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We examine in this work the role of disorder in contributing to the sluggish relaxation observed in intrinsic
electron glasses. Our approach is guided by several empirical observations: First and foremost, Anderson
localization is a pre-requisite for observing these nonequilibrium phenomena. Secondly, sluggish relaxation
appears to favor Anderson insulators with relatively large Fermi energies (hence proportionally large disorder).
These observations motivated us to consider a way to measure the underlying disorder in a realistic Anderson
insulator. Optical studies using a series of amorphous indium oxide (InxO) establish a simple connection between
carrier concentration and the disorder necessary to approach the metal-insulator transition from the insulating side.
This is used to estimate the typical magnitude of the quenched potential fluctuation in the electron-glass phase
of this system. The implications of our findings on the slow dynamics of Anderson insulators are discussed. In
particular, the reason for the absence of a memory dip and the accompanying electron-glass effects in lightly-doped
semiconductors emerges as a natural consequence of their weak disorder.
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I. INTRODUCTION

Theoretical considerations anticipating nonequilibrium ef-
fects in Anderson-localized systems were described in a
number of papers [1–12]. These were based on the interplay
between disorder and Coulomb interactions leading to an
electron-glass phase.

Over the last few decades there were several experimental
studies that seem to give support to these expectations [13–15].
The dynamics that characterizes the approach to equilibrium of
these systems is sluggish; relaxation of the excess conductance
produced by driving the system far from the equilibrium was
observed to persist for many hours in some cases [16]. The long
relaxation of the electronic system makes it possible to observe
a modulation of the single-particle density-of-states (DOS) in
field-effect experiments [17]. This feature, called a ‘memory
dip’ (MD), appears as a cusplike minimum in the conductance
versus gate voltage. An example is illustrated in the inset to
Fig. 1. The memory dip, presumably [5,9] a reflection of an
underlying Coulomb gap [20,21], is the identifying feature of
intrinsic electron glass [5,6,9,11,22].

To date, a memory dip has been observed in seven different
Anderson insulators (listed in Fig. 1). The figure shows an
empirical correlation between the typical width � of the MD
and the carrier concentration N of the material. The list of An-
derson insulators that exhibit electron-glass properties include
all types of degenerate Fermi systems; n-type semiconductors
(Tl2O3−x , InxO, In2O3−x), p-type semiconductors (GeSbxTey,
GeTe), and a metal (Be).

The systematic dependence of the MD characteristic width
on carrier concentration, an electronic property, is consis-
tent with the expectation that the phenomenon is intrinsic.
Due to lack of screening in the Anderson-insulating phase,
Coulomb interaction may be comparable in magnitude to the
quenched disorder, and therefore these competing ingredients
responsible for glassy behavior are always present in Anderson
insulators.

There seem to be more requirements on the material to allow
observation of electron-glass effects. Note that all the systems
in Fig. 1 are made from materials with carrier-concentration

N limited to a range 1022 cm−3 > N � 5×1019 cm−3. The
absence of systems with N > 1022 cm−3 from this list is
not surprising; a prerequisite for observing electron-glass
effects is Anderson localization, which is hard to achieve
in a system with large N unless by making it granular (on
which we remark later). Less clear is the limit of low carrier
concentration. No memory dip has been reported in a system
with carrier concentration smaller than ≈1019 cm−3 in any
Anderson-localized system like Si or GaAs. Two-dimensional
samples of these materials may be tuned to show insulating
behavior and were extensively studied in the hopping regime.
Their near-equilibrium transport properties (like conductivity
versus temperature) are not qualitatively different than those
of the systems in Fig. 1. The absence of a MD in these systems
has been a vexing question for quite some time.

It was conjectured [22] that relaxation processes in
lightly-doped semiconductors (with N � 1017 cm−3) are too
fast to allow their signature to be captured by field-effect
measurements. This was inspired by the observation of
relaxation dynamics in a series of amorphous indium-oxide
(InxO) films [22,23]. These can be fabricated with different
N values, covering N ≈ 5×1018 cm−3 to N ≈ 5×1021 cm−3

by controlling the In-O ratio [24]. The typical relaxation
times of these films sharply diminished [23] once the carrier
concentration was reduced below N ≈ 1020 cm−3. Note that,
given the sample-gate capacitance (as well as the other para-
sitic circuit capacitances), the field-effect temporal resolution
is severely limited for high resistance samples. Consistent
with this conjecture, ultrafast relaxation in a lightly-doped
semiconductor was reported in phosphorous-doped Si [25].
What needs to be clarified is the role of carrier concentration
in affecting the dynamics of electron glasses.

