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Interaction-induced weakening of localization in few-particle disordered Heisenberg chains
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We investigate real-space localization in the few-particle regime of the XXZ spin-1/2 chain with a random
magnetic field. Our investigation focuses on the time evolution of the spatial variance of nonequilibrium densities,
as resulting for a specific class of initial states, namely, pure product states of densely packed particles. Varying
the strength of both particle-particle interactions and disorder, we numerically calculate the long-time evolution
of the spatial variance σ (t). For the two-particle case, the saturation of this variance yields an increased but
finite localization length, with a parameter scaling different to known results for bosons. We find that this
interaction-induced increase is stronger the more particles are taken into account in the initial condition. We
further find that our nonequilibrium dynamics are clearly inconsistent with normal diffusion and instead point to
subdiffusive dynamics with σ (t) ∝ t1/4.
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I. INTRODUCTION

Noninteracting particles in a disordered potential are
Anderson-localized in one dimension (1D), for any disorder
strength and temperature [1–4]. Recently, it has become clear
that Anderson localization is also stable against weak particle-
particle interactions [5,6]. Moreover, numerous works suggest
the existence of a many-body localized (MBL) phase beyond
the weak-interaction limit and even at infinite temperature
[7–9]. This MBL phase is a new state of matter with
several fascinating properties, ranging from the breakdown
of eigenstate thermalization [10–16] to the logarithmic growth
of entanglement as a function of time after an initial quantum
quench [17–19]. In particular the optical conductivity features
a zero dc value [20–22] and a low-frequency behavior as
described by Mott’s law [20]. On the experimental side, an
MBL phase was recently observed for interacting fermions
in a quasirandom (bichromatic) optical lattice [23,24] as also
delocalization by coupling identical 1D MBL systems [25].
Investigations of amorphous iridium-oxide indicate that MBL
might play an important role for its insulating states [26].

The existence of a MBL phase at finite disorder and inter-
action strength implies that the decrease of disorder induces
a transition from a localized phase (nonergodic, nonthermal)
to a delocalized phase (ergodic, thermal) [27]. This disorder-
induced transition has been under active scrutiny and different
probes have been suggested [28] such as subdiffusive power
laws in the vicinity of the critical disorder [20] (which may or
may not exist [21,29–35]). So far, a full understanding of the
MBL transition is still lacking. This lack of knowledge is also
related to restrictions of state-of-the-art numerical methods.
On the one hand, full exact diagonalization is restricted to small
systems with only a few lattice sites, where finite-size effects
are strong in disorder-free cases [36–38]. On the other hand,
much more sophisticated methods such as time-dependent
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density-matrix renormalization group are restricted to times
scales with sufficiently low entanglement [35,39,40].

While the overwhelming majority of works has focused
on the disorder-induced transition at half filling, much less is
known on the transition induced by filling at fixed disorder
strength [16,39]. Since a single particle is localized for
any finite disorder, a transition from a localized phase to a
delocalized phase has to occur, if the half-filling sector is
delocalized. However, when and how such a transition happens
exactly constitutes a nontrivial and challenging question. So
far, this question has been investigated only partially, with a
remarkable focus on the special case of two interacting bosons
[41–44]. Though there are a few works containing results on
two interacting fermions, see, e.g., Refs. [45,46], there is, to the
best of our knowledge, no detailed investigation for this case,
especially in connection with increasing the particle number
beyond two. The latter is the main focus of the work at hand.

Thus, we study this question for the XXZ spin-1/2 Heisen-
berg chain. To this end, we consider a nonequilibrium scenario.
First, we prepare a pure initial state of densely packed particles
(also known as bound states [47,48]), where all particles (↑
spins) are concentrated at adjacent sites and holes (↓ spins)
are located on the other sites. Then, we calculate the evolution
of the particle distribution in real time and real space, using a
Runge-Kutta integration of the time-dependent Schrödinger
equation [36,37,49,50]. While the time dependence of the
distribution width allows us to study the type of dynamics
in general, a convergence of this width to a constant value in
the long-time limit (which may or may not exist) also allows
us to extract a finite localization length. To eliminate that this
length is a trivial boundary effect, we choose large system
sizes. The latter are feasible for different particle numbers due
to our integration scheme.

