninteracting fermions.

Hence, the model of Eq. (1) is an example of a solvable
model for NFL-FL transition. The transition has some simi-
larity with the overscreening to underscreening transition in
the multichannel SU(N ) Kondo impurity model [3]. However,
the nature of phases and phase transitions in the multichannel
SU(N ) Kondo model is quite different. That model does not
exhibit the emergent reparametrization symmetry, which is
explicitly broken by the Green’s function of the bath. For this
reason the overscreened NFL fixed point is not maximally
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FIG. 5. Numerical results for the single-particle spectral function on the full frequency range taken on (a)–(c) the SYK sites and (d)–(f) the
quadratic sites. The spectral functions are computed at T = 0.025J and varying values of p showing how the low-temperature singularities
vanish beyond the critical point.

chaotic [20]; hence, it should not have a holographic descrip-
tion in terms of a black hole.

C. Numerical results for spectral function across the QCP

To corroborate the analytical results discussed in the preced-
ing sections, we have solved the self-consistency equations (3)
numerically for the retarded Green’s functions GR(ω) and
GR(ω) over a range of p across the transition. The numerical
calculation is performed at finite temperatures.

Here we discuss the results for half filling, μ = 0. The
results away from half filling are discussed in the Supple-
mental Material [18]. In Fig. 5, we show the evolution of
spectral functions, ρc(ω) = −(1/π )ImGR(ω) and ρψ (ω) =
−(1/π )ImGR(ω), with p for the two species of fermions at
T = 0.025J and t = V = J . In the NFL phase [Figs. 5(a)
and 5(d)], the spectral functions match at low energies with the
finite-temperature spectral densities obtained in the conformal
limit, showing in particular the 1/

√
ω and

√
ω singularities

in GR(ω) and GR(ω), respectively. Upon crossing to the FL
side of the transition these singularities are rounded off even
at T = 0. This can be clearly seen deep inside the FL phase
for p = 1.5,2 [Figs. 5(c) and 5(f)].

In the next section, we show that the NFL-FL transition
also manifests itself in an intriguing way in the evolution of
low-temperature entropy.

III. ZERO-TEMPERATURE ENTROPY

The SYK model has an extensive zero-temperature residual
entropy [1,8,13] when the thermodynamic limit N → ∞ is
taken before taking the zero-temperature limit. The residual
entropy stems from a dense many-body energy spectrum with
level spacing ∼ e−N [9,13], even near the ground state. In
this sense, the low-energy spectrum of the SYK Hamiltonian
resembles the spectrum of usual quantum many-body systems
at high energies.

In this section, we investigate how the nonzero residual
entropy in the pure SYK model evolves as we add an increasing
number of peripheral sites (i.e., as a function of p) and in
particular how it changes upon crossing the phase transition.
The low-energy many-body level spacing in the FL state is
expected to vary as 1/N and hence residual entropy density
is strictly zero for FL. By using a thermodynamic Maxwell
relation and the Luttinger sum rule, discussed earlier, we
show that the residual entropy of the SYK-like phase vanishes
continuously as (1 − p) on approaching the transition at
half filling. We confirm our analytical result by numerical
computation of the low-temperature entropy.

To derive the residual entropy we adopt the scheme outlined
in Ref. [8]. The idea is to find the derivative (∂S/∂n)T =0 as
a function of the density n, then perform the integration to
the desired density in order to obtain the zero-temperature
entropy density S(T → 0) = S0. The derivative is found using
the Maxwell relation(

∂S

∂n

)
T

= −
(

∂μ

∂T

)
n

. (14)

The right-hand side was related in Refs. [8,21] to the
spectral asymmetry affected by θ . Specifically, (∂μ/∂T )n =
− ln(tan(π/4 + θ )) + O(T 2�c ). The derivation of this relation
is exactly the same here as in the SYK model [8].

Now we can use the Luttinger relation (8), connecting θ to
the density, to compute the entropy as an integral over θ :

S0(n) =S0(n0) +
∫ n

n0

dn ln(tan (π/4 + θ (n))). (15)

Here n0 refers to a reference density at which the T = 0
entropy is known. For example, at p = 0, for the pure
SYK model, the natural choices are either the empty state,
n0 = 0, or the completely filled state, n0 = 1, corresponding to
θ = ±π/4, respectively. In these cases we expect S0 = 0 [8].
For general p, this is not as straightforward since the NFL
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FIG. 6. The zero-temperature limit of the entropy as a function of
p. The analytic result using the Luttinger theorem and an assumption
S(T → 0) = 0 at the finite-density phase transition is compared to
a direct numerical evaluation of the low-temperature entropy and
extrapolations to T = 0 for various values of t .

phase only exists up to a lower (upper) critical density
nc = p/(p + 1) > 0 [nc = (p + 1)−1 < 1]. However, assum-
ing vanishing of the residual entropy at nc (upper and lower
phase boundaries), that is, S0(n0(θ = ±π/4)) = 0, we can take
one of the boundaries, e.g., θ = π/4, as the reference state to
obtain

S0(n(θ )) = 1 − p

1 + p

∫ θ

π/4
dθ ln ( cot(π/4 + θ ))

(
1

π
+ cos 2θ

2

)
.

(16)

At half filling (θ = 0), we get

S0(n = 1/2) = 1 − p

1 + p
SSYK(T = 0), (17)

where SSYK(T = 0)  0.46 [13,22] is the residual entropy
of the SYK model. Hence, the T = 0 entropy at half filling
vanishes continuously at the QCP as (1 − p). At fixed p < 1
the entropy vanishes upon approaching the upper and lower
phase as δS ∼ |n − nc| ln(1/|n − nc|).