A phenomenon that is highly sensitive to the value of
N is often indicative of a many-body mechanism playing a
role. Mechanisms that were considered in this regard include
correlated many-particle transitions [26] and the Anderson
orthogonality catastrophe [27]. A model by Leggett et al.,
based on coupling to an electronic bath [28], is consistent with
many of the observed features [27]. These mechanisms, in con-
junction with quenched disorder and hierarchical constraints,
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FIG. 1. The typical width of the memory dip � as a function
of carrier concentration N for several Anderson insulators. � is
defined in the inset as the width at half height of the dip relative
to the thermodynamic G(Vg). Data are taken from Refs. [18,19].
Inset: Field-effect measurement for amorphous indium-oxide film
with N ≈ 3×1020 cm-3 revealing a memory dip centered at +6 V,
which is the gate voltage maintained between the sample and the gate
for 24 hours before sweeping the gate voltage over the range shown.
The InxO was separated from the gate by 0.5 μm of SiO2 (the � versus
N results in the main figure are all normalized to this geometry). The
dashed line depicts the law: � ∝ N−1/3 which is consistent with the
Coulomb-gap behavior suggested by the models in Refs. [5] and [9].

are likely contributing factors in the sluggish relaxation to
some degree. However, to account for relaxation times of the
order of hours with these scenarios still requires that the bare
tunneling probabilities are much smaller than those involved
in the dc conductivity.

The purpose of this work is to investigate the role played
by disorder in slowing down charge rearrangement processes
involved in the energy relaxation of electron glasses. This is
motivated by an alternative interpretation of the decisive role
that seems to be played by the carrier concentration of the
system. Note that, at the transition, the magnitude of disorder
in an Anderson insulator with large carrier concentration must
be larger than that of a system with low carrier concentration,
which may be summarized by a simple relation between the
Fermi energy of the system and the critical disorder. It will
be shown in this paper that this remains true deep into the
insulating regime. Therefore, the empirical observation that
the relaxation becomes slower once N becomes larger may
turn out to be related to the weaker disorder rather than to
various many-body effects (although the latter may be quite
effective in further slowing down the relaxation).

The first step in examining this conjecture calls for assessing
the magnitude of the disorder in the Anderson-insulating phase
and its relation to the carrier concentration of the system. We
describe a set of experiments on several batches of amorphous
indium oxide with different carrier concentrations and with
a different degree of disorder in each batch. These data are
analyzed to demonstrate a simple relation between disorder
and the Fermi energy of a batch with a given N deep into

the insulating regime. This, augmented by further arguments,
is used to explain why Anderson-localized systems with low
carrier concentrations are unlikely to exhibit intrinsic electron-
glass effects with relaxation times longer than a few seconds.
To understand the motivation for our approach to the problem,
we first review the main experimental findings pertinent to the
electron-glass dynamics.

A. Basic features of the dynamics in glassy Anderson insulators

Due to the lack of a concrete timescale in their temporal
relaxation (generally, a power law), dynamics of glasses cannot
be uniquely quantified. Tests to study, on a relative basis,
how various agents affect the dynamics were performed on
Anderson insulating crystalline indium oxide, In2O3−x and
on InxO with various compositions [23,27,29]. These studies
were also limited to effectively two-dimensional (2D) samples
with sheet resistances R� in the range of ≈1 M� to ≈500 M�

where the signal to noise of the glassy features is favorable.
With these systems however, it was possible to test dynamics
over a large range of lateral dimensions, from 2 μm to
10 mm [30].

The first observation, already alluded to above, is that dy-
namics seem to become faster when the carrier concentration
is smaller [23]. Secondly, all features associated with slow
dynamics disappear as the system crosses over to the diffusive
regime [22].

Over the temperature range ≈2–8 K there was no indication
of dynamics freezeout [27,29]. This is in stark contrast with the
behavior of classical glasses where dynamics is quickly frozen
below a certain temperature [31]. The sample conductance
over this temperature range typically changes by 1–2 orders of
magnitude.

Transition rates associated with conductivity of Anderson
insulators can be expressed as: ω exp[−r/ξ ] were r is the
hopping length and ξ the localization length. These rates
typically range between ≈1010 sec−1 to ≈105 sec−1 based
on the transition probability through a bottle-neck resistor
with r/ξ ≈ 6–15 (a typical value for the hopping regime) and
assuming attempt frequency ω of the order of 1012 sec−1 which
is commonly used as the prefactor in hopping conductivity.
Here r is the hopping length and ξ the localization length.
Relaxation rates of the studied electron glasses are obviously
slower by many orders of magnitude.

Another demonstration that conductance and relaxation
processes appear to be different was recently observed in pho-
toconductivity experiments on GeSbxTey films in their glassy
regime; adding charge to the system by optical excitation
enhanced the conductance but it slowed down the relaxation
dynamics [32].

These observations suggest that relaxation and conductivity
involve different processes. It is natural then to consider
extrinsic effects as a viable mechanism for the slow relaxation
exhibited by these systems. There are several candidates to
choose from: ion motion, surface traps, grain boundaries [33],
and negative-U centers [34] are all potential sources for slow
dynamics. Their coupling to charge carriers might be the
reason for the observed conductance relaxation observed in
the experiments. In the first place, this would immediately
explain why relaxation from an out-of-equilibrium state is
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FIG. 2. A schematic description of a proposed element of the
asymptotic energy-relaxation process. Charge carriers (full circles)
tunneling through potential fluctuations (W) to lower the configura-
tional energy associated with the interparticle Coulomb interaction.

controlled by different processes than those involved in the
dc conductance. It is also appealing as a source of a very
slow phenomenon, intimately connected with the ubiquitous
1/f-noise phenomenon [35].