The paper is organized as follows: In Sec. II, we introduce
the investigated model, namely a Heisenberg spin-1/2 chain
subjected to random magnetic fields. Furthermore our main
observable, i.e., the time-dependent particle density distribu-
tion arising from densely-packed initial states, comparable
to so-called bound states, is discussed. Also its (dynamical)
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broadening in terms of standard statistical variances is pre-
sented. At the end of this section, we describe shortly our
numerical methods. In Sec. III, the variance is investigated
regarding the scaling behavior with particle number ranging
from only one particle up to four. Section IV is dedicated
to a thorough investigation of the scaling behavior of the
saturation value of the aforementioned variance in the two-
particle case. This scaling behavior is analyzed with respect
to the particle-particle interaction and disorder strength within
appropriate regimes, where we interpret finite saturation values
of the variances as real-space localization lengths. In Sec. V,
we provide evidence that the cases of noninteracting and
interacting particles can be distinguished in terms of local
density correlations where we again investigate exemplary
only the two particle case. Finally we end with a short summary
and conclusions in Sec. VI. In Appendix A we provide
a thorough analysis regarding statistical error estimations
for mean localization lengths, and Appendix B presents a
discussion of the behavior of two-particle localization lengths
in the large interaction regime in comparison to results on
bosons.

II. MODEL AND NONEQUILIBRIUM DENSITIES

We study the XXZ spin-1/2 chain with a random magnetic
field oriented in the z direction. The Hamiltonian reads (with
periodic boundary conditions)

H =
L∑

i=1

[
J
(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

) + hiS
z
i

]
, (1)

where S
x,y,z

i are spin-1/2 operators at site i,L is the number
of sites, J > 0 is the antiferromagnetic exchange coupling
constant, and � is the exchange anisotropy. The local mag-
netic fields hi are random numbers drawn from a uniform
distribution in the interval hi ∈ [−W,W ]. We note that, via
the Jordan-Wigner transformation [51], this model can be
mapped onto a one-dimensional model of spinless fermions
with particle-particle interactions of strength � and a random
on-site potential of strength hi . We are interested in the time
evolution of the density distribution

〈ni(t)〉 = 1

N
tr[ni ρ(t)] ,

L∑
i=1

〈ni(t)〉 = 1 , (2)

where N is the number of particles, ni = Sz
i + 1/2 is the

occupation-number operator at site i, and ρ(t) is the density
matrix at time t . In this way, we can investigate the time-
dependent broadening of an initial state ρ(0) in real space. In
the few-particle regime, i.e., N � L/2, studied in this paper,
due to short-range interactions, only initial states with a sharp
concentration of particles at adjacent sites are appropriate. For
such “narrow” initial states we can expect nontrivial dynamics,
while “broad” initial states essentially correspond to the one-
particle problem. Thus, our initial states ρ(0) = |ψ(0)〉〈ψ(0)|
read (in the Ising basis)

|ψ(0)〉 =
p+N−1∏

i=p

S+
i |↓ . . . ↓〉 = | . . . ↓ ↑ . . . ↑︸ ︷︷ ︸

N

↓ . . .〉 , (3)

where S+
i is the creation operator at site i and p is chosen

to concentrate particles (↑ spins) around i = L/2. These pure
states of densely packed particles describe an alignment of N

particles directly next to each other (known as bound states for
N ∼ 2 [47,48] and domain walls for N ∼ L/2 [40,52]). Note
that, due to periodic boundary conditions, the specific choice
of p is irrelevant. However, to avoid boundary effects in the
following definition it is convenient to choose p ≈ L/2.