We corroborate the analytic result for the residual entropy at
half filling with a numerical calculation of S(T ), extrapolated
to T = 0 using the linear-in-T behavior of the entropy in
the low-temperature conformal limit (see the Supplemental
Material [18]). Note that this extrapolation is hindered close
to the critical point due to collapse of the cutoff ωNFL beyond
which the entropy is no longer linear in T ; hence, the numerical
result is not accurate in this regime. The numerically calculated
values of the zero-temperature entropy are shown in Fig. 6 and
compared to the analytic curve.

Vanishing of the entropy at the critical point suggests a
fundamental change of the geometry in the dual gravity picture
of the transition, which involves elimination of the black
hole. Below we give further evidence to this view from the
perspective of the scrambling dynamics. We confirm that the
NFL-to-FL critical point marks a transition in the nature of
many-body quantum chaos.

IV. OUT-OF-TIME-ORDERED
CORRELATIONS: SCRAMBLING

Following Maldacena, Shenker, and Stanford [9], we
characterize the scrambling dynamics through a Lyapunov
exponent λL characterizing the four-point OTO correlation
functions. We find λL → 2πT , saturating the chaos bound [9]
in the conformal low-temperature limit, over the entire NFL
phase in Fig. 2(a).

The nontrivial (connected) part of the OTO correlation
function, e.g., 〈c†i (t)c†j (0)ci(t)cj (0)〉, appears at order 1/N

and is expected to grow as eλLt in the chaos regime. The
exact OTO correlation function in the SYK model can be
computed in the chaos regime, i.e., t � λ−1

L ln N at low
temperature [5]. Here we employ a simpler approach, due
to Kitaev [1,5], computing the 1/N contribution to the OTO
correlation function using a self-consistent Bethe-Salpeter-like
approximation after formulating the problem on a Keldysh
contour with four real-time segments (Appendix C). The
self-consistency equations are solved as an eigenvalue problem
where the kernel matrix is determined by the saddle-point
Green’s functions obtained in Sec. II. The eigenfunction
with eigenvalue 1 gives the self-consistent solution, which
is exponentially growing in the chaotic regime, but it cannot
capture the prefactor to the exponential growth.

Below we first obtain λL for the NFL at half filling for
T → 0 and show that even in the presence of marginal
coupling to peripheral fermions λL remains independent of p

or the coupling strengths V , t and retains its maximum possible
value 2πT . We also calculate λL away from half filling in the
whole NFL region [Fig. 2(a)] where there is an additional
emergent U(1) gauge symmetry [8]. We explicitly show that
λL = 2πT for the entire NFL phase as T → 0. Our results
imply that the emergent SL(2,R) symmetry, that leads to the
low-energy Schwarzian action in the original SYK model [5],
remains intact in the SYK-like phase even in the presence of
marginal coupling V and/or additional emergent U(1) gauge
symmetry [8,11]. The zero-temperature limit of λL changes
discontinuously at the critical point from 2πT in the NFL side
to λL ∝ T 2 in the FL side, marking the dynamical transition
between two distinct chaotic fixed points. At the same point the
cutoff scale for the limiting behaviors vanishes, allowing λL

to be a continuous function of p and T in spite of the apparent
discontinuity in the limiting low-T behavior.

A. Majorana fermion model

Before computing the OTO correlations in model (1), we
treat a closely related model of Majorana fermions, which
admits a much simpler calculation. The generalization to
complex fermions at arbitrary filling follows in Sec. IV B.
The model consists of two species of Majorana fermions: χi

in place of the complex fermion ci on sites i = 1, . . . ,N and ηα

in place of the fermion ψα on sites α = 1, . . . ,M (see Fig. 1).
Specifically, we consider the following Hamiltonian:

H = 1

4!

∑
ijkl

Jijklχiχjχkχl + i

2!

∑
αβ

tαβηαηβ + i
∑
iα

Viαχiηα,

(18)
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where Jijkl , tαβ , and Viα are all real; Jijkl and tαβ are
fully antisymmetric and 〈J 2

ijkl〉 = J 23!/N3, 〈t2
αβ〉 = t2/M , and

〈V 2
iα〉 = V 2/

√
NM with p = M/N as in the complex fermion

case. The model leads to the same large-N saddle-point
equations as in Eqs. (3) with μ = 0, for the Green’s functions
G(τ ) = −〈Tτ χi(τ )χi(0)〉 and G(τ ) = −〈Tτ ηα(τ )ηα(0)〉. At
p = 0, this reduces to the version of the SYK model proposed
by Kitaev [1].

The OTO correlations used to diagnose quantum chaos
involve four Majorana operators. For example, the OTO
correlation on two SYK sites is expected to take the form

〈χi(t)χj (0)χi(t)χj (0)〉  f0 − f1

N
eλLt + O

(
1

N2

)
(19)

and is expected to hold up to some intermediate time scale
t � t∗  (1/λL) ln(N ), called the scrambling time. This is
the time over which the OTO correlation decays to small
values and information encoded in local observables is lost
to operators encompassing the entire system [9]. Here λL is
the Lyapunov exponent [23], or scrambling rate, which obeys
a universal upper bound λL � 2πT [9].

In our model (18), due to the coupling between the SYK
fermions χi and the peripheral sites ηα , the OTO correlation
(19) cannot be found independently of the correlation func-
tion describing “cross scrambling” of the SYK sites with
the peripheral fermions. Specifically, we compute the fol-
lowing two coupled four-point functions, Fχχχχ = F1 and
Fηηχχ = F2:

F1(t1,t2) = 1

N2

∑
ij

Tr[yχi(t1)yχj (0)yχi(t2)yχj (0)], (20a)

F2(t1,t2) = 1

NM

∑
iα

Tr[yηα(t1)yχi(0)yηα(t2)yχi(0)]. (20b)

Here we used a modified version of the OTO correlations,
in which the four operators are rotated from each other by
1/4 of the thermal circle, i.e., y4 = e−βH/Z. This modified
OTO correlation was introduced in Ref. [9] for computational
convenience. The operator y helps to regularize the four-point
function in the conformal limit [5,9].