This however, is one of the problems with extrinsic
mechanisms; flicker noise is indeed ubiquitous; intrinsic
electron glassiness is not. 1/f noise may be observed in the
metallic as well as in the localized transport regime while the
electron glass is an exclusive property of the localized phase.
Furthermore, as mentioned above, a memory dip, which is the
identifying feature of the intrinsic electron glass, has not been
seen in any lightly-doped semiconductors while 1/f noise is
quite evident in all these systems. GaAs samples in particular
exhibit prominent 1/f noise yet no slow conductance relaxation
that might have compromised their operation as bolometers has
been observed [36].

Other shortcomings of extrinsic scenarios include diffi-
culties to account for the dependence of the memory dip
on temperature and disorder [22]; they cannot explain the
systematic dependence of the memory dip width on carrier
concentration (Fig. 1), and they cannot account for the peculiar
evolution of the MD shape with temperature [22,31]. Finally,
the failure of lightly-doped semiconductors to show a memory
dip remains enigmatic in this approach.

A more promising route to pursue is the ‘purely’ elec-
tronic scenario which accounts for most of the observed
features [5,9–11], and as argued below, the reason for the
absence of intrinsic glass effects in low carrier-concentration
systems emerges naturally from this picture. In this approach,
both conductivity and relaxation in the electron glass proceed
via charge-carriers transitions between localized states. The
qualitative difference between transitions involved in relax-
ation and those that control conductivity is that conductance
must include activated processes while relaxation, in our
scenario, is dominated by tunneling between states differing
in energy by δ � kBT [27].

The driving force for the relaxation is minimizing the
electrostatic energy Eel = ∑

i,j
e2

ri,jε(ri,j)
under the constraints set

by the disorder (assumed to be quenched). A simple example
of an energy-reducing event due to charge rearrangement is
illustrated in Fig. 2.

A transition of the type shown in Fig. 2, for example, would
result in an energy release of the order of δε = e2(r2-r1)

ε(r1,2)r1r2
that

amounts to a substantial excess energy injected into the system
(except for a rare r2 ≈ r1 event). This may enhance the excess
conductivity via two possible mechanisms:

First, by generating an excess of nonequilibrium phonons.
Although some of these generated phonons would escape to the
bath, it does not take much overheating to appreciably affect
the conductivity in this regime. Consider for example, a typical
electron glass with R� ≈ 10 M� at T = 4 K. This, when
excited, will have an excess conductance �G/G of the order of
≈1% (see, e.g., Fig. 6 in Ref. [37]). Overheating by ≈5 mK’s
(at 4 K) is enough to generate this excess conductance given the
R(T) of such a sample (stretched exponential with a power of
1/3 or 1/2 with activation energies of ≈5000 K and 800 K for
the indium oxide and Be sample [37], respectively). Even much
less overheating will be needed deeper in the electron glass
regime; �G/G increases algebraically with disorder but the
sensitivity of G to temperature increases exponentially with it.

Secondly, a transition event at any point Ri in the system
may induce transitions in another site Rj either directly via
Coulomb interaction (when |Ri-Rj| < rh) or indirectly via a
succession of ‘avalanches’ (for |Ri-Rj| > rh) [38,39] where
rh is the hopping length. As alluded to above, there is no
metallic screening in the Anderson-localized phase but at finite
temperatures the Coulomb interaction is effectively cut off
at distances larger than the hopping length [38,39]. These
avalanches, much like the domino effect, ultimately spread
to modulate the space-energy configuration of the CCN thus
affecting the measured conductance. Relaxation of the excess
conductance would last as long as such energy-reducing
transitions occur. It should be noted that the probability of
these transitions to occur depends also on the electron-phonon
coupling strength (direct electron-electron inelastic transitions
are essentially suppressed in the strongly-localized system
relative to its value in the diffusive regime [38]).

There is also a quantitative difference between transitions
involved in the dc conductance and those contributing to
relaxation processes. Conductance is determined by relatively
fast transitions between a pair of sites composing the current-
carrying-network (CCN). These are the pairs of sites connected
by the relatively high transition probabilities in the Miller-
Abrahams conductance distribution. In the hopping regime the
CCN typically occupies a tiny fraction of the system volume;
most of the material is ‘dead wood:’ These are the high resis-
tance regions of the system [40–42], and this is naturally where
the slowest transitions occur. Energy relaxation in the Ander-
son insulator involves energy-reducing transitions anywhere
in the system including in particular the dead-wood regions.

The relative weight of the dead wood gains in prominence
when the disorder gets larger or when the temperature
gets smaller. In our conjecture, this would account for
the experimentally observed increase of the relative magnitude
of the MD resistance whether affected by disorder, field, or
temperature [43].

The dead wood, occupying the bulk of the system volume,
holds most of the excess energy associated with the out-
of-equilibrium state. Therefore, conductance relaxation in
this picture is essentially controlled by the dead-wood slow
dynamics.

B. Dynamics in the dead wood

The question we need to address concerns the transition
rates of tunneling events of the general type illustrated in Fig. 2.
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Tunneling probability depends exponentially on the distance
L and on an effective barrier V∗. Tunneling distance L for
electrons could easily be much larger than that typically found
for ions and may extend over 102–103 atoms in solids. This
balances out their transition rates as compared with ions with
their ≈104 times heavier mass. Tunneling probability may be
vanishingly small ifL is long enough. However, the most likely
transition scale at the asymptotic regime of the relaxation is
perhaps of the order of the Bohr radius aB. Transitions over
longer distances likely proceed by a series of short events.
Such ‘serial’ events, as well as other ‘hierarchical processes,’
would further slow down the dynamics and should be treated
separately.