A central quantity of our paper is the spatial variance of the
above introduced particle density distribution

σ 2(t) =
L∑

i=1

i2 〈ni(t)〉 −
(

L∑
i=1

i 〈ni(t)〉
)2

. (4)

On one hand, the time dependence of σ (t) yields information
on the type of dynamics such as power laws tα [44,53] for sub-
(α < 1/2), normal (α = 1/2), or superdiffusion (α > 1/2).
On the other hand, we can use the long-time value l =
limt→∞ σ (t) as a natural definition for the localization length.
Since l, as well as all other quantities introduced, depend
on the specific disorder realization considered, we average
over a sufficiently large number of disorder realizations
r , typically r > 1000, to determine the mean of l within
negligible statistical errors, see Appendix A for details. To
also ensure negligibly small finite-size effects, we set L = 100
throughout this paper. We checked that such L is sufficiently
large for all quantities and time scales investigated here. Thus,
for the two-particle case, i.e., N = 2, (with Hilbert-space
dimension dimH = 4950), we use full exact diagonalization
(ED). For larger N , e.g., N = 3 (dimH = 161700), we rely on
a forward iteration of the pure state |ψ(t)〉 using fourth-order
Runge-Kutta with a time step t J = 0.01 � 1 [54], feasible for
L = 100 due to sparse-matrix representations of operators, see
Refs. [36,37,50] for details. As demonstrated below, the results
obtained from this iterative method coincide for N = 2 with
the ED results.

III. SCALING OF THE VARIANCE

Now, we present our results, starting with the time evolution
of the width σ (t) and focusing on the isotropic point � = 1 and
intermediate disorder W/J = 1. Figure 1 summarizes σ (t) for
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FIG. 1. Log-log plot of the time evolution of the width σ (t) for
different particle numbers N = 1, . . . ,4 for � = 1,W/J = 1. For the
N = 2 case, corresponding ED results are also shown. For the N = 3
case, long-time data for fewer r ≈ 100 is further depicted. Power
laws are indicated for comparison. Inset: Lin-lin plot for short times.
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different particle numbers N = 1,2,3, and 4 in a log-log plot,
with statistical errors smaller than the symbol size used (see
Appendix A).

Several comments are in order. First, in the long-time
limit, σ (t) increases monotonously as N increases from 1
to 4. Second, for N = 1 and 2,σ (t) is approximately time-
independent for t J > 1000 and takes on a constant value
σ < 10, much smaller than the size of the lattice L = 100. On
one hand, the saturation for N = 1 is expected since in this case
the actual value of � is irrelevant and single-particle Anderson
localization persists [1,55]. On the other hand, the saturation
for N = 2 is in qualitative accord with corresponding results
on bosons [41–44,56]. Third, for N > 2 such conclusions are
less obvious. The long time scale relevant for our dynamics, as
typical for disordered problems [15,16,44,57], systematically
increases with N and we do not observe a saturation of
σ (t) at the time scales depicted in Fig. 1. Note that we
have also calculated σ (t), for N = 3 and r ≈ 100, up to
very long t J = 12000, where it still increases significantly,
see Fig. 1. This ongoing increase could be a signature of a
diverging localization length and would be consistent with
the delocalized phase at N = L/2 for this choice of � and
W . Finally, the time dependence of σ (t) is for all cases
inconsistent with normal diffusion, where σ (t) ∝ t1/2, which
has been found so far only in few disorder-free cases [58,59].
In fact, we find σ (t) ∝ t1/4 on intermediate time intervals.
The latter becomes more pronounced for larger N . This
scaling is also expected for the chaotic spreading of nonlinear
wave packets in disordered potentials [44,53]. Nevertheless,
our data is not sufficient to state conclusively whether the
observed agreement indeed indicates subdiffusion or whether
it is essentially cross-over effect.

In clear contrast, for short times, σ (t) in the inset of Fig. 1
is larger for smaller N , inverse to the long-time behavior
discussed so far. This short-time behavior simply reflects that
fewer particles expand in a more empty lattice. Here, disorder
is not relevant yet.

