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Typical-medium multiple-scattering theory for disordered systems with Anderson localization
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The typical medium dynamical cluster approximation (TMDCA) is reformulated in the language of multiple
scattering theory to make possible first-principles calculations of the electronic structure of substitutionally
disordered alloys including the effect of Anderson localization. The TMDCA allows for a systematic inclusion of
nonlocal multisite correlations and at the same time provides an order parameter, the typical density of states, for
the Anderson localization transition. The relation between the dynamical cluster approximation and the multiple
scattering theory is analyzed, and is illustrated for a tight-binding model.
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I. INTRODUCTION

During the last 50 years the study of the electronic [1]
and phononic [2] properties of substitutionally disordered
alloys has been a very active field of research [3,4]. Among
the many theoretical methods proposed, the Green’s function
approach has proved to be particularly useful and convenient
for calculating various physical quantities [5]. One of the most
successful and comprehensive schemes for the computation
of the ensemble-averaged Green’s function is the coherent
potential approximation (CPA) [6,7], see also Refs. [3,4].
Today, it is known that the CPA provides the exact solution
for noninteracting fermions with diagonal (local) disorder on
any lattice in the limit Z → ∞, where Z is the coordination
number, provided the appropriate quantum scaling of the
hopping amplitude is employed [8]. It is also possible to
investigate interacting disordered electrons by combining the
dynamical mean-field theory (DMFT) [9–15] with the CPA
[16–18].

Using the CPA, the single-particle excitations in quench-
disordered [1–7,19] systems can be computed. In crystalline
materials, quenched disorder manifests itself as randomly
embedded impurities or alloy disorder. Therefore the CPA
is frequently employed in the calculation of the electronic
structure of these systems. The CPA introduces an effective
crystalline medium in which a spatially fluctuating random
potential is replaced by a purely local, but energy-dependent
potential. The effective potential is determined in such a way
that the configurationally averaged Green’s function is equal
to the Green’s function of the effective medium. The CPA was
also reformulated in the framework of the multiple scattering
theory [20] and combined with the Korringa-Kohn-Rostoker
(KKR) basis [21–23] or linear muffin-tin orbital (LMTO)
basis [24] sets. It has been used to calculate bulk properties
[25], thermodynamic properties [26–28], the phase stability
[29–32], magnetic properties [33–35], the surface electronic
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structure [32,36–38], segregation [39,40], and other alloy
characteristics.

For decades, attempts have been made to overcome the
main shortcomings of the CPA by incorporating the missing
nonlocal physics, e.g., by the molecular CPA [5,41] and the
dynamical cluster approximation (DCA) [42,43] in model
Hamiltonian calculations. Regarding the extension of the
CPA for electronic structure calculations the KKR-non-local
coherent potential approximation (KKR-NLCPA) [44] and the
KKR-DCA approach [45] were proposed, both implementing
the DCA coarse graining [43].

While the DCA and the KKR-NLCPA are able to include
some nonlocal effects, they cannot describe the divergent
behavior at the Anderson localization transition [46–51]. This
is due to the fact that these effective medium theories employ
the arithmetically averaged density of states (ADOS), which
does not became critical at the Anderson transition, and
hence cannot serve as an order parameter. As pointed out by
Anderson [46], one should instead determine the most prob-
able (“typical”) value of the local density of states (LDOS),
which is given by the global maximum of the full probability
distribution function of the LDOS. In the case of a disordered
system near the localization transition, the LDOS fluctuates
strongly, such that the corresponding probability distribution
function possesses long tails. Indeed, it has been demonstrated
that the probability distribution function of the LDOS has
very different properties in the metallic and insulating phase,
respectively [52,53]. In particular, for weak disorder when
states are extended, the probability distribution is Gaussian.
By contrast, for strong disorder, the probability distribution
is asymmetric and is given by a log-normal distribution as
obtained using analytic, field-theoretical approaches [54] for
one-dimensional systems, or numerically exact calculations
for three-dimensional lattices [52,55–57]; see also Ref. [53].
The typical value of the LDOS is then determined by the
geometric average [58].

In an attempt to develop an order parameter formalism
for Anderson localization, Dobrosavljević and collaborators
[59–61], formulated an effective mean-field theory, the typical
medium theory (TMT), which accounts for such changes in
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the probability distribution function. In particular, the TMT
uses the geometrically averaged, i.e., typical, DOS in its
self-consistency approach. The typical DOS vanishes at the
localization transition. Thus, it can serve as an order parameter
for Anderson localization. Despite this success, the TMT
suffers from some of the same drawbacks as the CPA, i.e.,
it is still a local theory and hence does not include the crucial
nonlocal quantum backscattering effects. Therefore the TMT
can only provide a qualitative description of the Anderson
localization transition.

Recently, some of us proposed the typical-medium dynam-
ical cluster approximation (TMDCA) [53], which extends the
single-site TMT to a finite cluster and thereby allows for a
systematic inclusion of nonlocal multisite correlations. We
demonstrated that the TMDCA overcomes the shortcomings
of the TMT and is able to qualitatively and quantitatively
describe Anderson localization. We also extended this method
to models with off-diagonal disorder [62], multiband systems
[63], and interactions [64].

The TMDCA has been applied to various model Hamilto-
nians [53,63,65]. To incorporate this formalism directly into
first-principles methods, the TMDCA should be reformulated
such that access to the Green’s function is provided in a
language appropriate for calculations within density functional
theory (DFT). This is best realized in the framework of
multiple scattering theory. Therefore the purpose of the present
study is to fill this gap and extend the TMDCA to the multiple
scattering formalism. The advantage of this approach is its
ability to treat both diagonal and off-diagonal disorder while
requiring only small matrices due to the fast convergence of
the scattering operators in angular momentum space [66]. In
addition, we outline an alternative approach to first-principles
downfolding, model-based approaches [63], which is able to
identify the Anderson localization transition in real materials.

In particular, we show how the KKR-NLCPA can be
extended to incorporate the typical medium formalism and
demonstrate this in the case of a tight-binding model. The
discussion of a material-specific implementation and the
inclusion of electronic interactions will be postponed to future
work. Section II describes the model Hamiltonian. Section II B
is devoted to a detailed discussion of the approximations for
the ensemble-averaged Green’s function and, in particular,
to a discussion of the formal equivalence of the DCA [43]
and the KKR-NLCPA as implemented in Refs. [44,45]. These
approximations are then applied to the tight-binding model of
Sec. II, and the correspondence between physical quantities
calculated in the DCA and KKR-NLCPA is discussed. Sec-
tion III addresses the typical medium formulation within the
multiple scattering approach: namely, we discuss the general
algorithm and the formulas for calculating the typical density
of states. Numerical results for the tight-binding model are
presented in Sec. IV, and Sec. V contains a conclusion of the
paper.

