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Midinfrared-light-induced ferroelectricity in oxide paraelectrics via nonlinear phononics
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I show that a nonequilibrium paraelectric to ferroelectric transition can be transiently induced using midinfrared
pulses. This relies on a quartic lQ2

lzQ
2
hx

coupling between the lowest (Qlz ) and highest (Qhx
) frequency infrared-

active phonon modes of a paraelectric material. Density functional calculations show that the coupling constant
l is negative, which causes a softening of the Qlz mode when the Qhx

mode is externally pumped. A rectification
along the Qlz coordinate that stabilizes the nonequilibrium ferroelectric state occurs only above a critical threshold
for the electric field of the pump pulse, demonstrating that this is a nonperturbative phenomenon. A first-principles
calculation of the coupling between light and the Qhx

mode shows that ferroelectricity can be induced in the
representative case of strained KTaO3 by a midinfrared pulse with a peak electric field of 17 MV cm−1 and
duration of 2 ps. Furthermore, other odd-order nonlinear couplings make it possible to arbitrarily switch off the
light-induced ferroelectric state, making this technique feasible for all-optic devices.

DOI: 10.1103/PhysRevB.95.134113

I. INTRODUCTION

Living organisms have used light to observe the properties
of materials since the evolutionary development of complex
eyes. However, ultrafast light-control of materials properties
has only become feasible after the construction of high-
powered lasers in the previous century, and this field has flour-
ished because light-induced processes have the potential to
lead to new devices and physical phenomena. Many examples
of light-induced phase transitions using near-visible sources
have been observed, including discontinuous volume changes
in polymer gels [1], quasi-ionic-to-quasineutral transition
in organic molecular compounds [2], low-spin to high-spin
transition in metal organic frameworks [3], insulator-to-metal
transition in perovskite manganites [4], and, remarkably, a
transition to a hidden metastable state in 1T -TaS2 [5]. All
of these examples involve transition to higher-temperature or
metastable phases, and the quest to stabilize a phase with less
symmetry or more order using light remains elusive.

More recently, intense midinfrared pulses have been used to
directly control the dynamical degrees of freedom of the crystal
lattice. Such mode-selective vibrational excitations have been
used to induce insulator-to-metal transitions [6,7] and melting
of orbital [8] and magnetic [9,10] orders. Midinfrared excita-
tions have so far not caused transitions to more-ordered phases,
although light-induced superconductivity has been claimed
in several cuprate compounds and K3C60 [11–14]. However,
these claims rely on interpreting the two-dimensional response
function �(ω,τ ) measured in the pump-probe experiments as
the optical conductivity σ (ω) that is measured in time-domain
spectroscopy. It is unclear whether such an interpretation is
justified, especially at low frequencies, when the light-induced
state is short-lived, as is the case in these experiments [15,16].
In any case, a light-induced transition to a lower-symmetry
phase is not observed in any of these experiments. Nonetheless,
midinfrared excitation should be an effective tool to drive
materials to broken-symmetry phases because selective and
coherent excitation of the low-energy structural degrees of
freedom should cause minimal dissipation as heat.

The mechanism for mode-selective light-control of materi-
als was proposed by Först et al. [17,18]. This involves exciting

an infrared-active phonon mode QIR of a material using an
intense light pulse which then causes the lattice to displace
along a fully symmetric Ag Raman mode coordinate QR

due to a nonlinear coupling QRQ2
IR between the two modes.

A quantitative microscopic theory of this phenomenon was
developed in Ref. [19], and calculations based on this theory in
combination with a time-resolved x-ray diffraction experiment
was used to resolve the midinfrared-light-induced changes in
the structure of YBa2Cu3O6.5 [20]. In addition to the histor-
ically discussed cubic order QRQIR1QIR2 coupling [21,22],
Subedi et al. have shown that a sizable quartic order Q2

RQ2
IR

coupling can occur and studied the dynamics due to such a
coupling [19]. They found that such a quartic coupling exhibits
various distinct regimes of dynamics, including transient mode
softening and dynamic stabilization in a rectified state. In
contrast to the case of the cubic coupling, the displacement
along the QR coordinate occurs only above a critical pump
amplitude threshold for the quartic Q2

RQ2
IR coupling. A more

recent work has reproduced several aspects of the dynamics of
this coupling [23]. Unlike the cubic QRQIR1QIR2 coupling
[24], the Q2

RQ2
IR coupling can cause a rectification along

a symmetry breaking mode [19], but such a light-induced
symmetry breaking of a crystal structure has so far not been
observed.

It has recently been predicted that ferroelectric polarization
can be switched using midinfrared pulses [25]. In this paper,
I extend that work to the paraelectric phase and show that
ferroelectricity can also be transiently induced in transition
metal oxide paraelectrics. This relies on a quartic lQ2

lz
Q2

hx

coupling and is a nonperturbative effect that occurs only above
a critical pump amplitude. Here, Qhx

is a high-frequency
infrared-active phonon mode that should be externally pumped
and Qlz is the lowest frequency infrared-active mode that is
transverse to the pumped mode. I find that the sign of the
coupling constant l is negative in several transition metal
oxides, which causes the Qlz mode to soften as the Qhx

mode is externally pumped. But other quartic order couplings
t1Q

3
lx
Qhx

, t2Q2
lx
Q2

hx
, and t3Qlx Q

3
hx

between Qhx
and the lowest

frequency mode Qlx that is longitudinal to the pumped mode
are larger in magnitude. In the cubic materials, the couplings
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between Qlx and Qhx
modes are such that the Qlz mode may

not develop a light-induced dynamical instability. However,
I find that the couplings in the longitudinal direction can be
effectively reduced by applying strain so that a light-induced
ferroelectric state is stabilized by rectification along the Qlz
coordinate.