To gain insight into the origin of the slow dynamics of σ (t),
we depict in Fig. 2 time snapshots of the site dependence of
the underlying density profile 〈ni(t)〉 for N = 2 in a semilog
plot. For simplicity, we focus only on the right part of the
symmetric function. While the profiles are well approximated
by Lorentzians around their center, see inset of Fig. 2(a),
the tails show a different behavior. Remarkably, they are
well described by exponentials over orders of magnitude, as
expected for Anderson-localized states [1,55], but here for
interacting particles; see Ref. [60] for a similar decay behavior.
We have found similar behavior for N = 3 and 4. In fact, as
shown in Fig. 2(b), the spatial decay appears to be very similar
for different N at fixed t .

In the following, we are going to quantify this by extracting
localization lengths from in Fig. 2 shown exponential tails
according 〈ni〉 ∝ exp(−i/ξ ). As usual localization lengths
are then denoted as the inverse decay constant, i.e., l := ξ .
Figure 3 shows the time-evolution of ξ for N = 2 and 4
in the time-interval 80 � tJ � 1000. Note that for t < 80
exponential tails do not yet exist properly and density profiles
are governed by the Lorentzian-type expansion at the center.
Moreover since this Lorentzian-type behavior persists for all
times and deviation from exponential decay may occur at
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FIG. 2. Site dependence of the density profile 〈ni(t)〉 for � =
1 and W/J = 1 at (a) times tJ = 0,10,100, and 1000 for N = 2
particles and (b) at fixed time tJ = 1000 for N = 2,3 and 4 particles,
both in a semi-log plot. In (a) exponential fits to the tails are indicated.
Insets: Lin-lin plots with a Lorentzian fit indicated in (a).

the edges of the chain, we fit the tails only for 60 � i � 90.
Remarkably, the time evolutions show a similar behavior with
respect to different particle numbers as σ discussed above,
i.e., at the beginning of the aforementioned time interval the
localization length is the larger the less particles are taken into
account but it also increases the slower. Thus, subsequently
at large times the localization length is the larger the more
particles are taken into account. However, here the crossover
occurs at much larger times than above. A power-law fit (see
dashed lines in Fig. 3) suggests that for N = 4 it scales as
ξ ∝ t0.21 for the entire interval shown. This is rather close to
a subdiffusive expansion with σ (t) ∝ t1/4 and thus supports
the idea that the slow growth of the tails yields subdiffusive
expansion (at least in a certain interval for the particles
numbers considered here).
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FIG. 3. Log-log plot of the time dependence of the inverse decay
constant ξ for � = 1 and W/J = 1. The crossover behavior is similar
to the one found for the variance σ (t); see inset of Fig. 1. Dashed line
indicates power-law fit with ξ ∝ t0.21 for N = 4 supports subdiffusive
expansion of σ (t) as discussed above.
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FIG. 4. Dependence of the N = 2 localization length l on the
interaction strength � for various disorders W , as obtained from σ (t)
at times t J = 5000. Inset: The same data as in the main panel but
for the relative localization length λ = l(�)/l(� = 0).

IV. LOCALIZATION LENGTH

Next, we turn to the localization length l which is
here only analyzed for N � 2 since for more particles
saturation is not observed on time scales investigated here.
In Fig. 4 we summarize our results for the � and W

dependence of l for the two-particle case. There, we observe
a clear saturation of σ (t) at times t J = 5000 for all �

and W considered, cf. Fig. 1. Thus, l ≈ σ (t J = 5000).
In order to check saturation we also calculated σ (t J =
107) and found σ (t J = 107) ≈ σ (5000), data not shown for
clarity.

According to Fig. 4, the localization length l is finite for
all parameters depicted. Clearly, at fixed interaction strength
�,l increases as disorder W is decreased. At fixed W,l

