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Effect of polaron diffusion on exciton-polaron quenching in disordered organic semiconductors
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Exciton-polaron quenching (EPQ) is a major efficiency loss process in organic optoelectronic devices, in
particular at high excitation densities. Within commonly used models, the rate is assumed to be given by the
product of the exciton density, the polaron density, and a constant EPQ rate coefficient, which is proportional to
the polaron diffusion coefficient and an EPQ capture radius. In this work, we study the effects of polaron diffusion
on the EPQ rate in energetically disordered materials with a Gaussian density of states using kinetic Monte Carlo
simulations, and show that the effective rate coefficient can depend strongly on the polaron concentration and on
the electric field. We furthermore find that under realistic conditions, the effective value of the capture radius can
exceed the expected value of ∼1 nm by up to two orders of magnitude. To a first approximation, the simulation
results can be understood from macroscopic diffusion theory, adapted at finite electric fields to include the
observed “polaron wind” effect. However, for strongly disordered systems we find distinct deviations from that
theory, related to the very small time and spatial scales involved in the capture process.
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I. INTRODUCTION

At high excitation densities, exciton-polaron-quenching
(EPQ) processes can give rise to a loss of the internal
quantum efficiency of organic optoelectronic devices such as
organic light-emitting diodes (OLEDs), organic photovoltaic
devices under concentrated solar illumination, organic light-
emitting field-effect transistors, and organic lasers. Upon such
a process, the energy of an exciton on a donor molecule is
first transferred to a positively or negatively charged polaron
on an acceptor molecule, so that the donor molecule returns
to the ground state. Subsequently, the excess energy on the
acceptor molecule is lost rapidly via vibrational relaxation
processes. Alternative terminologies used in the literature
to indicate such bimolecular loss processes are “exciton-
polaron annihilation” and “exciton-charge annihilation”. For
phosphorescent OLEDs, within which the emission originates
from relatively long-lived excitons with predominantly triplet
character, triplet-polaron quenching (TPQ) can contribute
significantly to the efficiency rolloff at high luminance lev-
els [1]. For donor-acceptor blends with nanomorphologies
which are optimal for photovoltaic operation, exciton-polaron-
quenching reactions have also been found to be a relevant loss
process [2–4].

Experimental methods for studying EPQ include transient
absorption spectroscopy [2,5] of thin-film materials, within
which the polarons are produced as a result of exciton
dissociation, combined photoluminescence (PL) and charge
carrier transport measurements on organic thin-film transis-
tors [6], and transient and steady-state photoluminescence
studies of unipolar (single-carrier) metal/semiconductor/metal
sandwich-type devices [7–9]. In the latter devices, the appli-
cation of a voltage difference between the electrode layers
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gives rise to an injected polaron density. The time- (t-) depen-
dent exciton-polaron-quenching rate rEPQ(t) is conventionally
expressed in terms of an exciton-polaron-quenching rate
coefficient kEPQ(t), using the expression rEPQ(t) ≡ kEPQ(t)np,
with np the polaron volume density. The decrease of the
exciton volume density nE due to EPQ is then given by

dnE(t)

dt

∣∣∣∣
EPQ

= −kEPQ(t)npnE(t). (1)

In general, a sum of contributions due to quenching at electrons
and holes should be considered. Experimental values obtained
for kEPQ range from typically (0.01−1) × 10−18 m3/s for
TPQ in phosphorescent small-molecule host-guest systems
used in OLEDs [7–13] to values which can be three orders
of magnitude larger for singlet-polaron quenching (SPQ) in
fluorescent polymer materials [5].

From macroscopic diffusion theory [14–17], the EPQ rate
coefficient is expected to be given by

kEPQ(t) = 4πDRc

(
1 + Rc√

πDt

)
, (2)

with D the mutual diffusion coefficient, i.e., the sum of the
exciton and polaron diffusion coefficients. Rc is an effective
exciton-polaron capture radius, and t is the time which has
elapsed since the moment of adding the exciton to the system.
The first term is due to long-range three-dimensional diffusion
[see Fig. 1(a)], and the second term is due to short-range
diffusion from a thin shell with a thickness of the order Rc

around the capture sphere [see Fig. 1(b)]. The EPQ rate is thus
expected to be time dependent. The time-averaged effective
value of the rate coefficient which would follow from steady-
state PL studies, kEPQ,eff (defined more precisely below), is
then expected to depend on the exciton lifetime. In as far
as we know, this dependence has not yet been considered
in earlier analyses. The interpretation of experimental TPQ
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FIG. 1. Various contributions to exciton-polaron quenching
which results from instantaneous exciton loss when a polaron arrives
at a distance Rc (capture radius) from the exciton: (a) the contribution
due to long-range 3D diffusion, given by the first term in Eq. (2),
(b) the contribution given by the second term in Eq. (2), due to
quasi-1D short-range diffusion from a distance to the capture sphere
of the order ∼Rc or less (dashed circle), and (c) the “polaron wind”
contribution at high electric fields, when a significant polaron (drift)
current has developed.

studies may also be complicated by the filamentary nature
of the current density in disordered organic semiconductor
materials. The charge transport is known to be inhomogeneous
at a scale of nanometers or even tens of nanometers, depending
on the degree and type of disorder [18–20]. The diffusion at
small time and length scales is therefore not well described
by the long-distance steady-state diffusion coefficient, so that
the effect of diffusion on the EPQ rate coefficient is highly
nontrivial. Furthermore, one may expect that in the presence
of an electric field also a charge carrier drift (“polaron wind”)
term contributes to the EPQ rate, as shown schematically in
Fig. 1(c).