II. MODEL AND FORMALISM

A. Tight-binding model

We consider the Anderson model of noninteracting elec-
trons on a cubic lattice subject to a random diagonal potential,

described by the Hamiltonian

H = −
∑
〈ij〉

Wij (c†i cj + h.c.) +
∑

i

Vini . (1)

Here, the operator c
†
i (ci) creates (annihilates) an electron on

site i, and ni = c
†
i ci is the number operator. The first term

describes the hopping of electrons between nearest-neighbor
sites 〈i,j 〉 with the tight-binding hopping amplitude Wij = W .
We set 4W = 1 as the energy unit. The disorder is modeled
through the energies Vi of the local orbitals which are taken
to be independent quenched random variables distributed
according to some specified probability distribution P (Vi).
In the following, for illustrative purposes, we use a binary
alloy distribution which has a bimodal disorder distribution
P (Vi) = cAδ(Vi − VA) + (1 − cA)δ(Vi − VB), corresponding
to a crystal randomly composed of A(B) atoms at energy
VA (VB) with concentration cA (cB).

B. Formalism

The main difficulty in dealing with disordered systems
is the absence of translational invariance. In order to use
approaches like the DCA one therefore has to average the
free energy and its functional derivatives (such as the Green’s
functions) over the possible disorder configurations. This
is often justified since many experimental measurements,
like in transport, spectroscopy and optical probes, tend to
average over relatively large volumes and, thereby, over
many local disorder configurations. Since this approach is
computationally expensive, especially for large systems, one
employs effective medium theories. These approaches are
based on the idea that a heterogeneous medium can be
replaced by an effective equivalent homogeneous medium. The
problem is then reduced to finding a suitable representation for
measured quantities, which in many cases is not provided by
the average but by the full probability distribution.

In this paper, we demonstrate explicitly that the DCA and
the KKR-NLCPA, when applied to a disordered, noninter-
acting tight-binding Hamiltonian, are equivalent. This fact,
although having been observed in numerical calculations [67],
has not been proven up to now. One goal of this paper is
therefore to provide such a proof. Furthermore, the TMT
has thus far not been formulated in the multiple scattering
language. The latter provides a theoretical framework for
the construction of the typical medium formalism within
the DFT. In order to see how the ideas of the TMDCA
can be incorporated into a multiple scattering formalism
(MS-TMDCA), we first briefly summarize the equations and
concepts of the DCA approach, followed by the KKR-NLCPA
procedure.

Before proceeding with the formalism, let us note the
conceptual relation between the DCA and the KKR-NLCPA.
The DCA method can be successfully applied to strongly
correlated electrons on a lattice with or without disorder [68],
to account for nonlocal dynamic correlations that capture
spin and charge fluctuations in addition to configurational
fluctuations. It should be mentioned that the KKR-NLCPA
only accounts for disordered, non-interacting systems, i.e., the
self-energy is associated with nonlocal correlations only due
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to configurational fluctuations. In this way the KKR-NLCPA
can be viewed as the noninteracting limit of the DCA when
applied to a disordered system [43].

The derivations given below closely follow Ref. [43], but
we shall not use diagrammatic perturbation theory. Instead,
we focus on the formal connection between the DCA and
KKR-NLCPA. Namely, both employ the DCA mapping of a
lattice with N sites onto a periodic cluster of size Nc = LD

c

(Lc is the linear dimension of the cluster, and D is the
dimensionality of the system) embedded in a self-consistently
determined host [43,68]. Conceptually, this may be performed
by partitioning the lattice with N sites into clusters containing
Nc sites. In reciprocal space, this is equivalent to the division of
the Brillouin zone (BZ) of the underlying lattice into Nc cells
of size (2π/Lc)D , centered at the reciprocal sub-lattice vectors
K. The lattice momenta within a given cell are denoted by
k̃. In the self-consistency loop, the Green’s function is coarse-
grained (averaged) over the momenta k̃ surrounding the cluster
momentum K. The clusters are subject to periodic boundary
conditions, which allows one to use the usual lattice Fourier
transform. Averaged cluster quantities possess translation
invariance and can be taken from the reciprocal space into
the real space (or vice versa) using the Fourier transform. In
this approximation, correlations within the cluster are treated
accurately up to a range ξ � Lc, while the physics on longer
length scales is described at the static mean-field level. In the
limit Nc = 1, the purely local CPA is recovered. By increasing
the cluster size, the DCA systematically interpolates between
the single-site and the exact result while remaining in the
thermodynamic limit. Here we consider the simple model
described by Eq. (1) in 3D, with a cluster size Nc = 38.

The notation in the present paper uses the following
convention: (1) an underscore denotes a matrix in the cluster
real space, (2) superscripts I,J indicate specific elements of
real-space matrices, (3) an overbar represents quantities of the
effective medium and the course-grained lattice quantities, (4)
an argument “V ” denotes quantities calculated on the cluster
for a particular disorder configuration, (5) arguments K and K′
indicate that the corresponding quantities are coarse-grained
or calculated in the cluster reciprocal space, (6) a subscript
l denotes local quantities, and (7) the description “effective
medium” denotes the homogeneous, or translationally invari-
ant, problem on the lattice or cluster.

We use the short-hand notation 〈. . .〉 = ∫
dViP (Vi)(. . .) for

disorder averaging. However, it is important to note that it
is not necessary, nor even desired, to generate all disorder
configurations. This would cause the algorithm to scale as
2Nc for the binary alloy model described above. Rather, in the
disorder-averaging procedure, we generate the configurations
stochastically and assume that the average restores the full
point and space group symmetry of the lattice. Then, by
averaging over these symmetries, we effectively generate more
disorder configurations. As we will see below, the resulting
algorithm scales as N3

c .

1. Dynamical cluster approximation

a. DCA algorithm I: reciprocal-space self-energy formu-
lation. To solve the disorder problem defined by Eq. (1),
we first use the dynamical cluster approximation (DCA), an

effective medium cluster approximation in which the random
potential of the Hamiltonian of Eq. (1) is replaced by the
effective medium, defined by, as yet unknown, homogeneous
self-energy �̄(k,ω). In local (single-site) approximations, such
as the CPA, all nonlocal corrections are neglected and the
self-energy is a local quantity, i.e., in the CPA we approximate
the lattice self-energy by a local self-energy �̄(k,ω) = �̄(ω)
with only a frequency dependence. To include nonlocal
correlation effects in the DCA, the effective-medium lattice
self-energy is approximated by a constant within each DCA
cell in momentum space [42,69], �̄(k,ω) = �̄(K,ω). The
corresponding effective-medium lattice Green’s function is
then given by

G(k,ω) = 1

w − ε(k) + μ − �̄(K,ω)
, (2)

where k = K + k̃ is the lattice reciprocal space vector, K is
the DCA cluster vector, k̃ is cluster momenta within each
DCA cell, ε(k) = −2W (cos kx + cos ky + cos kz) is the band
dispersion, and μ is the chemical potential which is set to zero
for a particle-hole symmetric case.

To determine the DCA effective-medium self-energy
�̄(K,ω), we must solve a Nc-site cluster problem. Following
Ref. [12], the effective-medium cluster Green’s function is
given by

Ḡcl(K,ω) = ḡcl(K,ω) + ḡcl(K,ω)�̄(K,ω)Ḡcl(K,ω) . (3)

Here, �̄(K,ω) is the hybridization function (the effective-
medium “bath”), which is obtained from integrating out all
but the cluster degrees of freedom, and which describes the
coupling between the cluster and the rest of the effective
medium. We also introduce ḡcl , which is an “isolated” (with
no hybridization to the effective-medium bath) cluster Green’s
function, and is defined as

ḡcl(K,ω) = 1

ω − �̄(K,ω) − ε̄(K)
. (4)

Here, ε̄(K) is the coarse-grained dispersion averaged over k̃
points within the cell centered on K:

ε̄(K) = Nc

N

∑
k̃

εK+k̃. (5)

For the CPA formalism, which corresponds to the Nc = 1
limit of the DCA, all cluster quantities are independent of
momentum K, and ε̄(K) is equal to a constant which here we
set to zero.