increases with interaction strength for � � �max ≈ 0.75. The
decrease of l for � > 0.75 occurs since our initial state is
an eigenstate of the Ising limit � → ∞. This might be seen
as running into localized states comparable to Mott states
[2]. In Appendix B, we provide results for W/J = 0.7,1 for
large interaction strengths, i.e., up to � � 14, that visualize
this behavior. Note that for � → ∞, bosons act like free
fermions, i.e., there is no Mott insulting phase. Moreover, we
find that the two-particle localization length l2 := l(� = 0)
scales approximately linear with the one-particle localization
length l1 := l(� = 0), at least in the disorder regime 0.7 �
W � 1.25. This becomes apparent from the enhancement
factor λ = l2/l1 in Fig. 4 (inset). λ appears to be almost
independent of W , and hence of l1, and is largest in the
region � ≈ �max where λ ≈ 1.4. This is significantly different
from the enhancement factor for bosons with, e.g., contact
interaction where λ increases monotonously with l1 at least in
the regime of intermediate disorder, see, e.g., Refs. [41–46].
The dependence of λ on the interaction strength for bosonic
models appears to be under dispute. E.g., in Refs. [41–44] the
authors find also a monotonous increase of λ with interaction
strength, whereas in Refs. [45,46] the authors find a similar
behavior as the one at hand with a distinct interaction strength
for which the enhancement is strongest (see Appendix B).
Nevertheless in comparison to our results, there are still signif-
icant differences, e.g., regarding the maximum enhancement
and its distinct interaction strength; see Refs. [45,46] for
details.
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FIG. 5. Local density correlator Ci,δ(t) vs site i and distance δ

for N = 2 particles, W/J = 1, and fixed time tJ = 3500. (a) shows
results for the noninteracting case � = 0 and (b) for the interacting
case � = 1.

V. LOCAL DENSITY CORRELATIONS

Finally, we intend to shed light on the nature of the transport
process and on the differences between noninteracting and
interacting cases, i.e., � = 0 and � = 0, respectively. To this
end, we consider the local density correlator

Ci,δ(t) = 〈ni(t)ni+δ(t)〉
〈ni(t)〉〈ni+δ(t)〉 (5)

of site i and another site in distance δ, both at a given time t .
This correlation function can be interpreted as the probability
to find simultaneously site i and i + δ occupied, weighted
by their individual occupation probability. Thus, compared
to similar correlator definitions, see, e.g., Refs. [43,47,48],
ours is apt to display correlations even if 〈ni(t)ni+δ(t)〉 is very
small; here especially in the outer tails, see Fig. 2. Note that
uncorrelated sites have Ci,δ(t) ≈ 1/2.

In Fig. 5 we show our N = 2 results for Ci,δ(t) in a color
map vs site i and distance δ for interactions turned off (� = 0)
and interaction turned on (� = 1), focusing on long times
t J = 3500 and intermediate disorder W/J = 1. For the � =
0 case in Fig. 5(a), there generally is no strong enhancement
of correlations. The horizontal line visible, corresponding to
site i ≈ L/2 and arbitrary δ, has the slightly enhanced value
≈0.6. Note that the diagonal line is equivalent to the horizontal
one. Thus these lines suggest that one particle moves freely
while the other remains at the initial site. For the � = 1 case
in Fig. 5(b), correlations are much more enhanced. A striking
feature are strong correlations at i � L/2 and i � L/2 but
with a small δ. These correlations suggest that the two particles
do not move independently and stay close to each other during
the time evolution, in clear contrast to the noninteracting case
� = 0; cf. Refs. [47,48,61] for results on the disorder-free case
and Refs. [41,43] for bosons.

VI. SUMMARY AND CONCLUSIONS

In summary, we investigated real-space localization in the
few-particle regime of the XXZ spin-1/2 chain with a random
magnetic field. Our investigation focused on the time evolution
of the spatial variance of nonequilibrium densities, as resulting
for a specific class of initial states, namely, pure states of
densely packed particles. We showed that our nonequilibrium
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dynamics are clearly inconsistent with normal diffusion and
instead point to subdiffusive dynamics. For the two-particle
case, our numerical results indicated that interactions lead to an
increased but still finite localization length for all parameters
considered, whereas for three and four particles saturation
of the variance is not observed on time scales manageable
numerically here. We also found that this interaction-induced
broadening of the nonequilibrium densities is the stronger the
more particles are taken into account in the initial condition.
We also performed an investigation of the scaling behavior
of the localization length with particle-particle interaction
strength and strength of the magnetic fields where our results
differ significantly from those known for bosons. Finally, we
also provided evidence that the cases of noninteracting and in-
teracting particles can be distinguished in terms of local density
correlations. Our corresponding results further suggested that
two interacting particles cannot move independently and stay
close to each other during the time evolution in accordance
with other works.
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APPENDIX A: STATISTICAL ERRORS