I illustrate this theory for the representative case of KTaO3

to show that light-induced ferroelectricity can be generated
in the strained version of this material when a pump pulse
with an electric field of ∼17 MV cm−1 and pulse duration
of 2 ps is used. Interestingly, this value is noticeably smaller
than what is expected for the critical pump amplitude due
to a Q2

lz
Q2

hx
coupling [19]. I find that this reduction is

due to the presence of substantial sixth-order Q4
lz
Q2

hx
and

Q2
lz
Q4

hx
couplings. Furthermore, I show that the light-induced

rectification can be arbitrarily suppressed by pumping the
highest frequency infrared-active mode Qhx

that is longitudinal
to Qlx with another weak pulse. Such a control is necessary
for applications in devices. In addition to KTaO3, I find similar
nonlinear couplings in SrTiO3 and LaAlO3, and this technique
could be generally applied to many transition metal oxide
paralectrics.

II. APPROACH

A. Computational details

The phonon frequencies and eigenvectors, nonlinear cou-
plings between different normal mode coordinates, and the
coupling between light and pumped infrared mode were all
obtained from first principles using density functional calcu-
lations as implemented in the VASP software package [26]. I
used the projector augmented wave pseudopotentials provided
with the package with the electronic configurations 3s23p64s1

(K), 5p66s25d3 (Ta), and 2s22p4 (O, normal cut-off) [27,28].
A plane-wave cutoff of 550 eV for basis-set expansion, an
8 × 8 × 8 k-point grid for Brillouin zone sampling, and the
PBEsol version of the generalized gradient approximation was
used [29].

The calculations were done using the relaxed lattice param-
eters for the cubic structure. For the strained structure, the c

lattice parameter that minimized the total energy for the given
strain was used. A very small energy convergence criteria of
10−8 eV was used in the calculations to ensure high numerical
accuracy. After relaxing the lattice parameters, I calculated the
phonon frequencies and eigenvectors using the frozen phonon
method as implemented in the PHONOPY software package
[30,31]. After the normal mode coordinates were identified,
total energy calculations were performed as a function of the
Qlz , Qlx , and Qhx

coordinates for values ranging between −3
and 3 Å

√
amu with a step of 0.1 Å

√
amu to obtain the energy

surfaces V (Qlz ,Qlx ,Qhx
). These were then fitted to polynomi-

als given in Eq. (A1) to obtain normal mode anharmonicities
and nonlinear couplings between the three coordinates. For the
materials that I explored, polynomials with anharmonicities up
to twentieth order and nonlinearities up to eighth order were
needed to ensure accurate fit to the calculated energy surfaces.
Since the polynomial fits the calculated energy surfaces almost
exactly, there are no approximations in the calculations of the

nonlinear couplings, beyond that for the exchange-correlation
functional.

The Born effective charges were calculated using density
functional perturbation theory [32], and a larger 16 × 16 ×
16 k-point grid was used in these calculations. The calculated
Born effective charges and phonon mode eigenvectors were
used to calculate the mode effective charge Z∗

m that determines
the strength of the coupling of light to the pumped phonon
mode from first principles [33]. The coupled equations of
motion for the three coordinates were numerically solved using
the LSODE subroutine of the OCTAVE software package [34].

B. Identifying light-induced ferroelectricity

Phase transitions cannot occur at short timescales in
nonequilibrium conditions, and any light-induced ferroelec-
tricity will disappear once the external light source vanishes.
Therefore, it is necessary to establish an unequivocal protocol
for identifying light-induced ferroelectricity. Examining the
intensity and phase of the second harmonic generation of the
transmitted probe pulse is a convenient way to study ferro-
electricity in pump-probe experiments [35,36], and it will be
necessary to distinguish between light-induced ferroelectricity
and a long-time-period excitation that both generate second
harmonics if the probe pulse is shorter than the period of the
low-frequency mode. For the purpose of this discussion, a
light-induced ferroelectric state is deemed to have occurred
both if the phase of the second harmonics does not change
and the intensity of the second harmonics shows at least
two peaks over the full width at half maximum (FWHM)
duration of the pump pulse. Therefore the pump pulse duration
should in general be larger than the period of the equilibrium-
condition lowest frequency mode to establish light-induced
ferroelectricity. However, this is not a strict condition, and
other well-defined criteria could also be specified. In particular,
the lowest frequency oscillations could (and indeed does)
occur with a larger frequency in the rectified state, and any
method (such as time resolved x-ray diffraction) that can
distinguish oscillations about a displaced position can establish
light-induced ferroelectricity.