The quantum transmission through a slab of an Anderson
insulator of a finite cross section and length has been worked
out by Nikolić and Dragomirova [44]. They studied the
statistics of the associated eigenvalues as a function of disorder
and for several lengths. The distribution of transmission
eigenvalues was found to be very wide. In the presence of
moderate disorder it included a finite portion of near resonance
channels which may play a role in local hierarchical processes,
but they do not directly contribute to relaxation. On the other
hand, the distribution of transmission probability was heavily
skewed in favor of low transmission channels [43] even for
weak disorder while the resonances naturally disappeared
when critical disorder was imposed. It is plausible that
including electron-electron interaction in such calculations
will only enhance the peak of the low transition probabilities
in the spectrum. Slow relaxation events should therefore be
abundant in the system.

Tunneling probability γ through a simple (square) barrier
may be estimated by a WKB expression:

γ ∝ exp

(
−2

[
2m∗V∗

h̄2

]1/2

L
)

; V∗ = V − E, (1)

where m∗ is the effective-mass of the charge carrier, V the
barrier height, and E the particle energy (which will be taken as
EF). The spatial form of W(r) in a realistic Anderson insulator
obviously requires a more elaborate treatment than addressed
by the WKB approximation (probably a numerical work along
the lines of Ref. [44]). However, the exponential dependence
on m∗, L, and V∗ should still be reflected in a more detailed
treatment. This was recently demonstrated in a numerical study
extending the calculations of Ref. [44]; in the localized regime,
the probability to find transmission trajectory with a value
smaller than a given γ is exponential with W 1/2 and L [45].

To estimate how slow a typical tunneling event may be, one
needs to know the magnitude of the V∗. We shall assume it to
be of the order of the potential fluctuationW . The value ofW is
the distinguishing factor in determining whether electron-glass
effects can be observed by field-effect measurements in a given
system. W may vary by orders of magnitudes while aB is
typically in the range of 20–50 Å. Larger values for aB are
usually due to very light effective mass which counteracts the
effect of longer tunneling distance on the tunneling probability.

To anticipate the discussion below, recall that a prerequisite
for electron-glass behavior is Anderson localization, which
means that the disorder energy W has to be comparable with,
or larger than, the kinetic energy EF. All other things being

equal, a system with larger carrier concentration must be more
disordered to be Anderson localized and thus has larger W .
Lightly-doped semiconductors used for hopping conductivity
studies have typically N � 1017 cm−3. Their associated Fermi
energy (and thus their W) may be too small to sustain slow
transitions. At comparable value of resistivity and reduced
temperature kBT/EF, their disorder is typically much weaker
than that of hopping systems with N � 1020 cm−3. What
transpires from this consideration is the need to know what
actually is W for a given Anderson insulator. An attempt to
deal with this elusive issue is our next step.

C. The ‘critical’ disorder in Anderson insulators

There are several ways to characterize the magnitude of
disorder in the Anderson-localized phase. For example, the
value of the localization length ξ is, in a way, a measure of
disorder. However, determining ξ involves transport measure-
ments at low temperatures where one probes just the CCN
thus ignoring the most disordered part of the sample. Another
choice is the Ioffe-Regel parameter kF
 that may be estimated
from Hall effect and resistivity measurements at relatively high
temperatures [46]. kF
 may be taken as a measure of disorder
whenever ρ is dominated by the elastic mean-free-path 
. This
condition is well-obeyed in the vicinity of kF
 � 1 where the
conductivity is scale independent [47] and the estimate of kF


is then least sensitive to the specific temperature at which
ρ is measured. In the regime kF
 < 1 neither kF nor 
 have
their usual meaning but kF
 may still be a useful parameter
to characterize disorder; it is just a dimensionless parameter
that decreases monotonically with disorder. On the other hand,
kF
 is not simply related to static disorder once kF
 ≪ 1 (or
kF
 � 1, a regime irrelevant for this discussion anyhow). In
these limiting cases the room-temperature conductivity may be
dominated by inelastic processes rather than by static disorder.

Given a system with a certain kF
 one still requires a way
to assign a value for its W . Theoretical estimates may be used
for the ‘critical disorder’ WC , the disorder necessary to just
localize the entire band. Estimates based on a noninteracting
picture yield the ratio WC/I � 16.5 [48]. Here I is of the order
of the bandwidth, typically several electron volts. In these
models the Fermi energy is taken at midband where the density
of states is highest. The models however are more vague when
the Fermi energy is near the band edge where ∂n/∂μ may be
rather small. Unfortunately, this is invariably the situation in
real Anderson insulators [48]. It is certainly the case for each
of the seven electron glasses listed in Fig. 1.

A more helpful approach then is to rely on the physics
of the diffusive regime and extrapolate to the transition point
defined by the value of kF
 at the transition to the localized
phase obtainable from experiments. A measure of disorder
for a diffusive system is W = h̄/τ where τ is the transport
mean-free-time.