= J2

0t1
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t4 0

+ V 2√p F2

0

t2

t1 t3

t4 0

=
V 2
√

p

0

0t2

t1 t3

t4

+ t2 F2

0

t2

t1 t3

t4 0

t1

F1

0

t2 0

F2

t2

t1 0

0

F1

F1

FIG. 7. Diagrammatic illustration of the self-consistency equa-
tion [Eq. (22)] for 1/N part of the OTO correlation function for
Majorana fermions. Solid lines represent the Green’s function G, and
double lines represent G. The kernel of Eq. (23) is obtained from the
above diagrams for large but intermediate times t1,t2 in the chaos
regime [1].

Both the four-point functions [Eqs. (20)], F = F1,F2, can be
obtained diagrammatically in the form (see Appendix C)

F (t1,t2)  F (0)(t1,t2) + 1

N
F(t1,t2) + O

(
1

N2

)
, (21)

where F (0) corresponds to O(1) disconnected diagrams from
contractions with the dressed propagator obtained from the
saddle-point equations (3). The 1/N piece F comes from
ladder diagrams (see Appendix C). Following Refs. [1,5], we
obtain F via self-consistent equations represented diagram-
matically in Fig. 7,

F1(t1,t2) =
∫

dt3dt4[K11(t1,t2,t3,t4)F1(t3,t4)

+K12(t1,t2,t3,t4)F2(t3,t4)], (22a)

F2(t1,t2) =
∫

dt3dt4[K21(t1,t2,t3,t4)F1(t3,t4)

+K21(t1,t2,t3,t4)F2(t3,t4)], (22b)

with the kernel

K =
(

K11 K12

K21 K22

)


(
3J 2GR(t13)GR(t24)G2

lr (t34) −V 2√pGR(t13)GR(t24)

− V 2√
p
GR(t13)GR(t24) −t2GR(t13)GR(t24)

)
. (23)

Here t13 = t1 − t3, for example, and Glr (t) ≡ iG(it + β/2) is
the Wightmann correlator that can be obtained by analytically
continuing G(τ ) via τ → it + β/2 [5].

One can recast Eqs. (22) in the form of an eigenvalue
equation, K|F〉 = k|F〉, with eigenvalue k = 1. Anticipating
chaotic dynamics we assume the following ansatz for the
function F :

|F〉 =
(F1(t1,t2)

F2(t1,t2)

)
= eλL

(t1+t2)
2

(
f1(t12)

f2(t12)

)
. (24)

The Lyapunov exponent λL > 0 can be obtained by computing
the eigenvalue k and setting the condition k(λL) = 1 [5].

Using Eq. (24) in Eqs. (22) with the form of the kernel in
Eq. (23), we obtain the eigenvalue equation in terms of the
Fourier transforms fa(ω) = ∫ ∞

−∞ dteiωtfa(t) (a = 1,2),

|GR(ω̃)|2
(

3J 2
∫ ∞

−∞
dω′glr (ω − ω′)f1(ω′) + V 2√pf2(ω)

)

= kf1(ω), (25a)

|GR(ω̃)|2
(

V 2

√
p

f1(ω) + t2f2(ω)

)
= kf2(ω), (25b)

where glr (ω)=− ∫ ∞
−∞(dt/2π )G2

lr (t)eiωt and ω̃=ω+iλL/2.
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Lyapunov exponent in the NFL conformal limit. We now
solve the above eigenvalue problem analytically in the confor-
mal limit for T → 0 in the NFL phase. Using the conformal
Green’s functions of Eqs. (A4) and eliminating f2 between
Eqs. (25a) and (25b), we obtain a single integral equation (see
Appendix C),

κ
|�(

1
4 + h

2 + iu
)|2

|�(
3
4 + h

2 + iu
)|2

∫ ∞

−∞
du′

∣∣∣∣�
(

1

2
+ i(u − u′)

)∣∣∣∣
2

f1(u′)

=
(

k − p

k

)
f1(u), (26)

where κ = (3/4π )(1 − p), λL ≡ 2πhT , and u = ω/(2πT );
�(x) denotes the gamma function. As shown in Appendix C,
the following eigenfunction solves the integral equation:

f1(u) =
∣∣∣∣�

(
1

4
+ h

2
+ iu

)∣∣∣∣
2

, (27)

provided that

3(1 − p)

1 + 2h
=

(
k − p

k

)
. (28)

The self-consistent solution of Eqs. (22) is obtained by setting
k = 1 in Eq. (28), leading to h = 1, or the Lyapunov exponent

λL = 2πT . (29)

This implies that the entire NFL phase saturates the chaos
bound for p < 1 at half filling. This result does not apply at
the QCP, since the cutoff for the conformal regime vanishes at
p = 1 (Appendix A). We leave the low-temperature scram-
bling dynamics at the QCP for future studies.

In the time domain, Eq. (27) gives

f1(t) ∝ [cosh(πt/β)]−(h+1/2), (30)

the same as that obtained for the SYK model [5]. The other
component f2, corresponding to Fηηχχ [Eq. (20b)],

f2(t) ∝JT

V 2

√
p

1 − p

1

[cosh(πt/β)](3/2+h)
, (31)

is suppressed by a factor ∝ T relative to f1 as T → 0.

B. Lyapunov exponent for arbitrary filling in the NFL phase

We now generalize the calculation of the low-temperature
Lyapunov exponent to arbitrary filling in the NFL phase
for the complex fermion model (1). In this case, we need
to consider the following four coupled out-of-time-order
correlation functions:

F1(t1,t2) = 1

N2

∑
ij

T r[yc
†
i (t1)yc

†
j (0)yci(t2)ycj (0)], (32a)

F2(t1,t2) = 1

N2

∑
ij

T r[yci(t1)yc
†
j (0)yc

†
i (t2)ycj (0)], (32b)
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FIG. 8. Diagrammatic representation of the self-consistent ap-
proximation for the 1/N parts of the out-of-time-order functions for
complex fermions.