In this paper, we develop a molecular-scale approach
to EPQ in disordered organic semiconductors. We focus
on steady-state conditions, and show using kinetic Monte
Carlo (kMC) simulations that the effective steady-state rate
coefficient kEPQ,eff depends indeed on the emissive lifetime,
as already anticipated above. We consider nearest-neighbor
polaron hopping in a spatially uncorrelated Gaussian density
of states (DOS), and study the dependence of kEPQ,eff on
the disorder energy and on the electric field for the case
of instantaneous exciton quenching when a polaron diffuses
to a nearest neighbor (NN) of a molecule at which an
exciton resides, as in a Dexter-type short-range quantum-
mechanical tunneling process. We only consider EPQ due to
polaron diffusion, and neglect the contribution due to exciton
diffusion. Such a situation arises to a good approximation in
phosphorescent OLEDs, in which the emission occurs due to
triplet exciton decay on a (usually) small concentration of dye
molecules. By making use of matrix molecules at which the
lowest triplet energies are much larger, triplet exciton diffusion
is then strongly suppressed so that the triplet-polaron encounter
rate is not anymore determined by the triplet diffusion
coefficient. The efficiency rolloff of prototypical green and red
phosphorescent OLEDs, as obtained from kMC simulations
using this immediate NN-EPQ scenario, was found to agree
well with the experimental rolloff [21]. We note, however,
that the actual mechanism of the triplet-polaron-quenching
(TPQ) process in phosphorescent OLEDs is a subject of current
debate. Aside from Dexter-type NN quenching, also TPQ due

to a more long-range Förster-type dipole-dipole interaction has
been regarded as relevant to organic semiconductors [22,23].
In a forthcoming paper, we will apply the approach developed
in this work to analyze EPQ for such a more complex
situation, where the range of the interaction (the Förster radius)
constitutes an additional parameter. Furthermore, we plan to
refine these studies by including longer-range polaron hopping
and by studying two- and three-component host-guest systems,
with fluorescent or phosphorescent emissive molecules in a
single host material and in a mixed (electron transporting/hole
transporting) host, respectively.

The paper is organized as follows. Section II contains a
description of the simulation and analysis methods used. In
Secs. III and IV, these methods are used to study EPQ in
systems without and with energetic disorder, respectively, for
a wide range of polaron densities, exciton emissive lifetimes,
and electric fields. We find significant deviations from the
predictions which would follow from the exciton-polaron
capture radius model, including a significant electric field
effect. Section V contains a summary and conclusions.

II. SIMULATION AND ANALYSIS METHODS

A. Simulation approach

We study the quenching of excitons in disordered organic
semiconductor materials using the kinetic Monte Carlo (kMC)
tool BUMBLEBEE [24] which has been explained extensively in
earlier work on the rolloff [21,22,25], degradation [25], and
triplet-triplet annihilation [26,27] in phosphorescent OLEDs.
The systems considered are 100 × 100 × 100 nm3 boxes in
which the molecular sites reside on a simple cubic lattice with
a lattice constant a. Periodic boundary conditions are used in
all three directions.

In each box, a fixed volume density of holes nh is present,
corresponding to a fixed hole concentration ch ≡ nh/Nt . Here,
Nt = a−3 is the total volume density of molecular sites. The
hole DOS is Gaussian, with a width (standard deviation) σ .
The disorder is spatially uncorrelated. All simulations are
performed at T = 298 K, for σ = 0, 0.05, 0.10, and 0.15 eV,
corresponding to disorder parameters σ/(kBT ) equal to 0 or
equal to approximately 2, 4, and 6, respectively. Although
the latter values are not exact, we use them throughout this
paper to indicate the simulation results. The hole transport
is described as a nearest-neighbor hopping process using the
Miller-Abrahams formalism [28], which allows for successful
modeling of charge transport in devices of small-molecule
semiconductors [29]. The resulting charge-transport properties
are very similar to those obtained with the often-used Marcus
model [30,31] which would require the introduction of an
additional parameter, viz., the reorganization energy. As only
hops over the same distance a to the six nearest-neighbor sites
are included, the wave-function decay length does not enter as
a parameter. For the single-component systems studied, and
for disorder parameters in the range included, this is known to
be a good approximation. The Coulomb interaction between
the holes is switched off. Up to carrier concentrations around
10−2, that is also known to be an excellent approximation
for transport in a Gaussian DOS [32]. The study includes
variations of ch in the 10−5–10−2 range. Hole concentrations
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of the order 10−3 are realistically found in the emissive layer
in multilayer OLEDs under high luminance conditions. The
simulations were in general carried out for a range of values
of the electrostatic field F , applied uniformly over the box.

The boxes contain at any moment in time 1000 excitons
(i.e., there is an exciton at 0.1% of all sites), which
are added at random positions in the box at which no
polaron already resides. The kMC simulations are used
to determine the fate of these excitons: exciton-hole
quenching, radiative or nonradiative decay. The latter
decay processes are characterized by a decay time τrad and
τnr, respectively. The effective exciton decay time is then
τ = (1/τrad + 1/τnr)−1. The nonradiative decay channel
has been included for the sake of generality. It has no
effect on the overall conclusions of this study. The default
values for the exciton radiative and nonradiative decay
times are τrad,0 = 1.84 × 10−6 s and τnr,0 = 5.52 × 10−6 s,
so that τ0 = 1.38 × 10−6 s. These are realistic values
for the phosphorescent orange-red emitter bis(2-
methyldibenzo[f,h]quinoxaline)(acetylacetonate)-iridium(III)
[Ir(MDQ)2(acac)] [25]. However, results for values of τ in the
range 10−10 to 10−2 s, while keeping the ratio τnr/τrad fixed,
are also included.

EPQ is described as a process which occurs immediately
when a hole has diffused to a nearest neighbor of a site
at which an exciton resides. The exciton then jumps to
this NN site, so that an excited hole is formed, followed
by an immediate loss of the excess hole energy. The hole
is not displaced, so that EPQ processes do not affect the
mobility. All other excitonic interactions, such as exciton
diffusion, exciton-exciton annihilation, or exciton degradation,
have been switched off. Using Eq. (1), it follows that an
effective (time-averaged) value of kEPQ can be deduced from
the fractions fQ and fR of quenched and radiatively decayed
excitons, respectively, obtained from kMC simulations, using
the expression

kEPQ,eff = 1

nhτrad

fQ

fR

. (3)

We note that, equivalently, the effective rate coefficient may
be expressed as kEPQ,eff = [fQ/(fR + fN )]/(nhτ ), with fN the
fraction of nonradiatively decayed excitons.

Formally, it would be possible to express all simulation
results in terms of a fundamental length unit, e.g., the nearest-
neighbor distance a, and a fundamental time unit, e.g., the
average hopping time t0 between two nearest-neighbor sites
with equal hole energies. However, in order to help the reader
to readily see the relevance of the results to realistic materials,
we present the simulation results for concrete values of these
time and length scales: a = 1 nm, so that Nt = 10−27 m−3,
a value typical for small-molecule materials used in OLEDs,
and t0 = 3.0 × 10−11 s, a value typical for hole transport in the
often-used material α − NPD [21,33] [N,N′-Di(1-naphthyl)-
N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine].