On the metallic side the ratio h̄/τ

EF
= 2

kF

, so at the metal-

insulator transition:

WC = βEF, (2)

where β depends on the specific value of (kF
 )c—the
Ioffe-Regel parameter evaluated at the transition to the
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localized phase:

β = 2

(kF
)c
. (3)

The experiments described next, suggest that the proportion-
ality between EF and W is still valid deep into the insulating
regime (kF
 � 1), covering the entire range of resistances
probed in the electron-glass studies.

D. Gauging disorder by monitoring optical properties;
tuning disorder in the amorphous indium oxides

A system that allows a continuous tuning of disorder
for both sides of the metal insulator is amorphous indium
oxide InxO. It may also be prepared with a vastly dif-
ferent carrier concentration (between ≈5×1018 cm−3 and
≈6×1021 cm−3) by controlling the In/O ratio. This makes
it possible to study the dependence of the electron-glass
properties on carrier concentration and disorder [24], as well
as the metal insulator [24] and the superconductor-insulator
transition [49].

The feasibility of tuning the system resistivity by heat
treatment is a rather unique trait of InxO. It is possible to
vary the room-temperature resistance of the as-prepared InxO
sample by up to five orders of magnitude while maintaining
its amorphous structure and composition (and hence carrier
concentration). A before-and-after diffraction pattern illustrat-
ing the preservation of amorphicity in the heat treatment is
shown in Fig. 3. This figure demonstrates that the amorphous
structure remains intact during thermal annealing. Actually,
one is hard pressed to see a difference in the before-and-after
diffraction patterns (Fig. 3). It takes a careful measurement of
the diffraction-ring intensity profile to discern the difference;
a narrowing of the diffraction rings, as shown in Fig. 4. The
change in the resistance is essentially due to modified mobility;
Hall effect studies showed only a small change as a result of the
annealing process [46,50]. It was also found that the material
volume decreases during the process which could be detected
by measuring the thickness of the film for example, by x-ray
interferometry as demonstrated in Fig. 5.

This result was part of an extensive work designed to mea-
sure the change in the optical properties that accompany the
thermal annealing of InxO samples [46] with different carrier
concentrations. We bring here fuller results and interpretation
of these data.

The volume change caused by annealing the sample was
reflected in the absorption versus energy plot as a reduction
of the optical gap. This is illustrated in Fig. 6 for one of the
studied batches.

The dependence of absorption coefficient α(ω) on energy
ω of all our InxO samples obeys the relation:

α(ω)h̄ω = B(h̄ω-Eg). (4)

A volume reduction that occurs concomitantly with a
smaller optical gap is often observed in pressure studies
of amorphous materials [51–53]. The increase in wave
functions overlap due to the reduced volume leads to a wider
bandwidth and to a modified ∂n/∂μ(E). A schematic of
such a change in the conduction-band shape is depicted in
Fig. 7. Note that this depiction is consistent with the observed

FIG. 3. Electron diffraction patterns (using a 200 kV beam) of a
≈50 nm InxO film for the as-prepared specimen with sheet resistance
R� > 108 � (a) and after thermal annealing for 34 days yielding
R� ≈ 7×104 � (b). The general appearance of the pattern seems
unchanged in the annealing, but a careful comparison of the strong
diffraction ring between the (a) and (b) micrographs reveals slightly
less fuzziness in the annealed sample (illustrated in Fig. 4 below).

before-and-after absorption curves and with the sum rule of
the number of states. However, it does not into account for a
modification in the valence band and should only be viewed
as a pedagogical aid. This modification of the band shape

FIG. 4. Intensity profile of the strongest rings in the diffraction
pattern of both (a) and (b) micrographs shown in Fig. 3 as a function
of distance r from the diffraction center. Data were taken by averaging
line scans using imagej.
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FIG. 5. Reflection interferometry using a Cu Kα x-ray source
(wavelength = 1.54 Å) for the before-after annealing stages of a
similar film as in Fig. 3. The inset shows the Fourier transform of the
main plot exposing both the reduced film thickness in the annealed
sample and the enhanced visibility of the interference pattern.

is a more plausible explanation for the reduced optical gap
in the thermal-annealing experiments than the effect of the
mobility-edge shift offered in Ref. [46]. The similarity in the
effects produced by applying hydrostatic pressure [51–53]
and thermally annealing the sample is not surprising; in both
cases energy is supplied to a metastable system allowing it to
cross barriers associated with its being a structural glass.

Our study includes a detailed comparison of the optical
properties with simultaneously measured changes of the
disorder parameter kF
. The values for kF
 and the Fermi
energy EF used here are based on free-electron formulas
EF = h̄2(3π2N)3/2

2m∗ and kF
 = (3π2)2/3h̄σRT/e2N1/3, where σRT is
the conductivity (measured at room temperature) and m∗ is the
effective mass.

FIG. 6. Absorption versus photon energy for a before-and-
after InxO sample (characterized by carrier concentration N �
8.5×1019 cm−3). Dashed lines delineate the respective values of the
energy gap.