F3(t1,t2) = 1

NM

∑
iα

T r[yψ
†
α(t1)yc

†
i (0)yψα(t2)yci(0)],

(32c)

F4(t1,t2) = 1

NM

∑
iα

T r[yψα(t1)yc
†
i (0)yψ

†
α(t2)yci(0)].

(32d)

As in the case of Majorana fermions, we estimate the
1/N part, |F〉 = (F1,F2,F3,F4)T , of the above four-point
functions using the self-consistent approximation shown in
Fig. 8. As before, this leads to the eigenvalue equation
K|F〉 = k|F〉, with the self-consistent solution obtained for
the eigenvalue k = 1. The nonzero elements of the 4×4 kernel
can be approximated in the chaos regime as

K11 = 2J 2GA(t31)GR(t24)G+
lr (t43)G−

lr (t34),

K12 = −J 2GA(t31)GR(t24)G+
lr (t43)G+

lr (t43),

K21 = −J 2GR(t13)GA(t42)G−
lr (t34)G−

lr (t34),

K22 = 2J 2GR(t13)GA(t42)G−
lr (t34)G+

lr (t43),

K13 = V 2√pGA(t31)GR(t24), K31 = V 2

√
p
GA(t31)GR(t24),

K24 = V 2√pGR(t13)GA(t42), K42 = V 2

√
p
GR(t13)GA(t42),

K33 = t2GA(t31)GR(t24), K44 = t2GR(t13)GA(t42).

There are two Wightmann correlators above, G+
lr (t) =

iG(it + β/2) and G−
lr (t) = iG(it − β/2). The retarded and

advanced Green’s functions are obtained as GR(t) =
iθ (t)[G(it + η) − G(it−η)] and GA(t)= iθ (−t)[G(it−η) −
G(it + η)], respectively.
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We obtain the Lyapunov exponent for T → 0 by using the conformal Green’s functions of Appendix A in the kernel written
above. In this limit, the elements of the kernel are

K =

⎛
⎜⎜⎜⎜⎜⎝

K1e
i α

β
(t12−t34) 1

2K1 tan
(

π
4 + θ

)
e
i α

β
(t12+t34)

K2e
i α

β
(t12−t34) 0

1
2K1 cot

(
π
4 + θ

)
e
−i α

β
(t12+t34)

K1e
−i α

β
(t12−t34) 0 K2e

−i α
β

(t12−t34)

K3e
i α

β
(t12−t34) 0 K4e

i α
β

(t12−t34) 0

0 K3e
−i α

β
(t12−t34) 0 K4e

−i α
β

(t12−t34)

⎞
⎟⎟⎟⎟⎟⎠, (33)

where α = ln ( tan(π/4 + θ )) and

K1(t1,t2,t3,t4) = π (1 − p)G̃R(t13)G̃R(t24)G̃2
lr (t34), (34a)

K2(t1,t2,t3,t4) = V 2√p

J
�2G̃R(t13)G̃R(t24), (34b)

K3(t1,t2,t3,t4) = J
√

pπ2

4V 2�2
G̃R(t13)G̃R(t24), (34c)

K4(t1,t2,t3,t4) = t2Jpπ2

4V 4�2
G̃R(t13)G̃R(t24), (34d)

with G̃R(t) = θ (t)/(β sinh(πt/β))1/2, G̃R(t) = θ (t)/
(β sinh(πt/β))3/2, and G̃lr (t) = 1/(β cosh(πt/β))1/2.

We transform K → K̃ by absorbing the exponential
phase factors into eigenvector |F〉 via the transformation
ei(α/β)t12 (F1,F3) = (F̃1,F̃3) and e−i(α/β)t12 (F2,F4) = (F̃2,F̃4).
The eigenvalue equation K̃|F̃〉 = k|F̃〉 is solved by the ansatz
|F̃〉 = eλL(t1+t2)/2(af1(t12),bf1(t12),f2(t12),f3(t12))T .

As earlier, we obtain four coupled integral equations,

|G̃R(ω̃)|2
[
κ1

∫ ∞

−∞
dω′g̃lr (ω − ω′)f1(ω′) + V 2√p�2f2(ω)

]

= kaf1(ω), (35a)

|G̃R(ω̃)|2
[
κ2

∫ ∞

−∞
dω′g̃lr (ω − ω′)f1(ω′) + V 2√p�2f3(ω)

]

= kbf1(ω), (35b)

√
pπ2

4V 4�2
|G̃R(ω̃)|2[V 2af1(ω) + t2√pf2(ω)] = kf2(ω), (35c)

√
pπ2

4V 4�2
|G̃R(ω̃)|2[V 2bf1(ω) + t2√pf3(ω)] = kf2(ω), (35d)

for the Fourier transforms, fa(ω), of fa(t) (a = 1,2,3). Here
ω̃ = ω + iλL/2, κ1 = π (1 − p)(a + 1

2 tan(π
4 + θ )b), κ2 =

π (1 − p)( 1
2 cot(π

4 + θ )a + b), and

FR(z) =
∫ ∞

−∞
dtFR(t)eizt (Imz > 0)

= T 2�−1�
(
� − iz

2πT

)
�(2�) sin(2π�)�

(
1 − � − iz

2πT

) , (36a)

g̃lr (ω) =
∫ ∞

−∞

dω

2π
eiωt G̃2

lr (ω) = 1

2π2

∣∣∣∣�
(

1

2
+ iω

2πT

)∣∣∣∣
2

,

(36b)

with FR = G̃R,G̃R for � = 1/4 and � = 3/4, respectively.
We can eliminate f2,f3 from from the first two of Eqs. (35)
by using the last two equations. As T → 0, by defining
h = λL/2πT and u = ω/2πT , we obtain

κ1

2π2

∣∣�(
1
4 + h

2 + iu
)∣∣2∣∣�(

3
4 + h

2 + iu
)∣∣2

∫ ∞

−∞
du′

∣∣∣∣�
(

1

2
+ i(u − u′)

)∣∣∣∣
2

f1(u′)

=
(

k − p

k

)
af1(u),

κ2

2π2

∣∣�(
1
4 + h

2 + iu
)∣∣2∣∣�(

3
4 + h

2 + iu
)∣∣2

∫ ∞

−∞
du′

∣∣∣∣�
(

1

2
+ i(u − u′)

)∣∣∣∣
2

f1(u′)

=
(

k − p

k

)
bf1(u).