These formulas may be used to define a DCA algo-
rithm where the effective-medium self-energy �̄(K,ω) is
required to give an exact description of the original random
medium. Therefore, to determine the yet-unknown �̄(K,ω)
and �̄(K,ω), we replace the effective-medium potential
�̄(K,ω) on the cluster by the random potential VI . We then
demand that upon averaging the scattering caused by the ran-
dom potential VI vanishes identically in the effective medium.
This construction defines the self-consistency condition, which
determines �̄(K,ω).

As a first step, the cluster Green’s function will be
calculated. We first Fourier transform the cluster Green’s
function of Eq. (3) into the cluster real space. This is simplified
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by the fact that the Green’s function of the effective medium is
translationally invariant. Hence the Green’s function between
sites (I,J ) belonging to the cluster in the effective medium is

ḠIJ
cl (ω) = ḡIJ

cl (ω) +
∑
K,L

ḡIK
cl (ω)�̄KL(ω)ḠLJ

cl (ω) . (6)

Equivalently, Eq. (4) can be written (in real space) in the matrix
form

ḡ
cl

(ω) = (ωI − �̄(ω) − W̄ ))−1, (7)

where W̄ IJ = ∑
K ε̄(K)eiK(RI −RJ ) is the Fourier transform of

the cluster coarse-grained dispersion.
Now, to consider the real disorder cluster problem embed-

ded in the effective medium, everywhere on the cluster we
replace the effective potential �̄(ω) of Eq. (7) by the random
potential VI . The corresponding disorder cluster Green’s
function is then given by

GIJ
cl (ω,V ) = gIJ

cl (ω,V ) +
∑
KL

gIK
cl (ω,V )�̄KL(ω)GKJ

cl (ω,V ),

(8)

where the isolated cluster Green’s function g
cl

(ω,V ) for a
given disorder configuration V is given by

g
cl

(ω,V ) = (ωI − V − W̄ )−1. (9)

Since the hybridization function �̄(ω) is disorder independent,
it represents the same hybridization function of the effective
medium of Eq. (3). Notice that the above Green’s function can
be rewritten in terms of the cluster-excluded (cavity) Green’s
function GIJ (ω), conventionally used in the DCA community
[12,68], as

Gcl(ω,V ) = (G−1(ω) − V )−1, (10)

with G−1(ω) = (ωI − W̄ − �̄(ω)) . Due to this inverse, this
algorithm and the subsequent algorithms below, scale with
cluster size as N3

c .
In the next step, we impose the DCA self-consistency

condition, which requires that the disorder-averaged cluster
Green’s function is equal to the effective medium cluster
Green’s function, with〈

GIJ
cl (ω,V )

〉 = ḠIJ
cl (ω) . (11)

Here, 〈. . .〉 denotes averaging over disorder configurations on
the cluster. Or, equivalently in momentum space, we write it
as

Ḡcl(K,ω) = FT
(〈
GIJ

cl (ω,V )
〉)
, (12)

where FT stands for the Fourier transform of the disorder-
averaged cluster Green’s function to the cluster reciprocal
space. This condition is then used to update the self-energy,
with

�̄(K,ω) = ω − ε̄(K) − �̄(K,ω) − Ḡ−1
cl (K,ω) , (13)

which is then used to calculate the coarse-grained lattice
Green’s function Ḡ(K,ω),

Ḡ(K,ω) = Nc

N

∑
k̃

1

ω + μ − εK+k̃ − �̄(K,ω)
. (14)

FIG. 1. The DCA self-consistency loop. The arrows correspond
to the steps taken in the DCA algorithm described in Sec. II B 1.

At convergence, this is identical to the effective medium cluster
Green’s function Gcl(K,ω). Given the self-energy �̄(K,ω)
through Eq. (13) one defines the new hybridization function
�̄(K,ω) as

�̄(K,ω) = ω − ε̄(K) − �̄(K,ω) − Ḡ−1(K,ω) , (15)

which closes the DCA loop.
The numerical self-consistency loop is diagrammatically

shown in Fig. 1, and below we describe the DCA iterative
procedure. (1) First, a guess for the cluster self-energy
�̄(K,ω) is made (usually set to zero) and the lattice coarse-
grained Green’s function Ḡ(K,ω) is calculated using Eq. (14).
(2) The effective-medium hybridization function �̄(K,ω) is
constructed by solving Eqs. (3) and (4), i.e., �̄(K,ω) =
ω − ε̄(K) − �̄(K,ω) − Ḡ−1(K,ω). Since the cluster problem
is solved in real space, we Fourier transform the obtained
hybridization �̄(K,ω) to real space of the cluster. (3) Next,
the cluster problem is solved in real space and the disorder-
averaged cluster Green’s function 〈Gcl(ω,V )〉IJ = 〈(ωI −
V − W̄ − �̄(ω))−1〉 is calculated. (4) Once the cluster problem
is solved, we construct a new cluster self-energy, �̄(K,ω) =
ω − ε̄(K) − �̄(K,ω) − Ḡ−1

cl (K,ω), using the Fourier trans-
form of the disorder-averaged cluster Green’s function to the
cluster reciprocal space, i.e., Ḡcl(K,ω) = FT (〈Gcl(ω,V )IJ 〉).
The self-consistent procedure is repeated until �̄(K,ω) con-
verges to the desired accuracy.

We note that an equivalent self-consistency loop can be
constructed by using the cluster-excluded Green’s function
G(ω) [43]. This can be done by noting that �̄(K,ω) =
G−1(K,ω) − Ḡ−1

cl (K,ω).
b. DCA algorithm II: Local and nonlocal self-energy

contributions. While in the DCA formalism the nonlocal
contribution to the self-energy, obtained for Nc > 1, is encoded
explicitly in the �̄(K,ω), in the KKR-NLCPA formalism the
cluster extensions involve a separate analysis of the local and
nonlocal contributions. To provide a better connection between
these methods, in the following, we present an alternative DCA
self-consistency analysis which involves an explicit separation
of the local and nonlocal components of the self-energy. To
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this end, we introduce

α̃(K,ω) = �̄(K,ω) − �̄l(ω), (16)

which defines the nonlocal corrections to the self-energy
(the subscript l is used to emphasize the local, momentum
independent, quantity). For the CPA (i.e., in the Nc=1 limit)
this nonlocal contribution vanishes since the self-energy
is purely local �̄(K,ω) → �̄(ω). Using this definition, we
rewrite the effective-medium lattice Green’s function of Eq. (2)
as

Ḡ(k,ω) = 1

ḡ−1
l (w) − α̃(K,ω) + μ − ε(k̃ + K)

, (17)

where we introduce the locator Green’s function ḡl(ω) [5],
defined as

ḡl(ω) = 1

ω − �̄l(ω)
. (18)

Similarly, by applying the decomposition of the self-energy
into local and nonlocal parts, with �̄(K,ω) = α̃(K) + �̄l(ω),
we rewrite the effective-medium cluster Green’s function of
Eqs. (3) and (4) as