During the simulations, the time dependence of the current
density and quenching probability was carefully followed,
in order to ensure that (i) the final results are not anymore
influenced by the initial transient approach to equilibrium,
and (ii) the statistical accuracy of the fractions of quenched

and radiatively decayed excitons has reached a sufficiently
high level. In all cases, at least five 100 × 100 × 100 nm3

simulation boxes are considered, in order to reduce the
statistical uncertainty related to the finite system size and to
accelerate the simulations by parallelization. The results were
found to be insensitive to the number of excitons, up to at least
2000 excitons in the box.

B. Analysis methods: Zero-field limit

From macroscopic diffusion theory, the decrease of the
exciton volume density due to EPQ in a spatially uniform
system in which excitons have been generated at t = 0 is [using
Eqs. (1) and (2)] in the zero-electric-field limit given by [17]

nE(t) = nE(0) exp

(
− t

τ
− 4πDRcnht − 8

√
πDtR2

c nh

)
.

(4)

The decrease of the photoluminescence can thus show a dis-
tinct nonmonoexponential shape. Under favorable conditions,
when the two EPQ-induced loss terms are approximately equal
at t = τ , it will be possible to deduce from an analysis of the
time-dependent photoluminescence the separate values of the
diffusion coefficient and the capture radius, if the hole density
is known. The effective steady-state EPQ rate coefficient,
defined by Eq. (3), is equal to

kEPQ,eff =
∫ ∞

0 kEPQ(t)nE(t)dt∫ ∞
0 nE(t)dt

, (5)

with kEPQ(t) and nE(t) as given by Eqs. (2) and (4), respec-
tively. This expression may be used to obtain the effective
capture radius, defined as

Rc,eff ≡ kEPQ,eff

4πD
. (6)

For a sufficiently small hole volume density nh (so that
4πR3

c nh � 1, see below), the effective capture radius is
approximately equal to

Rc,eff
∼= Rc ×

(
1 + Rc√

Dτ

)
. (7)

This result shows that the value of Rc,eff (and of kEPQ,eff) as
deduced from a steady-state simulation or measurement can
be strongly enhanced as compared to the value which would
follow in the limit of a large exciton lifetime. We find that even
in the large-τ limit (

√
Dτ � Rc), the effective capture radius

can be enhanced. For any arbitrary value of nh, Rc,eff is then
given by

Rc,eff
∼= Rc

1 − √
πnhR3

c exp
(
4nhR3

c

)
erfc

(√
4nhR3

c

) , (8)

with erfc the complementary error function, so that for small
hole densities

Rc,eff
∼= Rc

[
1 +

√
4πR3

c nh + O(nh)
]
. (9)

The enhancement thus occurs for high hole densities, when
the probability of finding a hole in a volume of the order of
the capture sphere volume is no longer much smaller than
1. We indeed find this effect from the kMC simulations, as
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will be shown in Secs. III and IV. The enhancement may
be viewed as the result of a crossover to a regime in which
the quench rate is increased due to a “competition” between
various nearby polarons. From kMC simulations [26] and from
experiment [27] we have found an analogous high-density
enhancement of the rate coefficient for steady-state exciton-
exciton annihilation occurring at high exciton densities.

We find that this continuum approach is not in all cases a
good first starting point, as it does not include the finite proba-
bility pNN that after exciton generation immediate quenching
takes place due to the presence of a polaron on a nearest-
neighbor lattice site. This contribution is only important when
the exciton lifetime is very short, so that only very-short-range
diffusion processes contribute to the quenching. We model
the effect by assuming that the exponential decay of the
volume density of the remaining excitons is not affected by the
immediate exciton loss due to NN quenching. The effective
time-averaged steady-state EPQ rate coefficient, defined by
Eq. (3), is then equal to

kEPQ,eff =
pNN + (1 − pNN)

∫ ∞
0 kEPQ(t)nh

nE (t)
nE (0)dt

(1 − pNN)
∫ ∞

0 nh
nE (t)
nE (0)dt

, (10)

with kEPQ(t) and nE(t) as given by Eqs. (2) and (4), respec-
tively.

C. Analysis methods: Electric-field dependence

In the presence of an electric field, the theoretical descrip-
tion of the EPQ process is complicated by the fact that there
will be a polaron drift (or “polaron wind”) contribution to the
EPQ rate. In the emissive layer of OLEDs, e.g., the internal
field can be as large as 2 × 107 V/m or more at the highest
luminance levels used in practical display or lighting systems.
It is then convenient to describe the effect of EPQ in terms of
an effective EPQ capture cross section, which is defined as

Ac ≡ rEPQ,eff

J/e
= kEPQ,effnh

J/e
. (11)

Using Eq. (3), Ac may be obtained from the fractions of
quenched and radiatively decayed excitons using

Ac = e

J τrad

fQ

fR

. (12)

If for high fields the drift velocity would increase limitless, so
that the role of lateral diffusion would become negligible, the
EPQ process could be depicted as in Fig. 1(c). For the nearest-
neighbor EPQ scenario considered, Ac would then be equal to
5 nm2. That is the area formed by the site at which the exciton
resides plus the four nearest-neighbor sites which reside in the
plane perpendicular to the electric-field direction. However,
Fig. 1(c) is actually oversimplified, as at high fields the forward
hops are almost all downhill (to a lower-energy final state) and
therefore no longer thermally activated. Within the Miller-
Abrahams formalism assumed, the drift velocity then saturates,
so that diffusion will even at high fields continue to play a role:
a polaron which otherwise would miss the capture region can
with a finite probability due to lateral diffusion still give rise
to a hit. The effective EPQ capture cross section in the infinite
field limit will therefore be larger than 5 nm2.

For a system without disorder, the drift velocity v(F ) is
proportional to [1 − exp(−eaF/kBT )]. In the limit of a very
small capture radius, the capture cross section is expected to
be inversely proportional to v(F ), and to be given by

Ac(F ) ∼= Ac,∞
1 − exp

(− F
F0

) , (13)

with Ac,∞ the value of Ac in the high-field limit and with F0 =
kBT/(ea), i.e., 2.57 × 107 V/m at 298 K. Before investigating
the applicability of this expression to the case of NN-type
EPQ (in Secs. III and IV), we have first studied the more
simple case of immediate quenching when a polaron hops
(with a rate unaffected by the presence of the exciton) to the
excited molecule itself. We find that Eq. (13) indeed provides
a good fit to kMC simulation data for this case. For this case,
the drift-only value for Ac,∞ would be 1 nm2, the geometrical
area of one lattice site. However, the actual value as obtained
from the kMC simulations (which include the effect of polaron
diffusion) is much larger, viz., 3.94 ± 0.01 nm2.