The above is diagonalized in the frequency space by f1(u) =
|�( 1

4 + h
2 + iu)|2, as in Eq. (27) for Majorana fermions. As a

result we obtain the following eigenvalue equation:

(
1 1

2 tan
(

π
4 + θ

)
1
2 cot

(
π
4 + θ

)
1

)(
a

b

)
= lk(h)

(
a

b

)
, (37)

where lk(h) = (k − p/k)(1 + 2h)/[2(1 − p)]. The eigenval-
ues are found to be lk(h) = 1/2,3/2. The self-consistent
solution (k = 1) leads to h = 0,1. The latter gives rise to
scrambling with the universal Lyapunov exponent λL = 2πT .
Hence, the entire NFL phase saturates the chaos bound [9].

C. Numerical calculation of the Lyapunov exponent

We have numerically computed λL for half filling at finite
temperature by solving the eigenvalue equation (25) after dis-
cretization over frequency ω. The quantities GR(ω + iλL/2),
GR(ω + iλL/2), and glr (ω) appearing in Eq. (25) have been
obtained from the numerical solution of the saddle-point
equations (3). We solve for the eigenvalues {k(λL)} for a
given λL and look for λL that satisfies k(λL) = 1. We find
the eigenvalue k = 1 to be nondegenerate.

The numerical result for λL as a function of T is shown
in Fig. 9(a) over a range of p across QCP. The numerical
data are consistent with the ratio h = λLβ/2π approaching 1
in the NFL phase within the temperature range that could be
accessed. As shown in Fig. 9(b), for p > 1, the temperature
dependence of λL is consistent with a T 2 behavior as expected
for a Fermi liquid. This is clearly evident deep in the FL phase
for p � 2.
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FIG. 9. Numerical results for the temperature dependence of the Lyapunov exponent for various values of p at half filling. (a) h = λLβ/2π

versus T across the QCP. The difference in the asymptotic low-temperature behaviors of h in the NFL and FL phases is evident. (b) T 2

dependence of the Lyapunov exponent deep in the FL phase at low temperature. The symbols are numerical results and the lines are fits with
λL ∝ T 2.

V. CONCLUSIONS

In this paper we introduced a solvable model that exempli-
fies a transition between two classes of many-body quantum
chaos. The model is an extension of the SYK model [1,2],
with interacting fermions residing on N core sites coupled
to a cloud of noninteracting fermions on M peripheral sites.
The model is solvable in the scaling limit N,M → ∞, with
p = M/N kept constant. The parameter p tunes the system
through a quantum phase transition from the non-Fermi-liquid
state established in the pure SYK model to a Fermi-liquid-like
phase in which the peripheral fermions screen the interacting
core. The residual entropy at T → 0, which is nonzero in
the NFL phase, vanishes continuously upon crossing the
critical point. The two phases represent qualitatively different
classes of chaotic dynamics embodied in the structure of
out-of-time-order correlations. Throughout the NFL phase
the Lyapunov exponent, or scrambling rate, characterizing
the emergence of chaos, saturates the quantum bound in the
low-temperature limit, i.e., λL = 2πT . In the Fermi-liquid
phase, on the other hand, the scrambling rate is perturbative in
the interactions between fermions in the core giving λL ∝ T 2

with a nonuniversal prefactor.
The results we have presented for the Lyapunov exponents

on either side of the transition are invalidated at the critical
point itself. Hence, we postulate that this point represents a new
dynamical universality class, which would be an interesting
topic for further study. It would also be interesting to
understand the holographic interpretation of the transition. The
non-Fermi-liquid phase has an established correspondence
with a quantum black hole in AdS2, which plays the role of the
fast scrambler. Therefore, the transition to the free fixed point
should correspond to a fundamental change in the geometry
that eliminates the black hole. Such correspondence might
help to gain insight into the question of black hole evaporation
by studying quench across the quantum critical point in our
model.

In the model considered here the quantum critical point
separates states with fast and slow scrambling. It is natural to
ask if further modification of the model is possible that would

bring the chaotic modes to a complete halt while still allowing
full analytic control in the large-N limit. Such a solvable model
will give us much needed insight into the nature of the many-
body localization (MBL) transition. We show elsewhere [24]
that a natural generalization of the model discussed here could
be used to model a large rare ergodic region within a MBL
system. This has implications on the potential instability of
MBL in higher dimensions discussed in Ref. [25].
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APPENDIX A: GREEN’S FUNCTIONS IN THE NFL PHASE

In this Appendix, we obtain the zero- and finite-temperature
Green’s functions in the conformal limit for the SYK phase.
These conformal Green’s functions are used to compute the
T = 0 entropy (Sec. III) and out-of-time-ordered four-point
functions (Sec. IV).