Ḡ−1
cl (K,ω) = ḡ−1

cl (K,ω) − �̄(K,ω), (19)

with the isolated cluster Green’s function

ḡ−1
cl (K,ω) = ḡ−1

l (ω) − α̃(K,ω) − ε̄(K) . (20)

Next, to find the yet unknown α̃(K,ω) and ḡl(ω), we
consider the disordered cluster embedded in such an effective
medium. Given a disorder configuration VI we construct the
corresponding cluster Green’s function

Gcl(V,ω) = (g−1
l

(V,ω) − W̄ − �̄(ω))−1, (21)

where in Eq. (18) we replaced the effective-medium potential
�̄IJ (ω) with the random-disorder potential VI for the locator
Green’s function, i.e.,

g
l
(V,ω) = (ωI − V )−1 . (22)

We then impose the DCA self-consistency condition, requiring
that the disorder-average cluster Green’s function and the
effective-medium cluster Green’s function are equal, i.e.,〈

GIJ
cl (ω,V )

〉 = ḠIJ
cl (ω). (23)

This allows us to define a new cluster self-energy, as in Eq. (13).
Finally, we complete the self-consistency loop by calculating
the lattice coarse-grained Green’s function

Ḡ(K,ω) = Nc

N

∑
k̃

1

ḡ−1
l (w) − α̃(K,ω) + μ− ε(k̃ + K)

. (24)

This DCA-II algorithm is close in spirit to the KKR-NLCPA
scheme with an explicit separation of the local and nonlocal
contributions of self-energy. It is, of course, equivalent to
the DCA-I algorithm described in the previous subsection.
In Fig. 2, we present the corresponding self-consistent loop
of the computational procedure of the DCA-II algorithm. The
steps of the iterative procedure are described as follows.

(1) We compute the lattice coarse grained Green’s function
Ḡ(K,ω) using Eq. (24), by making a guess for ḡ−1

l (ω) − α̃(ω)
based on the values of the local and nonlocal self-energy

FIG. 2. An alternative DCA-II self-consistency algorithm with
separate local and nonlocal contributions to the self-energy.

components. If nothing is known a priori, the guess �̄l(ω) = 0
and α̃ = 0, with resulting ḡ−1

l (ω) − α̃ = ω may serve as the
starting point.

(2) We then construct the effective-medium hybridization
function �̄(K,ω) by solving Eqs. (19) and (20), i.e., �̄(K,ω) =
ḡ−1

l (ω) − α̃(K) − ε̄(K) − Ḡ−1(K,ω). Since the cluster prob-
lem is solved in real space, we Fourier transform the obtained
hybridization function, �̄(K,ω), to the real space cluster.

(3) In the next step, we solve the cluster problem
and calculate the disorder-averaged cluster Green’s function
〈Gcl(ω,V )〉 = 〈(ωI − V − W̄ − �̄(ω))−1〉.

(4) Once the cluster problem is solved, the disorder-
averaged cluster Green’s function 〈Gcl〉 is used to construct
an isolated cluster Green’s function ḡ−1

cl
= 〈Gcl(V,ω)〉−1 +

�̄(ω), which we then use to get a new α̃(ω) = ḡ−1
l

(ω) −
ḡ−1

cl
− W̄ . Here, ḡ

l
is a local component of ḡ

cl
. Notice that in

practice, we combine these two steps in momentum space and
instead calculate ḡ−1

l (ω) − α̃(K,ω) = FT (〈GIJ
cl (V,ω)〉)−1 +

�̄(K,ω) + ε̄(K), where Ḡcl(K,ω) = FT (〈GIJ
cl (ω,V )〉).

(5) We repeat the self-consistent procedure through steps
1–5 until convergence is obtained.

C. KKR-nonlocal coherent potential approximation
(KKR-NLCPA)

1. KKR-NLCPA algorithm I

In this section, we present the details of the KKR-NLCPA
[44,45] formalism applied to the tight-binding Hamiltonian.
Essentially, the KKR-NLCPA is the static limit (i.e., with
no inelastic scattering) of the DCA as derived by Jarrell and
Krishnamurthy [43]. To demonstrate this, in this section, we
present the “KKR-NLCPA algorithm I,” which is an alternative
to Refs. [44,45] in a spirit which is very similar to the original
DCA scheme.

The derivation of the KKR-NLCPA makes use of the
multiple scattering formulation in which the central quantity is
the effective-medium cluster scattering path operator τ̄ (K,ω)
rather than the cluster effective-medium Green’s function
Ḡ(K,ω) used in the DCA. The KKR-NLCPA is also an
effective-medium method, where the original disorder problem
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of Eq. (1) is replaced by the effective-medium problem, such
that the lattice effective scattering path operator τ̄ (k,ω) is given
as

τ̄ (k,ω) = 1

t̄−1(k,ω) − G
′
0(k,ω)

. (25)

Here, t̄−1(k,ω) is the yet unknown homogeneous effective
scattering t matrix and G

′
0(k,ω) is free space structure constant

[5], which for tight-binding Hamiltonian corresponds to a bare
Green’s function G0(k,ω).

To determine the t matrix, we use the DCA-like cluster
embedding scheme, where the lattice t-matrix, is approximated
by a cluster t-matrix with t̄(k,ω) = t̄(K,ω) and is obtained by
solving a cluster embedded in an effective-medium, with the
effective medium cluster scattering path operator defined as

τ̄cl(K,ω) = t̄cl(K,ω) + t̄cl(K,ω)�̄
′
(K,ω)τ̄cl(K,ω) . (26)

Here, �̄
′
(K,ω) arises from integrating out all but the cluster

degrees of freedom and corresponds to the hybridization
function �(K,ω) in the DCA scheme. In the KKR literature,
this quantity is referred as the “effective-medium renormalized
interactor” (see, for example, Refs. [4,5]).

Here we also define t̄cl(K,ω) the isolated cluster t matrix
(with no hybridization to the effective medium) as

t̄cl(K,ω) = 1

t̄−1(K,ω) − Ḡ
′
0(K,ω)

. (27)

Due to its explicit K dependence, tcl(K,ω) takes into account
nonlocal correlations up to the cluster size which are missing in
the local KKR-CPA analysis for Nc = 1. We note that for Nc =
1 this quantity becomes local with t̄cl(K,ω) → t̄l(ω), where
the subscript l indicates “local quantity.” Since the effective
medium is translationally invariant, we Fourier transform
Eq. (26) to the cluster real space, i.e.,

τ̄ IJ
cl (ω) = t̄ IJ

cl (ω) +
∑
K,L

t̄ IK
cl (ω)�̄

′KL(ω)τ̄ LJ (ω) . (28)

Equivalently, Eq. (27) in real space can be rewritten as

t̄ cl(ω) = (t̄−1(ω) − Ḡ
′
0(ω))−1 . (29)

To determine the effective-medium quantities, we next
introduce the impurity cluster, with the disorder placed on
each cluster site, embedded in the effective medium. To do
this, we replace the effective-medium quantities in Eqs. (28)
and (29) by their disorder-dependent counterparts. Note that
�̄