III. RESULTS AND DISCUSSIONS

A. Cubic KTaO3

The paraelectric phase of several ABO3 perovskite oxides
occurs in the cubic structure. So it is natural to ask if
ferroelectricity can be induced in these cubic paraelectrics
by a midinfrared excitation of their infrared-active phonon
modes. These materials have five atoms per unit cell, and
they thus have four triply degenerate optical phonon modes
at the zone center. Factor group analysis shows that three of
these modes have the irreducible representation T1u, and these
are infrared active. The remaining one has the irreducible
representation T2u and is optically inactive. Ferroelectric-
ity is generally ascribed to a dynamical instability of an
infrared-active transverse optic phonon mode. Indeed, most
ferroelectric materials show a characteristic softening of an
infrared transverse optic mode as the transition temperature
is approached [37]. Here I investigate if a similar softening
and instability of the lowest frequency T1u mode can be
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FIG. 1. Displacement patterns of the (a) lowest-frequency Qlz

and (b) highest-frequency Qhz
modes of the cubic phase of KTaO3.

The x and y components of these triply degenerate modes can be
obtained by appropriate rotation. The big, medium, and small spheres
denote K, Ta, and O, respectively.

achieved by an intense laser-induced excitation of the highest
frequency T1u mode in the representative case of cubic KTaO3.
A related mechanism has been explored by Bousquet et al.,
who have shown that a coupling between zone-center infrared
and zone-boundary antiferrodistortive phonon modes can lead
to improper ferroelectricity [38].

The calculated phonon frequencies of cubic KTaO3 using
the relaxed PBEsol lattice parameter of 3.99 Å are �l =
85 cm−1 and �h = 533 cm−1 for the lowest and high-
est frequency T1u modes, respectively. These are in good
agreement with previously calculated values [39]. They also
agree well with the frequencies obtained from hyper-Raman
scattering experiments at room temperature [40]. The atomic
displacement patterns due to these two modes are shown in
Fig. 1. Without loss of generality, I consider the case where the
x component of the highest frequency T1u mode Qhx

is pumped
by an intense light source and study how such an excitation
changes the dynamics of the lowest frequency T1u mode along
the longitudinal Qlx and transverse Qlz coordinates. I ignore
the dynamics along the second transverse coordinate Qly as
its dynamics will be qualitatively similar to that of the Qlz
coordinate.

1. Dynamics of the lowest frequency longitudinal component

Figure 2 shows several total energy V (Qlz ,Qlx ,Qhx
) curves

along the projection Qlz = 0. The curves are not symmetric
upon reflection at Qlx = 0 and the +Qhx

and −Qhx
curves do

not overlap. This indicates the presence of coupling terms that
have odd orders of Qlx and Qhx

. A polynomial fit of the energy
surface shows that the coupling terms t1Q

3
lx
Qhx

, t2Q2
lx
Q2

hx
and

t3Qlx Q
3
hx

are all large relative to the harmonic term �2
l of the

lowest frequency mode (see Table I). The presence of these
couplings is consistent with the symmetry requirements. Since
the equilibrium structure has inversion symmetry and we are
considering two odd modes along the same direction, any term
Qm

lx
Qn

hx
is allowed as long as m + n = even. The next allowed

order of coupling is Qm
lx
Qn

hx
with m + n = 6. These are an

order of magnitude smaller than the m + n = 4 terms (see
Table II in Appendix), but they are comparable in magnitude
to the harmonic term �2

l .

FIG. 2. Total energy as a function of the longitudinal Qlx

coordinate for several values of the Qhx
coordinate for cubic KTaO3.

The nonlinear couplings between the Qlx and Qhx
modes

impart a force equal to −∂V/∂Qlx along the Qlx coordinate.
This force is finite and large when the Qhx

mode is exter-
nally excited by an intense light source. The lowest-order
nonlinear terms of this force are −∂V/∂Qlx = −3t1Q

2
lx
Qhx

−
2t2Qlx Q

2
hx

− t3Q
3
hx

. The −t3Q
3
hx

term acts as a nonresonant
oscillating force to the Qlx mode. The effect of the −3t1Q

2
lx
Qhx

term would average over the slow oscillation of the Qlx mode
relative to that of the Qhx

mode. The −2t2Qlx Q
2
hx

term affects
a time-dependent modulation of the frequency of the Qlx
mode, and it does not cancel over the slow oscillation of the
Qlx mode because Q2

hx
has a nonzero time average [17,19].

Unfortunately, the sign of t2 is positive, so the frequency of
the Qlx mode increases as the Qhx

mode is pumped. A similar
analysis of the next order Qm

lx
Qn

hx
terms with m + n = 6 also

shows that the Qlx mode does not soften due to the effects of
nonlinear coupling terms.

2. Dynamics of the lowest frequency transverse component

What about the dynamics of the transverse component Qlz
of the lowest frequency mode? Figure 3 shows several total
energy V (Qlz ,Qlx ,Qhx

) curves along the projection Qlx = 0.

TABLE I. The coefficients of the harmonic and nonlinear cou-
pling terms of cubic and strained KTaO3. The units of a QmQn term

are meV Å
−(m+n)

amu
−(m+n)

2 . The sign of the coupling is relevant only
when the coordinates come with even powers.