The capture cross section is in the following way related to
the capture radius, discussed in the previous subsection. For
very small fields, it follows from Eqs. (6) and (11) that

Ac(F ) = 4πDRcnh

J/e
= 4π

kBT

e
Rc,eff

1

F
. (14)

The second step has been made using that J = nheμ(nh)F ,
and using the classical Einstein equation

D = kBT

e
μh, (15)

with kB the Boltzmann constant, T the temperature, and e

the fundamental charge. However, we will show that for
intermediate fields (when Ac is not anymore much larger than
the geometrical cross section of 5 nm2 mentioned above) a
correction is needed, related to the polaron wind effect, and
that Ac may then be described more accurately by

Ac(F ) ∼= 4π
kBT

e
R′

c,eff
1

F
+ A′

c,∞. (16)

The first and second terms may be viewed as a diffusion
and polaron wind contribution, respectively. The effective
capture radius R′

c,eff is primed, in order to indicate that it
refers to an analysis using Eq. (16) of the capture cross
section obtained for a range of values of the field. R′

c,eff is,
e.g., different from Rc,eff if (for very small D) immediate
quenching predominantly determines Rc,eff (see the previous
subsection). Another complication which could give rise to a
difference is the field dependence of the diffusion coefficient,
which moreover is in general a tensor with for the case of
systems with Gaussian disorder a longitudinal value which is
larger than the transverse value [34,35]. For systems without
disorder, for which (as discussed above) the mobility is already
field dependent at small fields, Eq. (13) provides therefore a
better description than Eq. (16). The second term, A′

c,∞, is the
effective cross section as extrapolated linearly to the high-field
limit. Also, this parameter is primed, in order to distinguish it
from the actual value in the high-field limit. For energetically
disordered systems, A′

c,∞ is found from the kMC simulations
to be close to the geometrical value of 5 nm2, as will be shown
in Sec. IV.
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FIG. 2. Time dependence of the total fraction of quenched
excitons, placed at random positions in materials with various hole
polaron concentrations ch and with disorder strengths σ/(kBT ) = 0
(no energetic disorder) and σ/(kBT ) = 6, as obtained from kMC
simulations. The exciton lifetime is taken to be infinite, and the
field F = 0. The curves give the fractions of quenched excitons
expected from Eq. (10), with the diffusion coefficient as obtained
from the low-field mobility using the generalized Einstein equation
(full curves) and the classical Einstein equation (dashed curves).

III. SIMULATION RESULTS: SYSTEMS WITHOUT
ENERGETIC DISORDER

In this section, we study EPQ in systems without energetic
disorder, i.e., σ/(kBT ) = 0. As a first step, we study the
EPQ process in a time-resolved manner, by calculating the
time-dependent total fraction of quenched excitons fQ(t) for
the case of an infinite exciton lifetime. This fraction follows
directly from the fraction of emitted excitons, given by the
exponential factor in Eq. (4) with 1/τ = 0, corrected by
the probability pNN that after exciton generation immediate
quenching takes place due to a polaron on a nearest-neighbor
site:

fQ(t) = 1 − (1 − pNN) exp
(−4πDRcnht − 8

√
πDtR2

c nh

)
.

(17)

In Fig. 2, fQ(t) is shown for several cases, as obtained
using Eq. (17) (full curves) and as obtained from kMC
simulations at very small electric fields (symbols). We focus
here on the left part of the figure, which gives the results
for systems without disorder and hole concentrations equal
to 10−2 and 10−3. Good agreement between the theoretical
and simulation data is obtained with Rc = 0.92 ± 0.02 nm,
pNN

∼= 6nh/Nt , and using the value of the diffusion coefficient
D = (3.25 ± 0.10) × 10−8 m2/s that follows from the hole
mobility μh using the classical Einstein equation [Eq. (15)].
The mobility has been deduced from the current density J

as obtained at a low electric field F using the expression
μh = J/(nheF ). The value of D obtained in this manner is
consistent with the theoretical value that follows from the
hopping attempt frequency t−1

0 and the intersite distance a,

FIG. 3. Dependence of the effective steady-state EPQ capture
radius for the case of immediate NN-type EPQ on the hole
concentration and the radiative lifetime, for systems without energetic
disorder. The symbols give the kMC simulation results (see Table I
for the numerical values). The full curves give a theoretical fit
using Eqs. (6) and (10), with a capture radius Rc = 0.92 nm and
a probability pNN

∼= 3.7nh/Nt of immediate quenching at a NN
polaron. The dashed curves give, for the same capture radius, the
theoretical curves obtained with pNN = 0, i.e., neglecting immediate
NN quenching.

D = a2/t0 = 3.33 × 10−8 m2/s. The value of Rc
∼= 0.92 nm

that is obtained from the fit is close to the value of about 1 nm
expected from the assumption of nearest-neighbor quenching.
The results obtained for disordered systems, which show a
distinct deviation, will be discussed in Sec. IV.

Figure 3 shows the effective capture radius as obtained
from kMC simulations (symbols), for hole concentrations in
the range 10−5 to 10−2 and for exciton radiative lifetimes
ranging from 10−1 to 10−7 times the default value of
τ0 = 1.38 × 10−6 s (see Sec. II A). The simulations were
carried out at a small but finite field (F = 5 × 105 V/m).
The mobility and diffusion coefficient were found to be
independent of the carrier density and exciton lifetime, as
expected, and were within the statistical accuracy equal to
the theoretically expected values. The values of the capture
radius shown in the figure were obtained after extrapolation
to zero electric field, in a manner described in the Appendix.
This extrapolation constitutes only a very small correction.
Table II in the Appendix gives an overview of the simulation
data and of the analysis results. The full curves give the
effective capture radius [Eq. (6)], as obtained using Eq. (10)
with the value of Rc = 0.92 ± 0.02 nm deduced above and
with pNN = 3.7nh/Nt . The latter value is smaller than the
value of pNN = 6nh/Nt expected for small hole densities
(nh � 1) for the simple cubic lattice considered. In view of
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FIG. 4. Effective EPQ capture cross section as a function of
the inverse of the electric field 1/F for systems without energetic
disorder, as obtained from kMC simulations (symbols) for the large-τ
and small-nh limits. The full curve gives a best fit to the data using
Eq. (13). The inset shows the simulation data and the fit result for
small fields.

the approximations made, we regard the agreement as fair. The
dashed curves give the effective capture radius as obtained with
pNN = 0. It is evident that including the immediate quenching
effect in a manner as described above provides a considerable
improvement of the fit to the data for small exciton lifetimes.