′(ω) is independent of the disorder configuration of the
cluster since it describes the effective medium. Hence it is
not changed under the substitution of an effective cluster with
the disorder-dependent cluster problem. Thus we obtain an
expression for the cluster path operator for a given disorder
configuration:

τ IJ
cl (ω,V ) = t IJ

cl (ω,V )

+
∑
K,L

tIK
cl (ω,V )�̄

′KL(ω)τLJ
cl (ω,V ), (30)

where the cluster t matrix for a given disorder V is

t cl(ω,V ) = (t−1(V ) − Ḡ
′
0(ω))−1, (31)

FIG. 3. The self-consistency loop of the KKR-NLCPA algorithm
I presented in Sec. II C 1.

where for the tight-binding model t−1 = V . With this trans-
formation, the cluster path operator for a given disorder
configuration reads

τ cl(ω,V ) = (t−1(V ) − Ḡ
′
0 − �̄

′
(ω))−1. (32)

In the next step, we impose the self-consistency condition,
which requires that, when placing the cluster in the effective
medium, no additional scattering is produced on average, i.e.,

〈τcl(ω,V )〉IJ = τ̄ IJ
cl (ω). (33)

We then close the self-consistency loop by calculating the
coarse-grained lattice scattering path operator given as

τ̄ (K,ω) = Nc

N

∑
k̃

1

t̄−1(K,ω) − G
′
0(K + k̃,ω)

, (34)

where t̄−1(K,ω) = FT (〈τcl(ω,V )〉IJ ) + Ḡ
′
0(K,ω) + �̄

′
(K,ω)

is obtained from Eqs. (26) and (27).
The self-consistency loop used in this “KKR-NLCPA

algorithm I” is illustrated in Fig. 3 and the iterative procedures
are described as follows. (1) First, we make a guess for
the unknown cluster t̄(K,ω) scattering t matrix (usually set
to zero) and calculate the lattice coarse-grained scattering
path operator τ̄ (K,ω) using Eq. (34). (2) Then we construct
the effective-medium cluster renormalized interactor function
�̄

′
(K,ω) by solving Eq. (26) and Eq. (27), i.e., �̄

′
(K,ω) =

t̄−1(K,ω) − τ̄ (K,ω)−1 − Ḡ
′
0(K,ω). (3) Since the cluster prob-

lem is solved in real space, we Fourier transform the obtained
cluster interactor �̄

′
(K,ω) to real space. We then solve the

cluster problem and calculate the disorder-average scattering

path operator 〈τ cl(ω,V )〉 = 〈(t(V )−1 − Ḡ
′
0 − �̄

′
(ω))

−1〉. (4)
Once the cluster problem is solved, we Fourier transform the
obtained disorder-averaged path operator to the cluster recip-
rocal space with τ̄cl(K,ω) = FT (〈τcl(ω,V )IJ 〉) and use it to
construct new cluster t̄(K,ω) scattering matrix, i.e., t̄(K,ω) =
τ̄−1
cl (K,ω) + �̄

′
(K,ω) + Ḡ

′
0(K,ω). (5) We repeat steps 1-4 of

the self-consistent procedure until t̄(K,ω) converges to the
desired accuracy.
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2. KKR-NLCPA algorithm II: local and nonlocal
t-matrix contributions

The KKR-NLCPA algorithm of Refs. [44,45] with explicit
separation of local and nonlocal contributions to the t-matrix
is an alternative way of constructing the self-consistency. Here
we show that this formalism can be derived from the one pre-
sented in the previous subsection “KKR-NLCPA algorithm I.”

As discussed above, to explicitly distinguish between the
local and nonlocal contributions to the scattering t matrix, we
define a quantity

ᾱ(K,ω) = t̄−1
l (ω) − t̄−1(K,ω). (35)

Here, t̄l(ω) is the local component of the scattering t matrix,
i.e., the single-site scattering matrix (we use a subscript l to
emphasize that t̄l(ω) is a local quantity). Although ᾱ(K,ω)
describes the nonlocal contributions to the scattering t matrix
(in the same way as α̃(K,ω) describes nonlocal corrections
to the DCA self-energy), in the KKR-NLCPA literature it is
called the correction to the free propagator [44]. Also note
that in Ref. [45], this quantity is denoted as δG(K,ω). Using
Eq. (35) and making the DCA approximation with t̄(k,ω) =
t̄(K,ω), we rewrite the effective-medium lattice scattering path
operator of Eq. (25) as

τ̄ (k,ω) = 1

t̄−1
l (ω) − ᾱ(K,ω) − G

′
0(k,ω)

, (36)

with the lattice vector k = K + k̃.
To find the yet unknown t̄−1

l (ω) and ᾱ(K,ω), we consider
the cluster path operator τ̄cl(K,ω) of Eq. (26), with

τ−1
cl (K,ω) = t̄−1

l (ω) − ᾱ(K,ω) − Ḡ
′
0(K,ω) − �̄

′
(K,ω), (37)

where we used the fact that Eq. (27) can be rewritten as

t−1
cl (K,ω) = t̄−1

l (ω) − ᾱ(K,ω) − Ḡ
′
0(K,ω) . (38)

This corresponds to Eq.(5) of Ref. [44].
Next, to determine the effective-medium quantities, we

solve the cluster, with the disorder placed on each cluster
site, embedded in the effective medium. Replacing t̄−1

l (ω) −
ᾱ(K,ω) in Eq. (37) with the disorder-dependent t−1(V ) in
Eq. (37), we again obtain Eq. (32).

In the next step, we impose a self-consistency condition,
which requires that placing a cluster in the effective medium
on average does not produce additional scattering, i.e.,

〈τcl(ω,V )〉IJ = τ̄ IJ
cl (ω). (39)

To complete the self-consistency loop, we coarse-grain the
scattering path operator of Eq. (36),

τ̄ (K,ω) = Nc

N

∑
k̃

1

t̄−1
l (ω) − ᾱ(K,ω) − G

′
0(k,ω)

, (40)

where, t−1
l (ω) − ᾱ(K,ω) =FT (〈τcl(ω,V )〉IJ )−1 +G

′
0(K,ω) +

�̄
′
(K,ω), according to Eq. (37) and Eq. (39).
After self-consistency is achieved, we can calculate the

cluster coarse-grained Green’s function using Eq. (41):

Ḡ(K,ω) = Nc

N

∑
k̃

(G0(K + k̃,ω)

+G0(K + k̃,ω)τ̄ (K + k̃,ω)G0(K + k̃,ω)), (41)

FIG. 4. The KKR-NLCPA algorithm II self-consistency loop
applied to the tight-binding model.

where G0(K + k̃,ω) the bare lattice Green’s func-
tion G0(K + k̃) = (ω − εK+k̃ + iη)−1 and τ̄ (K + k̃,ω) =
t̄l(ω)−1 − ᾱ(K,ω) − G0(K + k̃,ω). In the tight-binding
Hamiltonian, the bare Green’s function G0 and the structure
constant G

′
0 are identical. Nevertheless, we still use separate

symbols to distinguish the physical meaning of the quantities.
The self-consistency loop for the KKR-NLCPA algorithm

II is presented in Fig. 4. It is easy to see that, using
t̄−1
l (ω) − ᾱ(K,ω) = t̄−1(K,ω), both KKR-NLCPA algorithm

I and KKR-NLCPA algorithm II are equivalent.