At T = 0, the imaginary-time functions F (τ ) = G(τ ),G(τ )
are obtained from the retarded Green’s functions in Eqs. (6)
via spectral representation

F (τ ) = −
∫

dω
ρ(ω)

e−βω + 1
e−ωτ (0 < τ < β)

=
∫

dω
ρ(ω)

eβω + 1
e−ωτ (−β < τ < 0), (A1a)

where ρ(ω) = ρc(ω),ρψ (ω) are the spectral functions for the
SYK and peripheral sites, respectively. These lead to

G(τ ) = −� sin

(
π

4
+ θ

)
1√
πJτ

(0 < τ )

= � cos

(
π

4
+ θ

)
1√−πJτ

(τ < 0), (A2a)
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G(τ ) = −
√

pπJ 2

2V 2�
sin

(
π

4
+ θ

)
1

(πJτ )3/2
(0 < τ )

=
√

pπJ 2

2V 2�
cos

(
π

4
+ θ

)
1

(−πJτ )3/2
(τ < 0).

(A2b)

Using Eq. (3c) and the first equation above we can obtain
the interaction self-energy,

	̂J (τ ) = − J 2�3

2
cos 2θ sin

(
π

4
+ θ

)
1

(πJτ )3/2
(0 < τ )

= J 2�3

2
cos 2θ cos

(
π

4
+ θ

)
1

(−πJτ )3/2
(τ < 0),

(A3)

which leads to Eq. (6c). The latter along with Eqs. (6a)
and (6b) constitute the self-consistent solution of Eqs. (3) at
low energies as can be easily verified.

The conformal symmetry of Eqs. (5) allows one to obtain
the finite-T Green’s functions from T = 0 results [Eqs. (A2)]
via conformal transformation, e.g., τ = (β/π ) tan(πσ/β) [8],
from the infinite line, −∞ < τ < ∞, to the circle 0 < τ < β.
The finite-T Green’s functions are

G(τ )

= −� sin

(
π

4
+ θ

)
g(τ )(

βJ sin
(

πτ
β

)) 1
2

(0 < τ < β)

= � cos

(
π

4
+ θ

)
g(τ )(

βJ sin
( − πτ

β

)) 1
2

(−β < τ < 0),

(A4a)

G(τ )

= −
√

pπJ 2

2V 2�
sin

(
π

4
+ θ

)
g(τ )(

βJ sin
(

πτ
β

)) 3
2

(0 < τ < β)

=
√

pπJ 2

2V 2�
cos

(
π

4
+ θ

)
g(τ )(

βJ sin
(−πτ

β

)) 3
2

(−β <τ <0).

(A4b)

The factor g(τ ) is related to the U(1) gauge factor in
Eqs. (5) and can be obtained by imposing the antiperiodic
boundary condition F (τ + β) = −F (τ ) on the fermionic
Green’s functions [8]. This leads to g(τ ) = e−ατ/β with
α = ln(tan(π/4 + θ )), related to the spectral asymmetry.

The above conformal Green’s functions can be rewritten in
a scaling form (0 < τ < β),

F (τ ) = −A(βJ )−2�g

(
τ

β

)
, (A5)

where g(x) = e−αx/[sin(πx)]2�; � = �c,�ψ , and A =
Ac,Aψ with Ac = (�/

√
1 + e−2α) and Aψ = (

√
pπJ 2/

(2V 2�
√

1 + e−2α)). From these, one expects the the finite-T

spectral densities to also obey a scaling form

ρ(ω) = A

J

(
T

J

)2�−1

φ

(
ω

T

)
, (A6)

where φ is a scaling function. Using these scaling forms
[Eqs. (A5) and (A6)] in Eqs. (A1), we obtain φ(x) following
the same procedure as in Ref. [21]. This gives

φ(x) =22�−1

π2
e−α/2 cosh

(
x

2

)
�

(
� + i x−α

2π

)
�

(
� − i x−α

2π

)
�(2�)

.

(A7)

Here �(x) is the gamma function. We obtain the conformal
Green’s functions on the entire complex-frequency (z) plane
using Eq. (A6) via the spectral representation

F (z) =
∫ ∞

−∞
dω

ρ(ω)

z − ω
. (A8)

Again following Ref. [21], using the above, we obtain F (z)
in a scaling form in the conformal limit for � < 1/2; e.g.,
F (z) = GR(z),GR(z) for Imz > 0 is obtained as

F (z) = A

J

(
T

J

)2�−1

g̃(z/T ) (A9a)

with the scaling function (Imx > 0)

g̃(x) = −i22�e−α/2 cos
(
π� + i α

2

)
�(2�) sin(2π�)

�
(
� − i x−α

2π

)
�

(
1 − � − i x−α

2π

) .

(A9b)

The integral in Eq. (A8) has a high-frequency divergence for
the conformal spectral function, ρψ , with �ψ = 3/4 > 1/2,
for the peripheral sites. However, due to the analytical proper-
ties of � functions, we can analytically continue the expression
in Eqs. (A9) for � > 1/2. As a result, Eqs. (A9) also apply
for GR(ω) in the conformal limit. We have verified that
this “dimensional regularization” of the ultraviolet divergence
using the fermion scaling dimension generates quite accurate
GR(ω) at low energies when compared with the numerical
results, as shown in Fig. 10. We utilize this regularization in
Sec. IV to calculate the four-point function in the conformal
limit.

Cutoff for the conformal solution in the NFL phase

Here we briefly discuss the frequency cutoff for the
conformal solution of Eqs. (6) at half filling. The cutoff is
estimated by comparing the terms that are neglected in the
conformal limit with those that are retained in Eq. (4), at the
NFL fixed point [Eqs. (6)]. To this end, we obtain from Eq. (3a)
the condition that ω � ωc1 + ωc2, where

ωc1  J�6

2π2
= J

2
√

π
(1 − p)3/2, (A10a)

ωc2  p2J

2�2
= J

2
√

π

p2

(1 − p)1/2
. (A10b)

From Eq. (3b), we need to simultaneously satisfy
(V 2/

√
p)GR(ω) � ω,t2GR(ω). This leads to the condition
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FIG. 10. Comparison between numerically obtained Green’s functions (a) G and (b) G at low frequency with the conformal results of
Eqs. (A9) for p = 0.2 and T = 0.025J .