In the large-τ limit, the figure reveals for nh
∼= 10−3

and larger an increase of the effective capture radius with
increasing polaron density. Also, this high-density effect,
which was already discussed and explained in Sec. II B
[Eq. (9)], is consistently described using the theoretical
framework developed in Sec. II B.

Figure 4 shows the EPQ capture cross section as obtained
from kMC simulations (symbols) as a function of the inverse
electric field 1/F for the large-τ and small-nh limits. In the
high-field limit, Ac is found to saturate in a manner as described
well by Eq. (13) (full curve). The high-field value of the capture
cross section is 14.7 ± 0.2 nm2, which is almost a factor of 3
larger than the value of 5 nm2 expected from a drift-only model.
The best-fit value of F0 is 2.25 × 107 V/m, i.e., slightly smaller
than the value expected for the small-capture radius limit.
For very small electric fields, Ac is to a good approximation
proportional to (1/F ), as may be seen from the inset in the
figure.

IV. SIMULATION RESULTS: EFFECTS OF DISORDER

In this section, we use kMC simulations to investigate the
effect of energetic disorder on the EPQ rate, for systems with
disorder strengths up to σ/(kBT ) = 6. We study the EPQ rate
as a function of the emissive lifetime, polaron density, and
electric field. We have most extensively studied systems with
a hole concentration of 10−3 and with σ/(kBT ) = 4, a value

TABLE I. Hole self-diffusion coefficient in organic semicon-
ductors with Gaussian energetic disorder, as obtained from kMC
simulations at 298 K from the current density under low-field
conditions using the classical Einstein equation [Eq. (15)] for various
values of the disorder strength σ/(kBT ) and hole concentration nh.
The simulations were carried out at F = 107 V/m for the disordered
systems, and at F = 106 V/m for σ/(kBT ) = 0. The numerical
uncertainty is approximately 3% for systems with σ/(kBT ) = 0 and
2 and increases with increasing disorder strength and decreasing
concentration to about 6% for σ/(kBT ) = 6 and ch = 10−5. Unit:
10−10 m2/s.

σ/(kBT ) ch = 10−5 ch = 10−4 ch = 10−3 ch = 10−2

0 325 325 325 325
2 32.5 32.7 33.3 36.9
4 0.180 0.240 0.430 1.20
6 0.00020 0.00062 0.0031 0.032

which is typical for the density of highest occupied molec-
ular orbital (HOMO) states in amorphous hole conducting
semiconductors used in OLEDs. Table I gives an overview of
the diffusion coefficients of the systems studied. Their values
vary over more than six orders of magnitude. We investigate
whether at small fields the effective capture radius, defined by
Eq. (6), can be described well using Eq. (10), and whether the
field dependence of the effective capture cross section is well
described using Eq. (16).

A. Time-dependent fraction of quenched excitons

The validity of the model developed in Sec. II B, leading to
the effective rate coefficient given by Eq. (10), may be judged
by studying the time dependence of the fraction of quenched
excitons fQ(t). Within the framework of the model, fQ(t) is
given by Eq. (17). For systems without disorder, the model was
found to provide a good description of kMC simulation results
(left part of Fig. 2). In the right part of Fig. 2, the simulation
results are given for systems with strong energetic disorder
[σ/(kBT ) = 6] and for hole concentrations ranging from 10−5

to 10−2. A comparison is given with the theoretical curves as
given by Eq. (17), with the diffusion coefficient as derived from
the simulated mobility using the generalized Einstein equation
(full curves) or the classical Einstein equation (dashed curves).

The generalized Einstein equation provides the diffusion
coefficient which describes the Fickian transport under the
influence of a concentration gradient. In energetically disor-
dered materials, this diffusion coefficient is enhanced at large
carrier concentrations [36] as compared to the value given by
the classical Einstein equation, which describes self-diffusion
under thermal equilibrium conditions. It is not a priori clear
which diffusion coefficient should be used. The figure shows
that for both choices the model provides a fair approximate
description of the fQ(t) curves, in particular concerning the
time at which half of the excitons have been quenched.
However, the simulated curves are somewhat less steep, and
show significant deviations at very short and very long times.
The difference between the two models is largest for a hole
concentration of 10−2, for which the two diffusion coefficients
differ by a factor 2.31.
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The figure suggests that at short times the quenched fraction
is more accurately predicted using the generalized Einstein
equation. That might be rationalized by considering that in
the small region formed by the six NN sites around the target
site there are no polarons. There is thus, effectively, a local
polaron density gradient. A different way of understanding
the simulation result is by considering that (on average)
long-range steady-state diffusion is more strongly hindered
by the disorder than the more local diffusion on a short time
scale. As a result, the ac mobility (and diffusivity) of disordered
systems shows at high frequencies an increase with increasing
frequency [37], and the effective (ensemble-averaged) dc
conductivity increases when the system size is reduced to
a value below a certain critical disorder-dependent length
scale [19].

For long diffusion times, one might expect that the relevant
diffusion process is just self-diffusion, in the absence of a
concentration gradient, so that the classical Einstein equation
is more relevant. Indeed, for times at which around 90%
of all excitons have been quenched, this provides a good
prediction. However, for even larger times the fraction of
quenched excitons is smaller than as expected from the model.
That might be viewed as a result of the occurrence of rare
environments in which the NN sites of the exciton have a large
ionization potential, forming a “protective shell” around the
exciton. These deviations from the model developed in Sec. II
are expected to give rise to distinct deviations of the effective
capture radius, deduced from the fraction of excitons lost under
steady-state conditions. Before demonstrating this effect from
explicit kMC simulations (see Fig. 8), we discuss first how
the results of such simulations at finite electric fields may be
analyzed, so that a proper extrapolation to the zero-field limit
may be made.