As the local magnetic fields hi are drawn at random,
σi(t) is randomly distributed around its mean 〈σ (t)〉 and it is
necessary to estimate statistical errors. In Fig. 6 histograms
for the individual deviations εi(t) = σi(t) − 〈σ (t)〉 at fixed
time t J = 5000, interaction � = 1, and disorder W/J = 1
are shown. Note that we also computed the errors for all the
other parameter choices in the same way as described below.
For N = 2 and 3 the distributions are of Gaussian type while
for N = 1 the distribution is slightly asymmetric. Interestingly,
the distributions become broader as the particle number is
increased.

0
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0.08

0.1
N = 1
N = 2
N = 3

N = 1, 2, 3

2
(t

)

tJ

N=1,2,3

FIG. 6. Histogram of εi(t) = σi(t) − 〈σ (t)〉 for N = 1,2, and 3
at fixed t J = 5000 (� = 1,W/J = 1, and L = 100). Clearly, the
overall shape is Gaussian (solid lines) and the width grows with N .
Inset: Time evolution of 〈ε2(t)〉 for the same parameters.

In the inset of Fig. 6 we show the time evolution of

〈ε2(t)〉 = 1

r

r∑
i=1

εi(t)
2, (A1)

for the same set of parameters. The time dependence of
〈ε2(t)〉 is similar to the one of 〈σ (t)〉 itself; however, 〈ε2(t)〉 <

〈σ (t)〉. Furthermore, for N = 1 and 2, the time scale where
〈ε2(t)〉 saturates at its maximum is also comparable. For
N = 3,〈ε2(t)〉 still increases in the long-time limit, just as
〈σ (t)〉.

Given the Gaussian form in Fig. 6, we can estimate the error
of determining 〈σ (t)〉 by r realizations from√

〈ε2(t)〉
r

. (A2)

We choose r such large that this error is smaller than the
symbol sizes used in the corresponding figures, i.e., typically
r > 1000.

APPENDIX B: TWO-PARTICLE LOCALIZATION LENGTH
FOR LARGE INTERACTION STRENGTHS

As pointed out in the main text, the two-particle localization
length l decreases if the interaction strength increases beyond
a certain threshold. This fact is visualized for W/J = 0.7,1
and � � 14 in Fig. 7. Indeed the localization lengths decrease
rather strong for increasing interaction strength. For compari-
son, the smallest localization length, i.e., when both particles
are localization on adjacent sites with l = 1/

√
2, is displayed

(dashed line). Note that our initial states are constructed to
feature this value in the beginning. Clearly, for both disorder
strengths the localization length tends toward this value in
the large interaction regime. This also means that (detectable)
dynamics of the system are not present anymore. For bosons
such behavior in the high interaction regime is, as pointed
out in the main text, a disputed topic. Some works propose
a constant increase of the localization length with interac-
tion strengths while others find also decreasing localization
lengths as presented here. However, the differences between
such results on bosons and our results remain quantitatively

0

4

8

12

16

1/
√

2

l 2

Δ

W/J = 0.7
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FIG. 7. Two-particle localization length for W/J = 0.7,1 and
strong interaction, i.e., � � 14. For comparison the smallest local-
ization length l = 1/

√
2 (which is also the initial localization of our

initial states) is displayed (dashed line). Obviously, l2 tends to this
value in the large interaction regime, i.e., there are no significant
dynamics present anymore. Statistical errors are smaller than symbol
size.
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significant see, e.g., Ref. [46] for results on the same
interaction strength regime. Reference [45] even shows that

in the large interaction regime the enhancement vanishes, i.e.,
l2 ≈ l1.
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