D. Relation between DCA and KKR-NLCPA quantities

The application of the DCA and the KKR-NLCPA for-
malism to the tight-binding model discussed in Secs. II B 1
and II C, shows that there exist formal analogies between
quantities and self-consistency equations used in these two
approaches. For example, the effective cluster locator of the
DCA approach, gcl(K,ω), plays the role of the cluster t matrix
tcl(K,ω) in the KKR-NLCPA formalism; the coarse-grained
hopping matrix W̄ IJ is replaced by the free-space structure
constant Ḡ′IJ

0 ; and the nonlocal contributions to the self-
energy α̃(K,ω) correspond to the nonlocal contribution to the
scattering t matrix ᾱ(K,ω). For completeness, in Table I, we
summarize the one-to-one correspondence between the DCA
and the KKR-NLCPA equations.

In the following, we explicitly show that quantities in
the DCA are related to those in the KKR-NLCPA. In doing
so, we establish the formal equivalence of the two methods
and applied to a tight-binding model. Using the obtained
relationship, we construct an alternative multiple-scattering
DCA (MS-DCA) algorithm, which is a Green’s function based
multiple-scattering algorithm which allows one to calculate the
disorder-averaged Green’s function instead of the scattering
path operator in self-consistent KKR-NLCPA loop. This step is
necessary for the further implementation of the typical medium
analysis in the multiple-scattering formalism.
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TABLE I. The correspondence between quantities appearing in the DCA and the KKR-NLCPA formalism.

DCA(Nc > 1) KKR-NLCPA (Nc > 1)

Effective medium cluster Green’s function Effective medium cluster scattering-path operator
Ḡcl(K,ω) = ḡcl(K,ω) + ḡcl(K,ω)�̄(K,ω)Ḡcl(K,ω) τ̄cl(K,ω) = t̄cl(K,ω) + t̄cl(K,ω)�̄

′
(K,ω)τ̄cl(K,ω)

Isolated cluster Green’s function in K-space Isolated cluster scattering t-matrix
ḡcl(K,ω) = 1

ω− ¯̄�(K,ω)−ε̄(K)
t̄−1
cl (K,ω) = 1

t̄−1(K,ω)−Ḡ
′
0(K,ω)

Effective medium cluster Green’s function Effective medium cluster path operator
with separate local and nonlocal contributions with separate local and nonlocal contributions
Ḡ−1

cl (K,ω) = ḡ−1
cl (K,ω) − ¯�(K,ω) τ̄−1

cl (K,ω) = t̄−1
cl (K,ω) − �̄

′
(K,ω)

ḡ−1
cl (K,ω) = g−1

l (K,ω) − α̃(K,ω) − ε̄(K) t−1
cl (K,ω) = t−1

l (ω) − ᾱ(K,ω) − Ḡ
′
0(K,ω)

Nonlocal contributions of the self-energy Nonlocal contributions of the scattering t matrix
α̃(K,ω) = �̄(K,ω) − �̄l(ω) ᾱ(K,ω) = t̄−1

l (ω) − t̄−1(K,ω)

1. DCA hybridization function and the NLCPA cluster
renormalized interactor

First, we show the relationship between the DCA hybridiza-
tion function �̄(K,ω) and the KKR-NLCPA renormalized
interactor �̄

′
(K,ω). To establish this, we calculate the disorder-

averaged Green’s function of the cluster using the scattering-
path operator

〈Gcl(ω)〉 = 〈(G−1(ω) − V )−1〉
= G(ω) + G(ω)〈τ cl(ω,V )〉G(ω). (42)

Here the cluster scattering path operator matrix is given by

τ cl(ω,V ) = (V −1 − G(ω))−1. (43)

Further, recalling Eq. (32) of the NLCPA procedure, the cluster
path operator is

τ cl(ω,V ) = (t−1(V ) − Ḡ
′
0(ω) − �̄

′
(ω))−1. (44)

Comparing Eqs. (43) and (44), we find that the cluster-
excluded Green’s function G(ω) satisfies the relation

G(ω) = Ḡ
′
0(R) + �̄

′
(ω) . (45)

Next, in order to find the relation between the DCA
hybridization function and the KKR-NLCPA interactor, we
employ the expression for the cluster-excluded Green’s
function G−1(ω) = (ωI − W̄ − �̄(ω)). Thereby, the NLCPA
cluster renormalized interactor �̄

′
is found to be related to the

DCA hybridization function �̄ as

�̄
′
(ω) = (ωI − W̄ − �̄(ω))−1 − Ḡ

′
0 . (46)

Using this relationship, we now obtain an expression for
the cluster Green’s function which can be calculated directly
in the KKR-NLCPA self-consistency scheme, i.e.,

〈Gcl(ω)〉 = 〈(G−1 − V )−1〉
= 〈((�̄′

(ω) + Ḡ
′
0(ω))−1 − V )−1〉. (47)

2. DCA self-energy �(K,ω) and the NLCPA
effective corrections ᾱ(K,ω)

Here we establish the relationship between the DCA self-
energy and the nonlocal t-matrix corrections ᾱ(K,ω) of the

KKR-NLCPA. In the latter, the lattice Green’s function is given
by

G(k,ω) = G0(k,ω) + G0(k,ω)τ̄ (k,ω)G0(k,ω)

= G0(k,ω) + G0(k,ω)

× 1

t̄−1
l (ω) − ᾱ(K,ω) − G0(k,ω)

G0(k,ω), (48a)

which can also be written as

G(k,ω) = 1

G−1
0 (k,ω) − 1

t̄−1
l (ω)−ᾱ(K,ω)

. (48b)

At the same time, in the DCA scheme, the lattice Green’s
function is given by

G(k,ω) = 1

G−1
0 (k,ω) − �̄(K,ω)

. (49)

Comparing Eqs. (48b) and (49), we find

�̄−1(K,ω) = t̄−1
l (ω) − ᾱ(K,ω) . (50)

This relationship shows how to obtain the self-energy in the
KKR-NLCPA analysis.

3. Multiple-scattering DCA algorithms

Using the obtained relationships between the DCA and
KKR-NLCPA for the hybridization function and the self-
energy, we now construct an alternative MS-DCA self-
consistency loop where the disorder-averaged cluster Green’s
function instead of the scattering-path operator is calculated
directly in the self-consistency. The diagram with the MS-DCA
algorithm is shown in Fig. 5, where in addition to Eqs. (46),
(48), and (50), we also use the Dyson’s equation with

�(K,ω) = G−1(K,ω) − G−1
cl (K,ω)

= (�̄
′
(K,ω) + Ḡ

′
0(K,ω))−1 − G−1

cl (K,ω). (51)

As shown in Sec. III below, this algorithm may be adapted to
a typical medium approach.
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FIG. 5. Multiple-scattering DCA: a Green’s function based mul-
tiple scattering algorithm where we calculate the disorder-averaged
Green’s function instead of the scattering-path operator.

III. TYPICAL MEDIUM MULTIPLE-SCATTERING
FORMALISM

While the DCA incorporates spatial correlations which are
missing in the CPA, the average DOS calculated in the DCA
[53] is not critical at the Anderson transition [70,71], and hence
cannot be used as an order parameter. To identify Anderson
localized states, one has to calculate the typical density of
states (TDOS). Indeed, it has been demonstrated that the TDOS
vanishes for localized states, and hence, can be used as a proper
order parameter (Refs. [53,59]).