B. Electric-field dependence of the EPQ rate

Figures 5(a)–5(d) show the calculated dependence of the
EPQ rate coefficient on the electric field for systems with
various disorder strengths σ/(kBT ) for a hole density nh =
1024 m−3 (concentration 10−3) and for wide ranges of the
radiative decay time τrad. For all curves with σ/(kBT ) = 4 and
for all cases with τrad = τrad,0 the simulations were carried out
for fields corresponding to a voltage drop ranging from 1 to
40 V per 100 nm. Although due to strong Joule heating fields
above 108 V/m can in practice often not easily be reached in
OLEDs, we have included some high-field simulation studies,
as the results might be of interest under the transient conditions
which may be used in electrically induced organic lasing. For
the other cases, the field range considered corresponds to a
voltage drop of 1 to 5 V per 100 nm.

The simulation results show that kEPQ decreases with
increasing disorder strength, as expected from the decrease of
the mobility and diffusion coefficient with increasing disorder
strength [38]. Furthermore, kEPQ increases with increasing
electric field. As already discussed in Sec. II, the observed
saturation of the increase above a certain critical field can
be understood from the well-known saturation of the drift
velocity. For systems with Gaussian energetic disorder, the
saturation occurs when the electric potential drop per intersite
distance, eaF , becomes larger than approximately 4σ [38].

FIG. 5. (a)–(d) Electric field (F ) and radiative decay time
(τrad) dependence of the exciton-polaron-quenching rate coefficient
kEPQ in systems with a variable uncorrelated Gaussian energetic
disorder strength σ/(kBT ) for the case of immediate nearest-neighbor
quenching, as obtained from kinetic Monte Carlo simulations. The
simulations were carried out for a polaron density equal to 1024 m−3,
and for a polaron hopping attempt time equal to 3 × 10−11 s (see the
main text). In (a), the radiative decay time τrad is equal to (10−5, 10−4,
10−3, and 10−1) × τrad,0. In (b)–(d), τrad varies in steps of a factor 10
with respect to the default value τrad,0 = 1.84 μs, as indicated.

For σ/(kBT ) = 2 and 4, the expected critical fields, 2 × 108

and 4 × 108 V/m, fall in the range included in our study, and
are consistent with the observed values.

Figure 5 also shows that, for all systems studied, kEPQ

depends below a certain crossover value strongly on the
radiative lifetime. For σ/(kBT ) = 4, e.g., this happens for
τrad smaller than approximately 10−5 μs, i.e., approximately
10 × τrad,0. The observed increase of this crossover lifetime
with increasing disorder strength is due to the decrease of
the diffusion coefficient with increasing disorder strength, so
that the range over which relevant polaron diffusion occurs
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FIG. 6. (a)–(d) Exciton-polaron-quenching capture cross section
as a function of the inverse electric field 1/F for the case of
nearest-neighbor quenching in systems with an uncorrelated Gaussian
energetic disorder strength σ/kBT = 0, 2, 4, and 6, respectively, for a
hole density equal to 1024 m−3 (ch = 10−3). In each panel, results are
given for various exciton radiative decay times, with values (given
relative to τrad,0 = 1.84 μs) which are varied in steps of a factor 10.
See the caption of Fig. 5 for simulation details.

decreases and the relative role of pseudo-1D short-range
diffusion is enhanced [see Eq. (7)]. One therefore also expects
a smaller electric-field dependence, which is indeed revealed
by the simulation results.

A more quantitative analysis of the electric-field depen-
dence of the EPQ rate coefficient may be given using the
capture cross-section formalism, introduced in Sec. II C.
From Eq. (16), the capture cross section Ac is for small
and intermediate fields expected to vary linearly with 1/F .
Figure 6 shows the 1/F dependence of the capture cross
section, obtained from the rate coefficients shown in Fig. 5 and

FIG. 7. Exciton-polaron-quenching capture cross section as a
function of the inverse field 1/F for various values of the disorder
strength σ/(kBT ), for a hole density equal to 1024 m−3 (ch = 10−3)
and for the largest exciton radiative lifetimes τrad considered in our
study (see Fig. 5). The figure focuses on the kMC results for large
electric fields. The full curves show an empirical fit [Eq. (13)] to the
high-field part of the data, and the dashed lines give the linear fit
[Eq. (16)] to the low-field data shown already in Fig. 6.

from the calculated current density, for systems with disorder
parameters σ/(kBT ) in the range 0 to 6. For σ/(kBT ) = 0,
simulations at reduced fields were included, enabling an
extension of the analysis to a tenfold enlarged range of inverse
field values. We note that both scales in Fig. 6(a) are extended
by a factor of 10 as compared to those in Figs. 6(b)–6(d), so that
the slopes of the fit lines through the data points are directly
comparable. The figure shows that for sufficiently small fields,
the capture radii vary indeed to an excellent approximation
linearly with 1/F , as suggested in Sec. II C.

Figure 7 shows the capture cross section for systems
with a hole concentration of 10−3, for the largest exciton
lifetimes considered in our study. The results are then almost
independent of τrad. The figure focuses on the data obtained
at small 1/F (high fields). For σ/(kBT ) up to 4, Ac becomes
field independent for the values of the field included in the
study, but for σ/(kBT ) = 6 an increase of the cross section for
very high fields is found. We regard this result as an indication
that due to the field-induced detrapping, the lateral diffusion
becomes more similar to that in a material without disorder. For
σ/(kBT ) = 2 to 6, the linear parts of the capture cross-section
curves extrapolate to values A′

c,0 which are quite close to the
geometrical value of 5 nm2. We regard the small deviations
from this value as within the uncertainties of the simulations.

C. Effective EPQ capture radius

From the analysis given in the previous subsection, it
follows that the electric-field dependence of the capture cross
section is quite accurately given by Eq. (16), with A′

c,∞ =
5 nm2. We have used this result to obtain the dependence of
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FIG. 8. Dependence of the effective steady-state EPQ capture radius for the case of immediate NN-type EPQ on the hole concentration
and the radiative lifetime, for systems with σ/(kBT ) = 2 (a), 4 (b), and 6 (c). The symbols give the kMC simulation results (see Tables III–V
in the Appendix for the numerical values). The full lines connect points which are obtained from a theoretical fit using Eqs. (6) and (10), with
the diffusion coefficient as given in Table I, a capture radius Rc = 0.92 nm and a NN immediate quenching probability pNN = 6nh/Nt .

the effective capture radius in the zero-field limit on the hole
concentration, the radiative lifetime, and the disorder energy
from the value of the capture cross section at F = 107 V/m,
using the expression

Rc,eff = kEPQ,eff

4πD
− A′

c,∞eF

4πkBT
. (18)

The results (symbols) are shown in Figs. 8(a)–8(c), for
σ/(kBT ) = 2, 4 and 6. The full lines connect points which
are obtained from a theoretical fit using Eqs. (6) and (10), with
a capture radius Rc = 0.92 nm (as used for systems without
disorder in Fig. 3) and a NN immediate quenching probability
pNN

∼= 6nh/Nt . Tables II–V in the Appendix give an overview
of the simulation data and the analysis results. The Appendix
also provides provides further simulation and analysis details.