ω � (ωc3,ωc4), where

ωc3 
(

V 4�2

2pJ

)1/3

=
(√

π

2

V 4

J

)1/3(√
1 − p

p

)1/3

, (A10c)

ωc4  V 4�2

pJ t2
=

√
πV 4

t2J

√
1 − p

p
. (A10d)

The overall cutoff is given by

ωNFL ≈ min(ωc1 + ωc2,ωc3,ωc4). (A11)

For p → 0, ωc1 determines the bandwidth of the conformal
behavior, whereas ωc4 determines the bandwidth for p → 1,
as shown schematically in Fig. 2(b).

APPENDIX B: LUTTINGER THEOREM
IN THE NFL PHASE

In this Appendix we give a proof of the Luttinger theorem
[Eq. (8)] used for calculating the zero-temperature entropy in
Sec. III. We perform the derivation along the same line of
Refs. [21,26].

The total fermion density n at T = 0 is given by the sum
rule,

n = − i
1

1 + p

∫ ∞

−∞

dω

2π
[G(ω) + pG(ω)]eiω0+

. (B1)

G(ω) and G(ω) are the time-ordered Green’s functions, e.g., at
T = 0, G(ω) = θ (ω)GR(ω) + θ (−ω)GA(ω). Here A denotes
advanced Green’s function.

We rewrite Eq. (B1), by taking the ω derivative of the Dyson
equations G−1(ω) = ω + μ − 	(ω) and G−1(ω) = ω + μ −
σ (ω), as

n = i

1 + p

[
P

∫ ∞

−∞

dω

2π

(
∂ ln G

∂ω
+ p

∂ lnG
∂ω

)
eiω0+

−P
∫ ∞

−∞

dω

2π

(
G

∂	G

∂ω
+ pG ∂	G

∂ω

)
eiω0+

]
, (B2)

where

	(ω) = 	J (ω) + V 2√pG(ω), (B3a)

σ (ω) = V 2

√
p

G(ω) + t2G(ω). (B3b)

Following a procedure similar to that in Ref. [26], we
evaluate each of the terms in Eq. (B2) separately. From the
first term in Eq. (B2) we get

P
∫ ∞

−∞

dω

2π

∂ ln G

∂ω
eiω0+ = P

∫ ∞

−∞

dω

2π

∂ ln GR

∂ω
eiω0+

+
∫ 0

−∞

dω

2π

∂

∂ω
ln

(
GA

GR

)
eiω0+

,

(B4)

and similarly for G(ω). The second integral above can be
evaluated using GR(A)(ω) = |GR(ω)|e±i arg GR(ω), leading to

∫ 0

−∞

dω

2π

∂

∂ω
ln

(
GA

GR

)
eiω0+ = − i

[
1

4
− θ

π

]
, (B5)

since arg GR(0−) = −(3π/4 + θ ) from Eq. (6) and
arg GR(−∞) = −π . Similarly

∫ 0

−∞

dω

2π

∂

∂ω
ln

(GA

GR

)
eiω0+ = − i

[
3

4
+ θ

π

]
, (B6)

using argGR(0−) = −π/4 + θ from Eq. (6).
The first integral in Eq. (B4) is evaluated using the

conformal solution [Eq. (6)] as

P
∫ ∞

−∞

dω

2π

∂ ln GR

∂ω
eiω0+ = − i

4
, (B7)

via the deformation of the contour of integration to the upper-
half plane since GR(ω) is analytic there. Analogously,

P
∫ ∞

−∞

dω

2π

∂ lnGR

∂ω
eiω0+ = i

4
. (B8)

Using Eqs. (B5)–(B8) we finally obtain

i

1 + p
P

∫ ∞

−∞

dω

2π

(
∂ ln G

∂ω
+ p

∂ lnG
∂ω

)
eiω0+

= 1

1 + p

[(
1

2
− θ

π

)
+ p

(
1

2
+ θ

π

)]
. (B9)

134302-13



SUMILAN BANERJEE AND EHUD ALTMAN PHYSICAL REVIEW B 95, 134302 (2017)

The second term in Eq. (B2) is rewritten using Eqs. (B3a)
and (B3b) as

P
∫ ∞

−∞

dω

2π

(
G

∂	

∂ω
+ pG ∂σ

∂ω

)
eiω0+

= P
∫ ∞

−∞

dω

2π

[
G

∂	J

∂ω
+ V 2√p

∂(GG)

∂ω
+ t2

2
p

∂(G2)

∂ω

]
.

(B10)

The last two terms give only boundary terms that vanish.
Hence, we are left with only the first term inside the bracket
above. The evaluation of this term is rather cumbersome and
was done by Georges et al. [26]. The calculation again only
uses the information about the Green’s function as ω → 0 and
hence does not depend on the cutoff. Using the result from
Ref. [26] we get

iP
∫ ∞

−∞

dω

2π
G

∂	J

∂ω
= (1 − p)

sin 2θ

4
. (B11)

The only difference in our case from Ref. [26] is the initial
prefactor (1 − p), which is crucial. Finally, combining the
above with Eq. (B9), we obtain the Luttinger theorem of Eq. (8)
in Sec. III.