FIG. 7. A schematic depiction of the conduction-band shape for
the as-prepared (dashed line) and annealed (full line) specimen. This
assumes that the change in the valence band may be neglected. Note
that ∂n/∂μ at EF may actually increase during the thermal annealing
due to the combined effect of reduced Lifshitz-tail and midband
widening.

Both optical and electrical measurements were performed
in situ on thick (900–1100 Å), effectively 3D films of InxO.
Data for the optical gap Eg were collected at intermediate
stages of the annealing process starting from the as-prepared
sample with typically kF
 � 10−3 and ending in kF
 > 1.
The process was repeated with films of various carrier
concentrations. Figure 8 shows the dependence of Eg on kF


for each of the studied samples.

FIG. 8. The dependence of the optical gap Eg on the Ioffe-Regel
kF
 parameter for the seven batches (labeled by their respective N )
of InxO samples. Dashed lines are guides to the eye.
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FIG. 9. �Eg and �n are the respective changes in the optical
gap Eg and the refractive index n when the disorder is changed (by
thermal annealing) from kF
 ≈ 0.02 to kF
 = 1. The data points stand
for each of the batches studied (labeled by symbols corresponding to
each of the batches in Fig. 8).

The systematic trend that emerges here is that the optical
gap Eg is a monotonous function of kF
 or rather, both kF
 and
Eg depend monotonically on the sample volume. Secondly, for
a given change in kF
, the concomitant change in Eg depends
on the carrier concentration N of the batch; �Eg is bigger for
the batch with the larger N . The change of the refractive index
n (judged by the change in the prefactor B in Eq. (3) [54])
during the annealing process showed a similar trend. Figure 9
shows a systematic correlation between EF and the change in
disorder of n and Eg for each of the batches studied (for a unity
change in kF
).

II. ANALYSIS AND DISCUSSION

Before proceeding it may be a good idea to check whether
our assumptions so far are not at odds with reality. We have
focused on InxO because of available data pertaining to this
system with a wide range of carrier concentration and disorder.
In particular, the metal-insulator transition has been studied in
this material for InxO versions with N � 1019 cm−3 and N �
1021 cm−3. Both versions were found to cross the transition
at a similar kF
 � 0.32 ± 0.02 [24]. To localize InxO with
EF ≈ 0.3 eV, which is the highest Fermi energy in the series
studied here, WC has to be �1.9 eV [to be consistent with
Eq. (3)]. Is such disorder a viable occurrence in this system?

A main source of disorder in InxO is chemical [24,46]. This
is associated with deviation from stoichiometry; relative to the
ionic compound In2O3−x , there are 5–30% oxygen vacancies
in InxO [24]. To preserve chemical neutrality some of the
indium atoms must assume a valence of +1 instead of the +3
they have in the stoichiometric compound. When randomly
distributed these valence fluctuations form a background
potential of e2/r ≈ 5 eV (assuming an average interatomic
separation of r ≈ 3 Å [55]). This type of disorder is quite
prevalent in nonstoichiometric compounds, metallic oxides,

high-Tc materials, etc. The associated disorder W in these
materials may reach 4–5 eV.

In addition to chemical disorder, there is an off-diagonal
disorder in the material that is partially alleviated in the thermal
annealing process. This disorder is related to the distributed
nature of the interatomic separation (the random values
of interatomic separation). The distribution of interparticle
distances (and thus wave-function overlap) obviously gets
narrower as the volume decreases and the system approaches
the ‘ideal’ closed-packed amorphous structure. The diminish-
ment of this, off-diagonal disorder, is clearly reflected in the
enhanced visibility of the x-ray interference pattern of the
annealed sample in Fig. 4 and also in the electron diffraction
Figs. 3 and 4 (albeit less conspicuously).

It has been a controversial issue whether off-diagonal
disorder can lead to localization [56–58]. It should be noted
that, in the InxO system, the metal-insulator transition is
crossed by the combined effect of changing the atomic overlap
(which in turn affects the density of states as schematically
described in Fig. 6) while simultaneously modifying the off-
diagonal disorder. Localization (at the less-annealed regime)
is also aided by the underlying chemical disorder and possibly
by the Coulomb interaction [59].

Two features of the data in Figs. 7 and 8 are worth noticing:
First, for a given batch (fixed N) there is a systematic and
monotonous dependence of Eg on kF
 although the transport
measures essentially just the elements of the CCN while
optics is sensitive to the whole sample. The correlation
between the two measurements is indicative of an under-
lying common conductance distribution; being disordered
the system is inherently inhomogeneous but it is so in a
generic way (as embodied in the percolation treatment of
hopping conductivity). Inhomogeneity associated with large
thickness or composition variations across the sample will in
general not show the correlation between transport and a bulk
measurement. Secondly, the change in both the optical gap and
the refractive index between kF
 = 1 and kF
 � 0 exhibits a
near-linear correlation with the Fermi energy of each batch
(Figs. 8 and 9).

As noted above, during annealing the sample volume
decreases (Fig. 5), which among other things, causes the
refractive index to increase. �n may then be used to estimate
the associated change in the system energy per particle δE. Let
us take the largest swing of �n in the series being ≈20% for
the sample with EF � 300 meV (Fig. 8). The average change
of the interparticle separation in this case is ≈7% (an estimate
consistent with the thickness change upon annealing measured
independently for this sample) giving δE ≈ 0.07×5 eV = 350
meV. Note that this energy is close to the respective change
of the optical gap for this batch (Fig. 8). The near linearity
of �n and �Eg with EF guarantees that proportional results
are obtained for the entire series of samples studied here. This
means that the disorder energy in the range kF
 = 1 to kF
 = 0
changes by no more than EF of the batch under study.