The figure reveals three distinct effects of energetic disorder
on the effective capture radius. First, the enhancement of
the capture radius with decreasing emissive lifetime becomes
stronger with increasing disorder, as due to the decreasing
diffusion coefficient the effect of quasi-1D diffusion [Fig. 1(b),
the second term in Eq. (2)] becomes more important. The
enhancement is already about one order of magnitude for
typical fluorescent systems (τrad ∼ 1 ns) with σ/(kBT ) = 4,
and for typical phosphorescent systems (τrad ∼ 1 μs) with
σ/(kBT ) = 6, if the carrier concentration is small.

Second, the enhancement of the capture radius becomes
strongly carrier density dependent. Due to the carrier concen-
tration dependence of the mobility and diffusion coefficient
(see Table I), the effect decreases with increasing carrier
concentration. This effect reduces or even more than com-
pensates the increase of the capture radius with increasing
concentration, found for systems without disorder.

Third, at the spatial and time scales considered, the
macroscopic diffusion coefficient based model developed in
Sec. II is no longer fully adequate, as was already evident from
the simulated time dependence of the fraction of quenched
excitons (see Fig. 2 and Sec. IV A). The consequences are most
clearly visible in Fig. 8(c), for σ/(kBT ) = 6. For the largest
emissive lifetime considered (τrad = 104τrad,0

∼= 0.02 s), Rc,eff

is larger than as expected for very small concentrations, and
smaller than as expected for large concentrations. The (small)
EPQ loss for low carrier concentrations is for large σ and
large τrad enhanced due to faster-than-expected short-range
diffusion, and the (large) EPQ loss for high concentrations
is then somewhat lowered by the occurrence of “protecting”
high-energy sites around a small fraction of the excitons (see
Sec. IV A).

V. SUMMARY AND CONCLUSIONS

In this paper, we have shown that for immediate nearest-
neighbor (Dexter-type) EPQ in energetically disordered ma-
terials, the commonly used description of the steady-state
exciton-polaron-quenching rate as the product of a constant
rate coefficient (kEPQ,eff), the polaron density, and the exciton
density, can be highly inaccurate. From kMC simulations,
we find that a description of the EPQ process in terms of
an EPQ capture radius can lead to effective values which
are significantly (more than one order of magnitude) larger
than the value of ∼1 nm which is expected from a nearest-
neighbor capture process. We furthermore find that the rate
coefficient can depend strongly on the polaron concentration.
The effect is largest for strongly disordered systems containing
emitters with a short emissive lifetime. Finally, the EPQ
rate coefficient is found to show a significant electric-field
dependence resulting from a “polaron wind” effect. For small
and moderate fields, the latter effect is found to be described
well using a capture cross-section formalism [Eq. (16)], within
which it gives rise to an additional 5 nm2 contribution to the
capture radius, equal to the geometrical value.

Our results show that reducing the emission efficiency
loss due to the EPQ, realized by replacing the emitter
with a material with a reduced emissive lifetime, can be
significantly less effective than as expected when assuming
a constant effective capture radius. This effect can already be
understood in part from the well-known macroscopic diffusion
theory of capture processes, within which a contribution of
short-range quasi-1D diffusion to the capture site is included.
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However, when considering disordered systems, we find
distinct deviations from that theory, related to the very small
time and spatial scales involved in the capture process. Such
deviations are already observed in the time dependence of the
fraction of quenched excitons, shown in Fig. 2. They are also
clearly reflected by the explicitly calculated dependence of the
steady-state capture radius on the emissive lifetime, the carrier
concentration, and the disorder strength, shown in Fig. 8.

We suggest that future exploratory studies of EPQ in any
arbitrary material (including, e.g., systems with longer-range
EPQ or compositionally mixed host-guest systems) should
start with a calculation of quenched fraction curves such as
shown in Fig. 2. These curves provide a quick estimate of
the efficiency loss due to EPQ, which may be approximated
by the fraction of quenched excitons fQ(τ ) at the effective
emissive lifetime τ . Furthermore, their precise shape reveals
disorder-induced deviations from the EPQ rate coefficient that
is expected from macroscopic diffusion theory.
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APPENDIX: SIMULATION DATA

Tables II–V provide an overview of the kMC simulation
results on exciton-polaron quenching at low electric fields,
for systems with σ/(kBT ) = 0, 2, 4, and 6, respectively. The
simulation data were obtained and analyzed as follows.

As a first step, the (self-)diffusion coefficient D is derived
from the mobility, using the classical Einstein equation
[Eq. (15)]. The diffusion coefficients obtained are given in
Table I in the main text. The electric field for which these
simulations were carried out was Fsim = 5 × 105 V/m for
systems without disorder [σ/(kBT ) = 0], and Fsim = 107 V/m
for systems with σ/(kBT ) = 2, 4, and 6. At these low fields,
the estimated field enhancement of the mobility (and diffusion
coefficient) is in all cases around 1% or less. The first
simulation result given in Tables II–V is the diffusion length
(Dτ )1/2, with τ = 0.75 × τrad the effective exciton decay time.
A significant enhancement of the effective capture radius
due to short-range quasi-1D diffusion is expected when the
diffusion length is around 1 nm, or smaller.

Subsequently, the effective EPQ rate coefficient kEPQ,eff is
obtained from the calculated ratio of quenched and radiatively
decayed excitons fQ/fR using Eq. (3). Obtaining this ratio
with a high accuracy is most difficult for long exciton lifetimes
because the fraction of radiatively decaying excitons is then
very small (an effect which is most prominent for high polaron
densities) or because the simulation time needed before good

TABLE II. Results of kinetic Monte Carlo simulations of exciton-
polaron quenching in organic semiconductors without Gaussian ener-
getic disorder [σ/(kBT ) = 0], carried out under low-field conditions
(Fsim = 5 × 105 V/m). The simulations were performed for various
values of the hole concentration ch and the relative radiative decay
time τrad/τrad,0, with τrad,0 = 1.84 μs. The table gives the polaron
diffusion length (Dτ )1/2, the ratio of quenched and radiatively
decayed excitons fQ/fR , the effective EPQ rate coefficient kEPQ,eff,
and the effective capture radius Rc,eff.