APPENDIX C: OUT-OF-TIME-ORDERED CORRELATIONS

The out-of-time-ordered correlations of Eqs. (20) can
be computed by formulating the problem on a Keldysh
contour with four real-time segments, γ = 1,2,3,4, two
forward and two backward in time [27–29]. Each of the
consecutive segments is separated by a quarter of the
thermal cycle [5] (see Fig. 11). The out-of-time-ordered
functions become contour ordered in the Keldysh formalism,
e.g., F1(t1,t2) = (1/N2)

∑
ij 〈χ4

i (t1)χ3
j (0)χ2

i (t2)χ1
j (0)〉, where

χ
γ

i (t) denotes Grassmann variable on the branch γ . In
principle, these out-of-time-ordered functions are coupled
with four-point functions having various other time orderings,
e.g., 〈χ4

i (t1)χ3
j (0)χ3

i (t2)χ1
j (0)〉. However, since the out-of-

time-ordered functions decay in parametrically longer times
t <∼ (1/λL) ln N than the other four-point functions, the former
effectively gets decoupled from the latter in the chaos regime.

The first few terms in diagrammatic expansions for F1(t1,t2)
and F2(t1,t2) until O(1/N ) are shown in Fig. 12. Due
to disorder averaging over {Jijkl,tαβ,Viα}, only the ladder

−∞ ∞

iβ
4

−i3β
4

−iβ
2

−iβ
4

1

2

3

4

FIG. 11. Keldysh contour with a pair of real-time folds. Subse-
quent horizontal segments are separated by a quarter of the thermal
cycle.

F1 = + +
1
N

F
(0)
1

t1 0

t2 0

+ +

t1 0

t2 0

+ + + ++

F2 =

F
(0)
2

t1 0

t2 0

+
1
N

t1 0

t2 0

+ + +

+ ++ +

FIG. 12. A few lowest-order diagrams corresponding to OTO cor-
relation functions of Eqs. (20). F

(0)
1 and F

(0)
2 denote the disconnected

diagrams at O(1). Only ladder diagrams contribute to the 1/N pieces
F1 and F2, which are obtained via the self-consistent approximation
of Fig. 7.

diagrams contribute to the 1/N pieces F1(t1,t2) and F2(t1,t2).
These can be obtained in the chaos regime via Eqs. (22), as
discussed in Sec. IV.

The retarded functions FR(ω + iλL/2) (FR = GR,GR) and
the Wightman correlator Glr (ω), appearing in Eqs. (25), are
obtained from the spectral representations

FR

(
i
λL

2
+ ω

)
=

∫ ∞

−∞
dω′ ρ(ω′)

ω + i λL
2 − ω′ , (C1a)

Glr (ω) = −iπ
ρc(ω)

2 cosh(βω/2)
, (C1b)

with ρ(ω) = ρc(ω),ρψ (ω). The above leads to

glr (ω) = −
∫ ∞

−∞

dt

2π
G2

lr (t)eiωt

= 1

4

∫ ∞

−∞
dω′ ρ(ω′)ρ(ω − ω′)

cosh(βω′/2) cosh (β(ω − ω′)/2)
.

(C1c)

Due to particle-hole symmetry, GR(ω + iλL/2)GR(−ω +
iλL/2) = −|GR(ω + iλL/2)|2. This identity was used in
Eqs. (25).

In the numerical solution of Eqs. (25), discussed in Sec. IV,
we use the spectral representations of Eqs. (C1).

1. Solution of Eqs. (25) in the conformal limit

In the conformal limit, we use the Green’s functions of
Eqs. (A9) to obtain

GR

(
i
λL

2
+ iω

)
= −i

�√
2πJT

�
(

1
4 + h

2 − iu
)

�
(

3
4 + h

2 − iu
) , (C2a)

GR

(
i
λL

2
+ iω

)
= i

√
2pπJT

V 2�

�
(

3
4 + h

2 − iu
)

�
(

1
4 + h

2 − iu
) , (C2b)

with λL ≡ 2πhT and u ≡ ω/(2πT ). From Eq. (A4), the
Wightman correlator is Glr (t)= iG(it + β/2)=−i(�/

√
2)
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(βJ cosh(πt/β))−1/2, leading to

glr (ω) = �2

4π2J
|�(1/2 + iu)|2. (C2c)

Using Eqs. (C2) in Eqs. (25), we get the eigenvalue
equation (26) for T → 0. The component f2(u) is obtained
from f1(u),

f2(u) = 2
√

πJT

V 2k

√
p

1 − p

∣∣�(
3
4 + h

2 + iu
)∣∣2∣∣�(

1
4 + h

2 + iu
)∣∣2 f1(u). (C3)

Using the form of f1(u) [Eq. (27)] above we get Eq. (31) in
Sec. IV.

To verify that f1(u) in Eq. (27) is a solution of Eq. (26), we
use the identity [30]∫ ∞

−∞
du′

∣∣∣∣�
(

1

2
+ i(u − u′)

)∣∣∣∣
2∣∣∣∣�

(
1

4
+ h

2
+ iu′

)∣∣∣∣
2

= 2π
�

(
1
2 + h

)
�

(
3
2 + h

) ∣∣∣∣�
(

3

4
+ h

2
+ iu

)∣∣∣∣
2

. (C4)

2. The functions Fχχηη(t1,t2) and Fηηηη(t1,t2)

We can also define two other out-of-time-ordered functions,
F3 = Fχχηη and F4 = Fηηηη, as

F3(t1,t2) = 1

NM

∑
iα

Tr[yχi(t1)yηα(0)yχi(t2)yηα(0)], (C5a)

F4(t1,t2) = 1

M2

∑
αβ

Tr[yηα(t1)yηβ(0)yηα(t2)yηβ(0)], (C5b)

denoted by F3 and F4, respectively. The 1/N pieces of these
functions, F3 and F4, follow exactly same equation as in
Eq. (22) with F1 replaced by F3 and F2 by F4. Hence, F3

and F4 have the same solutions as F1 and F2, respectively,
discussed in Sec. IV. However, there is a suppression of F3

by a factor (JT /V 2)
√

p/(1 − p) compared to F1. This can
be seen by evaluating the disconnected diagrams (Fig. 12)
contributing to F1 and F3.
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