In the typical medium theory, the self-consistency involves
the TDOS, which vanishes continuously as the strength of the
disorder increases towards the critical point (Refs. [53,59]). As
a consequence, there is an additional step needed to calculate
this order parameter.

In the following, we show how to apply the typical
medium analysis to the tight-binding model within the mul-
tiple scattering approach (MS-TMDCA). We have already
shown in Fig. 5 how to calculate the average Green’s
function in the self-consistency loop. To incorporate the
typical medium analysis in the KKR-NLCPA, we modify
the effective medium by replacing the algebraically averaged
Green’s function by its typical, i.e., geometrically averaged,
counterpart. Thereby translational invariance is restored by
the disorder average everywhere in the distribution of the
density of states, including the average and typical values.
To construct the typical Green’s function, we use the same
ansatz as in Ref. [53]). For each cluster configuration, we
obtain the cluster density of states diagonal in the wave
number, ρcl(K,ω,V ) = −�Gcl(K,K,ω,V )/π , assuming that
the off-diagonal contributions vanish. We also calculate the
LDOS on the cluster ρII

cl (ω,V ) = −�GII
cl (ω,V )/π . Then,

we calculate the typical (geometrically averaged) density of

FIG. 6. MS-TMDCA: a Green’s function based typical medium
multiple scattering algorithm.

states as

ρ̄typ(K,ω) = exp

(
1

Nc

Nc∑
I=1

〈
ln ρII

cl (ω,V )
〉)

×
〈

ρcl(K,ω,V )
1
Nc

∑
I ρII

cl (ω,V )

〉
. (52)

Here, as in the TMDCA, the local part of the cluster-
momentum-resolved typical density of states is separated
and treated with geometrical averaging over the disorder
configurations, to avoid self-averaging as the cluster size
increases. The form of the proposed typical density of states of
Eq. (52) recovers the local TMT at Nc = 1 limit and reduces
to the DCA scheme at weak disorder strength.

By using the Hilbert transform, we obtain the typical
Green’s function from Eq. (52) as

Ḡtyp(K,ω) =
∫

dω′ ρ̄typ(K,ω′)
ω − ω′ , (53)

which replaces the average Green’s function in the self-
consistency loop, Fig. 5. The resulting algorithm for the
MS-TMDCA applied to the tight-binding model is shown in
Fig. 6. As discussed previously [65], the form of Eq. (52)
is not unique. To be able to describe the transition it should
contain the order parameter (the first term in the product),
which vanishes at the transition. A possible, but different form
reads [65]

Ḡtyp(K,ω) = exp

(
1

Nc

Nc∑
I=1

〈
ln ρII

cl (ω,V )
〉)

×
〈

Gcl(K,ω,V )
1
Nc

∑
I ρII

cl (ω,V )

〉
. (54)

It dispenses with the need for the Hilbert transform so that
results at different frequencies are independent by calculating
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TABLE II. Acronyms of the algorithms used.

Acro. Definition

DCA Dynamical cluster approximation, which calculates the average Green’s function (Figs. 1 and 2)
KKR-NLCPA A multiple scattering algorithm which calculates the average scattering path operator (Figs. 3 and 4)
MS-DCA A multiple scattering algorithm, calculating the average Green’s function (Fig. 5)
MS-TMDCA A multiple scattering algorithm calculating the typical Green’s function (Fig. 6)

the typical Ḡtyp directly, at the expense of not recovering
the TMT when Nc = 1. Nevertheless, it quickly converges to
produce the same results as Eqs. (52) and (53) for moderate
cluster sizes, including Nc = 38, but will not be further em-
ployed in this discussion. It is important to note that the typical
Green’s function, Gtyp(K,ω), is used only to calculate the
effective medium of the cluster problem. This geometrically
averaged reference system carries no physical meaning other
than the order parameter. Since experimental measurements
of the single-particle spectra (which also determine the Fermi
level), and of transport, two-particle spectra, etc., involve
averages over large regions, these experiments are described
by arithmetically averaged Green’s functions obtained from
functional derivatives of the arithmetically averaged free
energy.

In Table II, we summarize the naming conventions and
acronyms for the different algorithms discussed in this
manuscript. Here, in each abbreviation, we use the letters TM
to indicate a typical medium approach, the letters DCA for
a Green’s function based approach, and NLCPA a scattering
path operator (τ ) based approach.

IV. NUMERICAL RESULTS FOR THE TIGHT-BINDING
MODEL

In this section, we will present the results obtained using
the KKR-NLCPA formalism as compared with the standard
DCA and the typical medium DCA using the tight-binding
model of Sec. II.

A. Effective medium with arithmetic average:
KKR-NLCPA vs. DCA

As a starting point, we discuss results from benchmarking
the KKR-NLCPA formalism with the DCA. As shown in
Eq. (45) in Sec. II D, the DCA cluster excluded Green’s
function is related to the KKR-NLCPA cluster renormalized
interactor through G(K,ω) = Ḡ

′
0(K,ω) + �̄

′
(K,ω). We use

this relationship in the construction of the multiple-scattering
algorithms which employ the arithmetically averaged and
typical Green’s functions.

To demonstrate this numerically, in Fig. 7, we show a
comparison of the imaginary parts of G(K,ω) = (ω − ε̄(K)
− �̄(K,ω))−1 from the standard DCA and Ḡ

′
0(K,ω) +

�̄
′
(K,ω) calculated from the KKR-NLCPA algorithm shown

in Fig. 4 for the binary alloy disorder configurations for
the concentration cA = 0.5 at disorder strength VA = 0.7
for the cluster size Nc = 38. In Fig. 7, the solid lines are
the DCA results while the dash lines are the corresponding
KKR-NLCPA. As evident from the plots, the two formalisms
agree with each other within our numerical accuracy. This

shows that the averaged medium KKR-NLCPA/DCA using
the tight-binding model adequately reproduces the required
behavior as in the DCA.

To perform a further numerical check of these expres-
sions, we compare the DCA self-energy �̄(K,ω) to the
KKR-NLCPA (Fig. 4) [t̄−1

l (ω) − ᾱ(K,ω)]−1. The results for
the imaginary part of the local cluster average self-energy
��̄(ω) = 1

Nc

∑
K ��̄(K,ω) is shown in Fig. 8 and that for the

imaginary part of the nonlocal momentum-resolved ��̄(K,ω)
is shown in Fig. 9. In Fig. 9, the labels A–D and their associated
momenta K correspond to each of the four distinct cells
obtained using the point-group and particle-hole symmetry
(ρ̄(K,ω) = ρ̄(Q − K,−ω), with Q = (π,π,π )) of the cluster.
For the local self-energy, Fig. 8, the two disorder strengths,
VA = 0.2 and 0.7, correspond to the weak disorder and
the band split regimes, respectively. In both cases, a good
agreement between the two formalisms is observed. Similarly,
as seen from Fig. 9, we find a very good agreement between the
nonlocal self-energies calculated within the DCA and KKR-
NLCPA formalisms, respectively. Here we present results for
the large disorder VA = 0.7 strength only, since at low disorder
the nonlocal effects are negligible.