Coefficient Order Cubic Strained

�2
lz Q2

lz 27.06 1.39

�2
lx Q2

lx 27.06 55.27

�2
h Q2

hx
1043.77 1136.10

t1 Q3
lx Qhx

−118.35 97.38

t2 Q2
lx Q

2
hx

215.00 208.76

t3 Qlx Q
3
hx

−175.58 195.22

l Q2
lzQ

2
hx

−5.95 −5.81

m1 Q4
lzQ

2
hx

−1.03 −1.00

m2 Q2
lzQ

4
hx

−3.05 −4.12
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FIG. 3. Total energy as a function of the transverse Qlz coordinate
for several values of the Qhx

coordinate for cubic KTaO3.

One immediately notices that the curves are symmetric upon
reflection at Qlz = 0 and that the −Qhx

and Qhx
curves

overlap, showing that only even powers of both Qlz and
Qhx

appear in the nonlinear coupling terms. This is again
consistent with the symmetry requirements, which does not
allow products with odd powers of mutually perpendicular
components Qlz and Qhx

. The coefficients of the lowest-
order nonlinear terms lQ2

lz
Q2

hx
, m1Q

4
lz
Q2

hx
, and m2Q

2
lz
Q4

hx

are given in Table I. They are all at least twenty times
smaller than the magnitude of the quartic order couplings
between the Qlx and Qhx

coordinates. Nevertheless, the
sign of the coupling coefficients between the Qlz and Qhx

modes are such that these terms soften the frequency of
the Qlz mode, as one sees by analyzing the forcing terms
due to these nonlinear couplings −∂V/∂Qlz = −2lQlzQ

2
hx

−
4m1Q

3
lz
Q2

hx
− 2m2QlzQ

4
hx

. Each term in the previous expres-
sion has even powers of the Qhx

coordinate, which ensures
that their effects are not averaged over the slow oscillation of
the Qlz mode. Furthermore, all these terms are proportional to
odd powers of the Qlz coordinate, which causes the frequency
of the Qlz mode to change as �2

lz
→ �2

lz
[1 + (2lQ2

hx
(t) +

4m1Q
2
lz
(t)Q2

hx
(t) + 2m2Q

4
hx

(t))/�2
lz

]. Since the coupling con-
stants are negative, this should lead to a softening of the
transverse Qlz mode when the Qhx

mode is externally
pumped.

The above discussion is not sufficient to convincingly
argue that the transverse Qlz mode will become dynamically
unstable when the Qhx

mode is externally pumped. There
are two counteracting processes that may preclude this from
happening. First, the coupling between the Qlx and Qhx

modes
is at least twenty times larger. As a result, the Qlz component
may receive a much smaller proportion of the external force
due to nonlinear coupling with the Qhx

mode that is not
sufficient to make this mode dynamically unstable when the
latter is pumped. Moreover, I find that the coupling term
pQ2

lz
Q2

lx
to be positive and larger than the term lQ2

lz
Q2

hx
(see

Table II in Appendix). When the Qlx component oscillates
with a large amplitude, this will provide an additive factor that
increases the frequency of the Qlz component.

To settle this issue, I numerically solved the coupled
equations of motion of the three coordinates Qlz , Qlx , and

Qhx
, which are

Q̈hx
+ γhQ̇hx

+ �2
hQhx

= −∂V nh(Qlz ,Qlx ,Qhx
)

∂Qhx

+ F (t),

Q̈lx + γlQ̇lx + �2
l Qlx = −∂V nh(Qlz ,Qlx ,Qhx

)

∂Qlx
,

Q̈lz + γlQ̇lz + �2
l Qlz = −∂V nh(Qlz ,Qlx ,Qhx

)

∂Qlz
. (1)

Here, V nh(Qlz ,Qlx ,Qhx
) is the nonharmonic part of the

polynomial that fits the calculated energy surface, and it
includes both the anharmonicities of each coordinates as well
as the nonlinear couplings between these coordinates. The
full expression for V nh(Qlz ,Qlx ,Qhx

) is given in Eq. (A1)
in Appendix. In addition to the numerically large nonlinear
couplings discussed above, it includes anharmonicities up
to the sixteenth-order and nonlinear couplings up to the
eighth order. γh and γl are the damping coefficients of the
highest and lowest frequency T1u modes, respectively. They
are taken to be ten percent of the respective harmonic terms.
F (t) = Z∗

hx
E0 sin(�t)e−t2/2(σ/2

√
2 ln 2)2

is the external force
experienced by the Qhx

coordinate due to a light pulse of peak
electric field E0. The calculated mode effective charge of the
Qhx

mode of cubic KTaO3 is Z∗
hx

= −1.07e amu− 1
2 . A pump

with a frequency of � = 1.01�h and FWHM of σ = 2.0 ps
has been used. The use of a long pulse width is just to illustrate
many oscillation cycles. The physics does not change when I
use a pulse duration larger than 1/�l.