For the electron-glass phase of InxO however the relevant
range of kF
 is only 0 < kF
 < 0.32; InxO sample with
kF
 ≈ 0.02 has a resistance of ≈1 G� at 4 K [24], therefore
the change in δE is even smaller than EF. The entire change
of disorder relevant for the electron-glass phase of InxO can
be concisely summarized as δE � β ′EF where β ′ ≈ 0.3. This
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can be combined with Eq. (2) to give a measure of the
disorder WEG in the electron-glass regime (namely, deep in
the Anderson-localized phase):

WEG ≈ (β + β ′)EF = β∗EF. (5)

Most of the disorder in WEG is actually due to WC = βEF. An
order of magnitude estimate for W in the diffusive regime
may be taken as W =h̄/τ = h̄VF/
 (τ is the transport
mean-free time). With EF = h̄2k2

F/2m∗ this yields for the ratio
W/EF = 2/kF
. As the transition of InxO is approached from
the diffusive regime kF
 → 0.32 and W → WC ≈ 6.2EF.
Increasing the disorder above this point further localizes the
system, but as the resistance is exponential with disorder in this
regime, a relatively small added amount of disorder ≈0.3EF is
necessary to get deep ( kF
 ≪ 1) into the insulating state.

The near-linear relation between disorder and Fermi energy
established here for InxO samples is significant; these samples
cover more than a decade range in carrier concentration and
over this range the dynamics is changing by almost three
orders of magnitude [23]. This is a result of the exponential
dependence of relaxation dynamics on WEG as is argued next.
Our conjecture is that a relation between W and EF of the form
expressed by Eq. (5) and with β∗of similar magnitude as in
InxO is generally obeyed by Anderson insulators.

If lightly-doped semiconductors follow the same trend,
their dynamics should be much faster than in electron glasses
with N � 3×1020 cm−3. To illustrate, let us use Eq. (1)
on a relative basis to compare the typical tunneling prob-
ability for the InxO sample with N ≈ 3.3×1020 cm−3 with
that of a lightly-doped semiconductor like Si. Equation (1)
with m∗ ≈ 0.3m0, V∗ ≈ 1.7–1.9 eV, and L ≈ 20 Å gives
γ ≈ 10−7. The parameters for Si-MOSFET in the Anderson
insulating regime [60] are similar except for V∗; given a carrier
concentration of N ≈ 1017cm−3, typical of the insulating phase
in this system [60], EF is ≈100 times smaller. Since β∗ is
likely only smaller when the Fermi energy is reduced [48],
the respective W for Si should be at least two orders of
magnitude smaller than that of the InxO sample, which means
five to six orders of magnitude faster dynamics (assuming
comparable electron-phonon coupling strength and a similar
spectral nature of the disorder). If conductance relaxation in
the InxO may be observed for days, it may not last more than
seconds in a lightly-doped semiconductor like Si. With such a
relaxation time it would be practically impossible to observe
the memory dip in field-effect experiments. It is hard to see
how any parameter peculiar to a lightly-doped semiconductor
can compensate for their weak disorder. Note that the estimate
made above is just for the bare tunneling, it does not take into
account coupling to the environment, which would further
increase the discrepancy between these rates [27].

A test of these considerations is to instill a disorder of
few electron volts in a lightly-doped semiconductor: By our
conjecture, slow relaxation and intrinsic electron-glass effects
should be observable in this case. Unfortunately, the measure-
ment of such a sample may turn out to be a tall order. With
such strong disorder (W/EF ≫ 1) it is doubtful whether the
conductance is measurable even at temperatures that exceed
the Fermi energy while, like in any other electron glass, one
should maintain T � EF/kB in such a measurement, which

FIG. 10. The sheet resistance of a In2O3−x film at T = 4.1 K
versus its value at room temperature. The dashed line depicts the
expected value of resistance extrapolated along the line where the
room-temperature resistance may be a linear measure of disorder.
The dotted curve is a guide for the eye.

for these systems means T � 1 K. At these temperatures the
resistance for a sample with such W will balloon out of reach.

The difficulty can be demonstrated by reference to an
experiment using as a model a thin film of In2O3−x , a
system where the resistance can be manipulated over a
considerable range. In the experiment, shown in Fig. 10,
the room-temperature resistance RRT of the In2O3−x film is
changed by UV treatment [50].

Samples with RRT spanning the range of ≈16–180 k�

were generated from a single batch in this method. At T ≈
4.1 K these samples had resistances spanning ≈6 orders of
magnitude. The value of RRT may be taken as a (linear) measure
of disorder only when the sample is in the diffusive regime,
RRT � h/e2. Strong-localization behavior apparently sets in
for RRT � 40 k� where the linear relation between disorder
and RRT does not hold. Over the range of RRT = 16–32 k�, a
mere factor of ≈2 in disorder, the resistance at 4.1 K changes
by ≈4 orders of magnitude. By extrapolation from the regime
where RRT is a linear measure of disorder, changing it by an
order of magnitude would increase the resistance (at ≈4 K) by
≈20 orders of magnitude, yielding a resistance that defies
current measurements techniques. We suspect that similar
catastrophe would occur upon cranking up the disorder in
lightly-doped semiconductors.