FIG. 7. Comparison of the imaginary parts of the cluster excluded
Green’s function G(K,ω) from the DCA procedure and Ḡ

′
0(K,ω) +

�̄
′
(K,ω) calculated in the KKR-NLCPA procedure for Nc = 38 at

disorder strength, VA = 0.7 (VB = −VA) and concentration, cA =
0.5. The solid lines depict the DCA results while the dash lines
are the corresponding KKR-NLCPA and their associated momenta
K correspond to each of the eight distinct cells obtained using the
point-group symmetry of the cluster.
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FIG. 8. A numerical comparison of the local self-energy
1

Nc

∑
K �̄(K,ω) obtained from the DCA procedure and the local

KKR-NLCPA self-energy 1
Nc

∑
K[t−1

l (ω) − ᾱ(K)]−1. Here, solid
lines are the DCA results and dash lines are their KKR-NLCPA
counterparts.

To conclude our benchmarking of the multiple scattering
KKR-NLCPA approach with the DCA, in Fig. 10, we show a
plot of the arithmetically averaged density of states (ADOS)
obtained using the DCA algorithm I of Fig. 1 and the KKR-
NLCPA of Fig. 4. This again is a good quantity to check the
reliability of the developed KKR-NLCPA formalism within
the tight-binding model. The data are for cA = 0.5 at weak
disorder VA = 0.2 and strong disorder VA = 0.7 (VB = −VA)
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FIG. 9. A numerical comparison of the K-resolved self-energy
�̄(K,ω) obtained from the DCA procedure and the KKR-NLCPA
self-energy [t̄−1

l (ω) − ᾱ(K)]−1 at VA = 0.7 (VB = −VA) and cA =
0.5. We observe again that two procedure are numerically equivalent.
Here, the solid lines are the DCA results while the dashed lines depict
their KKR-NLCPA counterparts. Note, the labels A–D and their
associated momenta K depict each of the four distinct cells obtained
using the point-group and particle-hole symmetry [ρ̄(K,ω) = ρ̄(Q −
K, − ω), with Q = (π,π,π )] of the cluster.
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FIG. 10. The arithmetically averaged density of states (ADOS)
obtained from the DCA and KKR-NLCPA calculations. We present
data for the binary alloy disorder with cA = 0.5, for cluster size
Nc = 38 at small disorder VA = 0.2 and larger disorder VA = 0.7
(VB = −VA). The results show that the two procedures are equivalent
when applied to the tight-binding model.

using a finite cluster Nc = 38. The results clearly demonstrate
that the two procedures are equivalent when applied to the
tight-binding model.

B. Typical medium: MS-TMDCA versus TMDCA

In the typical medium analysis, the effective medium is
characterized by a geometrically averaged typical density of
states. To demonstrate that the proposed MS-TMDCA formal-
ism captures correctly the Anderson localization transition,
we compare the typical density of states obtained from the
MS-TMDCA procedure described in Fig. 6 with the ones
obtained using the TMDCA scheme [53]. Our results of Fig. 11
obtained for a finite cluster Nc = 38 show a comparison
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FIG. 11. ADOS calculated in DCA and KKR-NLCPA procedures
and TDOS calculated in MS-TMDCA and TMDCA procedures.
(a) For VA = 0.6, 0.65, and 0.7 at cA = cB = 0.5. (b) For ca =
0.1, 0.25, and 0.5 at VA = −VB = 0.7
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of ADOS and TDOS at different disorder strengths VA =
0.6, 0.65, and 0.7 and fixed concentration cA = cB = 0.5
panel (a); and at different concentrations cA = 0.1, 0.25, and
0.5 for VA = −VB = 0.7 panel (b). The TMDCA results of
Ref. [64] and the present MS-TMDCA data seen in Fig. 11
are nearly indistinguishable. Here the TDOS is finite for the
extended states (inside the mobility edge marked by arrows),
and vanishes for the localized states at the top and bottom
of the band and at the band center. As seen from panel (a)
of Fig. 11 increasing VA causes localization of the states
near the band center (VA = 0.7) with vanishing TDOS but
still finite ADOS. At even larger VA (not shown here), it is
possible to drive also the ADOS to zero at the band center
due to the alloy disorder band splitting [72]. Panel (b) of
Fig. 11 shows the evolution of the average and typical DOS
with carrier A concentration cA. The results demonstrate that
the two algorithms MS-TMDCA and TMDCA also agree for
concentrations away from the symmetric case cA = 0.5. The
panel (b) shows two well separated regions are visible, one
centered on VA and the other on VB . The initially localized
states at cA = 0.1 become delocalized at larger concentrations
cA = 0.5.

We note that the above formalism applies to the single-band
case. However, realistic systems often have many bands. Thus,
in electronic structure calculations based on the multiple-
scattering typical-medium dynamical cluster approximation
formalism the above quantities are matrices in angular mo-
mentum space. This will require some modifications to the
proposed MS-TMDCA scheme. In particular, for the ansatz
Eq. (52) for the multiorbital TMDCA formalism one may
perform a geometric average for the diagonal terms l = m and
a linear average for the off-diagonal l �= m components [63].
The second ansatz, Eq. (54) requires less modification in that
only a linear average of the Green function matrix occurs in the
numerator, which appears to improve the numerical stability
of the algorithm.

V. CONCLUSION

In this paper, we detail the construction of the typi-
cal medium approach in the framework of the multiple-
scattering formalism. The constructed multiple scattering typi-
cal medium DCA (MS-TMDCA) formalism is a reformulation
of the typical medium DCA [53], which has been successfully
applied to model-Hamiltonian systems to quantitatively study
and detect Anderson localization.

Being motivated by the need for the development of
appropriate numerical tools to study strong disorder effects
in first principle calculations, we first provide a detailed
comparison of two major effective medium algorithms used
in the model Hamiltonian DCA [43] community and the
real material multiple-scattering KKR-NLCPA community
[44,45,67]. To provide a bridge between the DCA and
multiple-scattering approaches, we demonstrate explicitly
that these two approaches when applied to a tight-binding
Hamiltonian are equivalent. We pay particular attention to the
nontrivial relations between the key quantities in the DCA
and KKR-NLCPA methods. These relationship were used to
construct various self-consistency procedures, including the
MS-DCA, which is a generalization of the DCA using the
multiple-scattering language. Because the MS-DCA calcu-
lates the disorder-averaged Green’s function rather than the
scattering path operator used in the KKR-NLCPA, it can be
readily generalized into a typical medium approach such as
the MS-TMDCA (a multiple scattering algorithm).

As an application of the MS-TMDCA formalism developed
here we solve a tight-binding model on a cubic lattice
with Nc = 38 sites for various values of binary disorder
strength. To check the validity of our mapping of the
TMDCA to the multiple scattering approach, we compare
numerical results for the density of states and the self-energy
calculated within the DCA-based and the multiple scattering-
based approaches (both for the algebraically averaged and
geometrically averaged components). We find that the results
from both approaches are numerically the same, affirming the
successful mapping of the DCA-based formalism to a MS
based formalism.

The construction and application of the MS-TMDCA
formalism to the tight-binding model presented in this paper
is the first step towards an extension of the typical medium
methodology into an ab initio theory of disordered materials
which is sensitive to Anderson localization. The material-
specific implementation of this approach will be our next step.
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