The result of the numerical integration of Eq. (1) in a highly
nonlinear regime is shown in Fig. 4. This was obtained with a
large peak electric field of E0 = 30 MV cm−1 that caused the
pumped Qhx

mode to oscillate with a maximum amplitude
of 1.1 Å

√
amu [Fig. 4(b)]. In this regime, the Qlx mode

oscillates about the equilibrium position with a maximum
amplitude of 0.25 Å

√
amu (not shown). The frequency of its

transverse counterpart Qlz does soften by around ∼5%. But
relatively little force is imparted to the Qlz component, and its
oscillations about the equilibrium position are damped even
during the duration of the pump pulse [Fig. 4(a)]. I performed
similar calculations for pump fields up to 100 MV cm−1 but
was not able to find any instances where the Qlz mode becomes
dynamically unstable.

These calculations show that a dynamical instability of the
lowest frequency infrared mode of cubic KTaO3 cannot be
achieved by a midinfrared excitation of its highest frequency
infrared mode. However, this does not allow us to infer that
light-induced dynamical instability cannot occur in any cubic
paraelectric. Indeed, if I artificially increase the coefficient of
the lQ2

lz
Q2

hx
term by six times, I am able to obtain a solution

where the Qlz coordinate oscillates about a displaced position
during the duration of the pump pulse. Such a large coupling
between the pumped high-frequency mode and the transverse
component of the low-frequency mode may exist in some
materials.

B. Strained KTaO3

If the coupling between the externally pumped highest
frequency T1u mode and the component of the lowest
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FIG. 4. Dynamics of the (a) Qlz and (b) Qhx
coordinates of cubic KTaO3 after the Qhx

coordinate is pumped by a pump pulse E with
FWHM of 2 ps as shown in (b).

frequency T1u mode longitudinal to the pumped mode could
be weakened in cubic KTaO3, the transverse component of
the lowest frequency mode would develop a light-induced
dynamical instability. An effective way of achieving this is by
raising the frequency of the longitudinal component relative
to that of the transverse component. This can be accomplished
by applying a biaxial strain on KTaO3 via an epitaxial growth
on an appropriate substrate.

I performed calculations on KTaO3 with 0.6% compressive
biaxial strain. This can be achieved, for example, by growing
KTaO3 on a GdScO3 substrate. The calculated PBEsol lattice
parameters of thus strained KTaO3 are a = b = 3.965 and
c = 4.0 Å. Upon the application of a biaxial strain, the T1u

mode of the cubic phase splits into a nondegenerate A2u mode
and a doubly degenerate Eu mode. The A2u phonons involve
atomic motions along the z axis while the atoms move in
the xy plane for the Eu phonons. The calculated values for
the lowest frequency A2u and Eu modes are �lz = 20 and
�lx = �ly = 122 cm−1, respectively. The highest frequency
Eu phonon that should be externally pumped has a frequency
of �h = 556 cm−1.

To find out whether the lowest frequency A2u mode Qlz of
strained KTaO3 develops a dynamical instability when the x

component of the highest frequency Eu mode Qhx
is intensely

excited by a light source, I again started my investigation
by calculating the total energy surface V (Qlz ,Qlx ,Qhx

) as
a function of the three coordinates using density functional
calculations. The nonlinear couplings between the Qlz , Qlx ,
and Qhx

coordinates of strained KTaO3 have the same
symmetry requirements as discussed for the cubic case, and
a fit of a general polynomial to the calculated first-principles
V (Qlz ,Qlx ,Qhx

) shows that same orders of nonlinearities are
present in both the cases. As a comparison of the numbers
presented in Table I shows (see also Table II in Appendix), the
nonlinear couplings in the two cases do not differ by a large
amount. The crucial difference between the two cases is that the
frequencies of the Qlz and Qlx coordinates are different in the
strained case (�lz = 20 and �lx = 122 cm−1), whereas they
are equal in the cubic case (�lz = �lx = 85 cm−1). This has a
profound effect in the dynamics of the Qlz coordinate because
the forces experienced by a coordinate due to the nonlinear
couplings are weighted by the square of the frequency of the
coordinate. We can see that 1

202
∂V

∂Qlz
is likely to be much larger

than 1
1222

∂V
∂Qlx

or 1
852

∂V
∂Qlx

. In simple words, the Qlz coordinate
of strained KTaO3 gets much larger proportion of the force
than the Qlz coordinate of cubic KTaO3 because the frequency
of the Qlz mode is much smaller in the strained structure
compared to the cubic structure. Is this change big enough to
result in a light-induced dynamical instability of the Qlz mode
in strained KTaO3?

I again solved the coupled equations of motion of the
three coordinates Qhx

, Qlx , and Qlz as given by Eq. (1) for
the case of strained KTaO3. This time I used the potential
V nh(Qlz ,Qlx ,Qhx