A more feasible test is a low-temperature study of a weakly-
localized system (kF
 � 1). This can be realized for instance
by using a two-dimensional (2D) film of In2O3−x which has
been extensively studied in the weakly-localized regime. Being
2D, the system should crossover to the strongly-localized
regime [61] at sufficiently low temperature despite having
sub-critical disorder (in the 3D sense). At sufficiently low
temperatures its resistance could be as high as a sample with
kF
 � 1 of this material that exhibits glassy effects at say
≈4 K [15,22,27]. The logic presented above anticipates that
the weakly-disordered sample would exhibit at best very weak
memory dip in field-effect experiments (it may not show a null
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effect due to occasional regions with potential fluctuation of
large amplitude).

It should be emphasized that by itself, large resistance does
not guarantee electron glassiness; resistance may result from
many factors not related to the type of disorder discussed here.
For example, regions of hard gaps such as a series inclusion
of band-insulator or isolated islands of superconductivity in
the current path [24] may exhibit huge resistances without
necessarily showing glassy effects on extended time scales.

Another corollary of the proposed picture is that relaxation
times cannot be arbitrarily long. This is a result of the
maximum value of W available in reality. Naturally occurring
defects in condensed matter systems have an energy of the
order of bandwidths, which limits their ability to Anderson
localize a system. Indeed, to localize a typical metal with Fermi
energy of ≈3–4 eV, one has to mix it with another material,
usually a band insulator, rendering the system granular.

Some of the electron-glass transport features are exhibited
by granular systems in their activated regime. In particular,
they show a memory dip and slow relaxation [62]. The
element of the relaxation in the granular systems, common
with the electron glass, is re-distribution of charges in space to
lower the ‘electrostatic’ energy of the system. Their dynamics
however is expected to be different than that of Anderson
insulators; charge re-distribution between different grains
is probably controlled by Coulomb blockade constraints.
Charging energies of typical grains could be quite large,
which may lead to extremely long relaxation times. This was
demonstrated by the Bar-Ilan group; in their experiments on
several granular systems it was shown that below a few degrees
Kelvin dynamics became so slow that it was impossible to
follow the evolution of a memory dip [63]. The constraints
posed by charging energies may be partially alleviated by
random fields in the insulating matrix in which the metallic
granules are embedded but then the dynamics is controlled by
extrinsic elements. These issues deserve further study.

In summary, the empirical attributes of the electron-glass
dynamics lead us to conclude that a significant part of the slow
relaxation observed in systems with relatively large carrier
concentration has to do with their much stronger disorder. The
elements of the relaxation process are assumed to be tunneling
events that proceed to ultimately minimize the system energy
under the constraints of disorder and Coulomb interaction. The
slowest transitions naturally occur in the dead-wood regions
of the system that in the hopping regime occupy most of
the system volume. Slow ‘fluctuators’ are abundant in these
regions even for a rather short tunneling distance once the
disorder is appreciable. An estimate of the disorder energy

W for a realistic sample that shows electron-glass properties
was made using InxO as a model system. This was based on
measurements of the metal-insulator transition made on these
compounds, free-electron concepts, and on optical data rele-
vant for their strongly-disordered regime. It was shown that W
is proportional to the Fermi energy of the Anderson-insulating
system for the entire range of disorder relevant for the
electron-glass measurements. All other things being equal, and
given the exponential dependence of the tunneling rate on W ,
one expects energy relaxation in lightly-doped semiconductors
where EF is two orders of magnitude smaller, to be many orders
of magnitude faster as indeed established experimentally [25].

There is still the challenge of accounting for the protracted
relaxation times observed in the experiments. This is a problem
common to all glasses, but the flexibility of experimenting
with electron glasses seems to offer more scope for progress.
From the theory point of view the problem has proved to be
difficult; even when a complete knowledge of the disorder
is at hand there are other pieces of the puzzle that need
careful elaboration. In particular, coupling to the environment
may play a role in further slowing-down transition rates.
Environmental degrees of freedom that follow adiabatically
the tunneling object would modify the transition rate through
mass enhancement (polaronic effects). More generally, cou-
pling to the environment will suppress tunneling due to the
Anderson orthogonality catastrophe (AOC) [27]. Recent work
focused on new aspects of the AOC (originally conceived for
clean systems [64]) in the strongly-localized and interacting
regime [65,66]. However, a model incorporating coupling to
the environment for a medium lacking screening (like an
Anderson-insulator), is more pertinent for our experiments.
To our knowledge, this aspect has not been adequately
addressed by any work so far. Other effects that probably
contribute to slow relaxation are hierarchical constraints (the
‘domino’ effect being a special case) and correlated many-
electron transitions. Fundamental questions related to these
scenarios are yet to be resolved. However, to understand why
a memory dip is not likely to be observed in lightly-doped
semiconductors by transport measurements, it may suffice to
consider just the role of disorder.
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