√
Dτ kEPQ,eff Rc,eff

ch τrad/τrad,0 (nm) fQ/fR (10−18 m3 s−1) (nm)

10−5 0.1 67.5 0.707 384 0.93
0.01 21.3 0.0715 388 0.94
0.001 6.75 0.00778 423 1.03
10−4 2.13 0.00103 560 1.36
10−5 0.67 2.11 ×10−4 1147 2.80

10−4 0.1 67.5 7.12 387 0.94
10−3 0.1 67.5 77.7 422 1.03

0.01 21.3 7.88 428 1.04
0.001 6.75 0.837 455 1.11
10−4 2.13 0.107 582 1.42
10−5 0.67 0.00218 1185 2.89

10−2 0.1 67.5 1.04 ×103 564 1.37
0.01 21.3 94.8 515 1.25
0.001 6.75 9.80 532 1.30
10−4 2.13 1.16 630 1.54
10−5 0.67 0.226 1228 3.00

TABLE III. Results of kinetic Monte Carlo simulations of
exciton-polaron quenching in organic semiconductors with a Gaus-
sian disorder strength σ/(kBT ) = 2, carried out for Fsim = 107 V/m.
The reader is referred to the caption of Table II for an explanation of
the quantities included.

√
Dτ kEPQ,eff Rc,eff

ch τrad/τrad,0 (nm) fQ/fR (10−18 m3 s−1) (nm)

10−5 10 212 8.14 44.2 0.93
1 67.0 0.842 45.8 0.97

0.1 21.2 0.092 50.0 1.07
0.01 6.70 0.0097 52.7 1.14
0.001 2.12 0.00116 63 1.39
10−4 0.67 2.4 ×10−4 130 3.04

10−4 1 67.2 8.30 45.1 0.94
10−3 10 212 858 46.6 0.96

1 67 86.8 47.2 0.97
0.1 21 8.80 47.8 0.99
0.01 6.7 0.946 51.4 1.07
0.001 2.1 0.121 65.8 1.41
10−4 0.67 0.025 136 3.09

10−2 1 71.3 1.15 ×103 62.5 1.19
0.1 22.5 119 64.7 1.24
0.01 7.13 12.1 65.8 1.26
0.001 2.25 1.44 78.3 1.53
10−4 0.713 0.278 151 3.10
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TABLE IV. Results of kinetic Monte Carlo simulations of
exciton-polaron quenching in organic semiconductors with a Gaus-
sian disorder strength σ/(kBT ) = 4, carried out for Fsim = 107 V/m.
The reader is referred to the caption of Table II for an explanation of
the quantities included.

√
Dτ kEPQ,eff Rc,eff

ch τrad/τrad,0 (nm) fQ/fR (10−18 m3 s−1) (nm)

10−5 100 49.7 0.534 0.290 1.13
10 15.7 0.059 0.321 1.26
1 4.97 0.0063 0.342 1.36

0.1 1.57 8.18 ×10−4 0.444 1.81
0.01 0.497 1.87 ×10−4 1.02 4.34
0.001 0.157 9.60 ×10−5 5.21 22.9

10−4 100 57.5 5.92 0.322 0.91
10 18.2 0.667 0.362 1.04
1 5.75 0.0817 0.444 1.32

0.1 1.82 0.00987 0.536 1.62
0.01 0.575 0.00225 1.22 3.90
0.001 0.182 0.00114 6.20 20.4

10−3 100 77.1 105 0.581 0.90
10 24.4 11.1 0.603 0.96
1 7.71 1.29 0.701 1.14

0.1 2.44 0.170 0.924 1.55
0.01 0.771 0.032 1.74 3.06
0.001 0.244 0.013 7.06 12.9

10−2 10 40.5 340 1.85 1.08
1 12.8 34.9 1.90 1.11

0.1 4.05 4.21 2.29 1.38
0.01 1.28 0.698 3.59 2.38
0.001 0.405 0.199 10.8 7.08

time averaging is obtained becomes very large (an effect
which is most prominent for low polaron densities). These
considerations have affected the range of radiative lifetimes
for which the results are displayed. The estimated numerical
accuracy of the fQ/fR ratios is approximately 5% or better.

TABLE V. Results of kinetic Monte Carlo simulations of exciton-
polaron quenching in organic semiconductors with a Gaussian
disorder strength σ/(kBT ) = 6, carried out for Fsim = 107 V/m. The
reader is referred to the caption of Table II for an explanation of the
quantities included.

√
Dτ kEPQ,eff Rc,eff

ch τrad/τrad,0 (nm) fQ/fR (10−18 m3 s−1) (nm)

10−5 10000 16.5 0.065 3.53 ×10−4 1.32
1000 5.27 0.0067 3.64 ×10−4 1.37
100 1.65 7.9 ×10−4 4.29 ×10−4 1.64
10 0.527 1.6 ×10−4 8.70 ×10−4 3.49
1 0.165 6.9 ×10−5 0.00375 15.5

0.1 0.0527 6.0 ×10−5 0.0326 136
10−4 10000 29.3 1.67 9.08 ×10−4 1.00

1 0.293 0.00153 0.00831 10.5
10−3 10000 65.7 64.1 0.0035 0.74

1000 20.8 7.46 0.0041 0.89
100 6.57 1.07 0.0058 1.34
10 2.08 0.151 0.0082 1.95
1 0.657 0.0302 0.0164 4.06

0.1 0.208 0.0140 0.0761 19.4
10−2 1000 66.2 645 0.0353 0.72

100 20.9 78.5 0.0427 0.91
10 6.62 9.83 0.0534 1.17
1 2.09 1.49 0.0811 1.86

0.1 0.662 0.365 0.198 4.78

As a final step, the methodology developed in Sec. II C
for extrapolating the simulation data to zero electric field
is used to derive the effective capture radius Rc,eff, using
Eq. (18). This approach corrects for an A′

c,∞ = 5 nm2

polaron wind contribution to the effective capture cross
section. For the electric fields used, the correction is negligible
when σ/(kBT ) = 0 and 0.155 nm for the disordered systems
considered.
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