) obtained for strained KTaO3 from first
principles. The polynomial expression used in the calculations
and the numerical values of the coefficients for all the terms in
the polynomial that fit the calculated energy surface are given
in Appendix. A pump pulse with an FWHM of 2 ps (>1/�lz )
and frequency 1.01�h is again used to excite the Qhx

mode.
The mode effective charge of the Qhx

mode in the strained
structure is Z∗

hx
= −1.15e amu− 1

2 .
Figure 5 shows the results of the numerical integration of

these equations for three different regimes of dynamics of the
Qlz coordinate. At relatively small peak electric fields of the
pump (E0 < 1 MV cm−1), the Qlz mode oscillates about the
equilibrium position with its harmonic frequency (not shown).
As the peak electric field is increased, the frequency of the
Qlz mode decreases during the duration that the Qhx

mode is
being pumped [Fig. 5(a)]. As discussed above, this is due to
the negative values of the coefficients of the coupling terms
lQ2

lz
Q2

hx
, m1Q

4
lz
Q2

hx
, and m2Q

2
lz
Q4

hx
that cause a light-induced

softening of the Qlz coordinate. Since the duration of the
pump pulse is finite, I naturally do not observe the period
of the Qlz mode diverge. Instead, beyond a critical value of
the peak electric field of the pump (Ec

0 � 17 MV cm−1 for
σ = 2 ps), the Qlz coordinate oscillates about a displaced
position and has a nonzero value while the Qhx

mode is
being pumped [Figs. 5(b) and 5(c)]. In this rectified regime,
the average potential felt by the Qhz

mode has a double-well
structure, and this mode is oscillating about one of the minima.
The displacement along the Qlz coordinate is also amplified
strongly in this regime. Since the Qlz mode is infrared active,
this implies that the material is in a broken symmetry state
with a finite dipole moment while the Qhx

mode is externally
pumped.
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FIG. 5. Dynamics of the Qlz coordinate of strained KTaO3 after the Qhx
coordinate is pumped by a pump pulse E with FWHM of 2 ps.

The dynamics for four different values of the peak electric field E0 (MV cm−1) of the pump pulse are shown.

The frequency of the Qlz oscillations in the rectified
state increases as the peak electric field of the pump is
increased beyond the critical threshold. This is evident from
a comparison of Figs. 5(b) and 5(c), which shows that the
frequency of the Qlz mode doubles as the peak electric
field E0 is increased from 17 to 60 MV cm−1. This increase
occurs because the double-well potential for the Qlz coordinate
becomes deeper as the amplitude of the Qhx

oscillations
increases.

When the peak electric field is increased further (E0 >

75 MV cm−1), the Qlz mode oscillates with a large amplitude
and high frequency about the equilibrium position [Fig. 5(d)].
In this regime, the kinetic energy imparted to the Qlz mode
is larger than the depth of the double wells. As a result,
the oscillation of the Qlz mode stops being confined to
one of the double wells, and the rectified behavior along
the Qlz coordinate is no longer observed. Even though the
light-induced broken-symmetry phase is stabilized only for a
range of values of the peak electric field of the pump, this range
17 < E0 < 75 MV cm−1 is both wide and approachable
enough to make the light-induced ferroelectric state experi-
mentally accessible.

The existence of a critical threshold above which the Qlz
coordinate is rectified and the presence of three different
regimes for the dynamics of this coordinate is consistent
with the analysis of a Q2

1Q
2
2 nonlinear coupling between two

different normal mode coordinates as presented in Ref. [19].
These features should be present in the experiments to confirm

the predictions made in this work. The critical pump amplitude
depends on the frequencies of the Qlz and Qhx

modes and the
coupling coefficient, as well as the pump pulse length and the
initial condition (i.e., the root mean square displacement of the
Qlz mode at a particular temperature) [19]. For a pump pulse
with FWHM of 2 ps, I find that the Qlz mode starts to get
rectified when the peak electric field is E0 = 17 MV cm−1.
With this pump pulse, the Qhx

mode is oscillating with an
amplitude of 0.9 Å

√
amu, which corresponds to a maximum

change in the Ta-apical O bond length of 0.2 Å (that is, 10%).
The Qhx

mode oscillates with an amplitude of 1.3 Å
√

amu
when the peak electric field is increased to E0 = 75 MV cm−1.
This is a modest increase in the energy of the Qhx

mode due
to the pump, and it indicates that a significant fraction of the
pumped energy goes to maintaining the rectified state along
the Qlz coordinate. However, the light-induced ferroelectric
displacement along the Qlz coordinate is quite small because
of the small magnitude of the couplings between Qlz and
Qhx

modes. The average displacement along Qlz is ∼0.1 and
∼0.2 Å

√
amu for E0 = 17 and 75 MV cm−1, respectively,

which results in the change of Ta-apical O distance by
0.015–0.030 Å.

Curiously, the critical pump threshold obtained for strained
KTaO3 is noticeably smaller than what is expected for a Q2

lz
Q2

hx

coupling. In the total energy calculations, the Qlz mode starts
developing instability when Qhx

is above 0.7 Å
√

amu. So the
critical Qhx

amplitude should be 0.7
√

2 = 1.0 Å
√

amu [19].
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FIG. 6. Dynamics of the Qlz coordinate of strained KTaO3 for the delays of (a) 0.5 and (b) 0.0 ps between the Ehx
and Ehz

pulses that
pump Qhx

and Qhz
modes, respectively.

Instead, I find that the Qlz mode becomes unstable when the
Qhx

amplitude is 0.9 Å
√

amu. This reduction in the critical
threshold is due to the presence of a large and negative
sixth-order coupling terms m1Q

4
lz
Q2

hx
and m2Q

2
lz
Q4

hx
. Both

these terms give a subtractive contribution to the effective,
light-induced frequency of the Qlz mode, which hastens its
instability as a function of the pump intensity.

C. Abruptly halting light-induced ferroelectricity

For light-induced ferroelectricity to be useful in applica-
tions, it is necessary to be able to control the light-induced
phase at will in an all-optical setup. In this context, this means
having the capability to switch off the rectification of the
Qlz mode while the Qhx

mode is being pumped. The quartic
order odd Q3

lz
Qhz

and QlzQ
3
hz

couplings in the longitudinal
direction can be used to our advantage for this purpose. To
investigate this possibility, I consider an experiment where an
overlapping pulse polarized along Qhz

comes at an arbitrary
delay with respect to the rectification-causing pulse that pumps
the Qhx

mode. I study the resulting dynamics along the Qlz
coordinate by solving the coupled equations of motion for the
four coordinates (Qlz ,Qlx ,Qhx

, and Qhz
). The equations of

motions are obtained from the potential V nh(Qlz ,Qlx ,Qhx
) +

V nh(Qlz ,Qhz
). For computational efficiency, I do not consider

the full potential V nh(Qlz ,Qlx ,Qhx
,Qhx

) spanned by the four
coordinates.

The results for the delays of 0.5 and 0.0 ps between
the pump pulses Ehx

and Ehz
that excite the Qhx

and Qhz

coordinates, respectively, are shown in Fig. 6. The peak electric
fields of Ehx

and Ehz
are 60 and 3 MV cm−1, respectively, and

their FWHM is 2 ps. The pump frequencies are 1.01 times the
respective phonon frequencies, and the mode effective charge
of Qhz

is Z∗
hz

= −1.05e amu− 1
2 . Note that excitation by only

Ehx
causes rectification of the Qlz mode during the FWHM of

the pulse [Fig. 5(c)]. However, an overlapping excitation by an-
other weak pulse Ehz

immediately suppresses the light-induced
rectification of the Qlz mode. Even a weak longitudinal pump
is efficient in halting the rectification because the quartic order
odd couplings between Qlz and Qhz

modes are much larger
than the couplings in the transverse direction.

IV. SUMMARY AND CONCLUSIONS

In summary, I have shown that midinfrared pulses can be
used to stabilize nonequilibrium ferroelectricity in strained
KTaO3, which is paraelectric at equilibrium conditions. This
phenomenon relies on a quartic lQ2

lz
Q2

hx
coupling between the

highest frequency infrared-active phonon mode Qhx
and the

lowest frequency infared-active mode Qlz that is transverse to
Qhx

. Density functional calculations show that the coupling
constant l is negative, which causes the Qlz mode to soften
when the Qhx

mode is externally pumped. The rectification
along the Qlz coordinate occurs only above a critical electric
field of the pump pulse, demonstrating that this light-induced
symmetry breaking is a unique nonperturbative effect. Such
a threshold behavior should be observed in experiments to
corroborate the predictions made in this paper. Additionally,
the Q4

lz
Q2

hx
and Q2

lz
Q4

hx
couplings are large, and this makes the

rectified regime more accessible. A first-principles calculation
of the coupling between light and the Qhx

mode shows
that ferroelectricity can be induced in strained KTaO3 by a
midinfrared pulse with a peak electric field of 17 MV cm−1

and a duration of 2 ps. Furthermore, large odd quartic
couplings Q3

lz
Qhz

and QlzQ
3
hz

between Qlz and the highest
frequency infrared-active mode Qhz

longitudinal to Qlz makes
it possible to arbitrarily switch off the induced ferroelectricity
by pumping the Qhz

mode with another weak pulse. I find that
similar nonlinear interactions exist in SrTiO3 and LaAlO3, and
this technique could be generally applied to other transition
metal oxide paraelectrics.

At a more basic level, I have shown that materials
can exhibit various nonlinear interactions between different
dynamical degrees of freedom that have hitherto been over-
looked. These interactions enable us to induce and control
broken-symmetry phases using light, whose oscillating electric
and magnetic fields average to zero by definition. Furthermore,
I have demonstrated that the nonlinear interactions can
be effectively modified by applying strain. This motivates
experiments that combine the disparate fields of nonlinear
optics and heterostructuring to achieve materials control in an
interesting manner. In a broader perspective, these nonlinear
interactions may also be present in other classes of systems,
and they might allow us to influence the dynamics of these
systems in an unusual way.
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APPENDIX A: EXPRESSIONS FOR TOTAL
ENERGY SURFACES

Only low-order nonlinear couplings that are relatively
large were discussed in the main text. However, if only
low-order couplings and anharmonicities are considered, the fit
to the calculated total-energy surfaces are not satisfactory. The
dynamics of the coordinates with and without using the high-
order couplings also show large differences, especially at the
nonlinear regime. Since the use of the full polynomial expres-
sion in the solutions of the equations of motion are not com-
putationally demanding, all the numerical results discussed in
this paper were obtained using the full expression given below.

For cubic KTaO3, the following polynomial
V (Qlz ,Qlx ,Qhx

) accurately fits the calculated total energy
surface spanned by the three coordinates for values between
−3.0 and 3.0 Å

√
amu:

V = 1
2�2

l Q
2
lz + a4Q

4
lz + a6Q

6
lz + a8Q

8
lz + a10Q

10
lz

+ a12Q
12
lz + a14Q

14
lz + a16Q

16
lz + 1

2�2
l Q

2
lx + a4Q

4
lx

+ a6Q
6
lx + a8Q

8
lx + a10Q

10
lx + a12Q

12
lx + a14Q

14
lx

+ a16Q
16
lx + 1

2�2
hQ

2
hx

+ c4Q
4
hx

+ c6Q
6
hx

+ c8Q
8
hx

+ c10Q
10
hx

+ c12Q
12
hx

+ lQ2
lzQ

2
hx

+ m1Q
4
lzQ

2
hx

+m2Q
2
lzQ

4
hx

+ n1Q
4
lzQ

4
hx

+ n2Q
6
lzQ

2
hx

+ n3Q
2
lzQ

6
hx

+ t1Q
3
lx Qhx

+ t2Q
2
lx Q

2
hx

+ t3Qlx Q
3
hx

+ u1Q
5
lx Qhx

+u2Q
4
lx Q

2
hx

+ u3Q
3
lx Q

3
hx

+ u4Q
2
lx Q

4
hx

+ u5Qlx Q
5
hx

+pQ2
lzQ

2
lx + q1Q

4
lzQ

2
lx + q2Q

2
lzQ

4
lx + r1Q

4
lzQ

4
lx

+ r2Q
6
lzQ

2
lx + r3Q

2
lzQ

6
lx + dQ2

lzQlx Qhx

+ e1Q
2
lzQ

3
lx Qhx

+ e2Q
2
lzQ

2
lx Q

2
hx

+ e3Q
2
lzQlx Q

3
hx

+ f1Q
2
lzQ

5
lx Qhx

+ f2Q
2
lzQ

4
lx Q

2
hx

+ f3Q
2
lzQ

3
lx Q

3
hx

+ f4Q
2
lzQ

2
lx Q

4
hx

+ f5Q
2
lzQlx Q

5
hx

+ gQ4
lzQlx Qhx

+h1Q
4
lzQ

3
lx Qhx

+ h2Q
4
lzQ

2
lx Q

2
hx

+ h3Q
4
lzQlx Q

3
hx

.

(A1)

For strained KTaO3, the potential has additional a18Q
18
lz

and
a20Q

20
lz

terms. Also, the coefficients of the Qn
lz

and Qn
lx

terms
are different in the strained case. The coefficients of the Qn

lx
terms for the strained case are denoted by bn in Table II.

The polynomial V (Qlz ,Qhz
) that fits the energy surface

spanned by the Qlz and Qhz
coordinates is given by

V = 1
2�2

lzQ
2
lz + a4Q

4
lz + a6Q

6
lz + a8Q

8
lz + a10Q

10
lz

+ a12Q
12
lz + a14Q

14
lz + a16Q

16
lz + a18Q

18
lz + a20Q

20
lz

+ 1
2�2

hz
Q2

hz
+ d4Q

4
hz

+ d6Q
6
hz

+ d8Q
8
hz

+ d10Q
10
hz

+ d12Q
12
hz

+ v1Q
3
lzQhz

+ v2Q
2
lzQ

2
hz

+ v3QlzQ
3
hz

+w1Q
5
lzQhz

+ w2Q
4
lzQ

2
hz

+ w3Q
3
lzQ

3
hz

+ w4Q
2
lzQ

4
hz

+w5QlzQ
5
hz

. (A2)

The nonharmonic potential V nh defined in the main text is
V without the harmonic 1

2�Q2 terms. The values of all the
coefficients in Eqs. (A1) and (A2) obtained from a fit to the
calculated energy surfaces of cubic and strained KTaO3 are
given in Table II. I note that values lower than the magnitude
of 10−5 are below the accuracy of the density functional
calculations. They are kept so that that the highest-order
anharmonicity has a positive sign, which keeps the numerical
solution of the equation of motions stable.

APPENDIX B: MODE EFFECTIVE CHARGES

The mode effective charge vector Z∗
m,α = ∂Fm,α/∂Eα

relates the force Fm,α experienced by the normal mode
coordinate Qm due to an electric field Eα along the direction
α. It is related to the Born effective charges Z∗

κ,αβ of atoms κ

in the unit cell of a material by [33]

Z∗
m,α =

∑

κ,β

Z∗
κ,αβUm(κ,β),

where Um(κ,β) is the q = 0 eigendisplacement vector normal-
ized as

∑

κ,β

Mκ [Um(κ,β)]∗Un(κ,β) = δmn.

Here, Mκ is the mass of the atom κ . The eigendisplacement
vector is related to the eigenvector wm(κ,β) of the dynamical
matrix by

Um(κ,β) = wm(κ,β)√
Mκ

.

Note that this definition of the mode effective charge is slightly
different from the one used in Ref. [33]. Here, Z∗

m,α is related
to the change in the value of the normal mode coordinate
rather than the change in the atomic displacements due to
a motion along the normal mode coordinate. This gives a
different normalization factor for Z∗

m,α , and this quantity is

expressed in the units of e amu− 1
2 . Its sign is arbitrary because

the eigenvector of the dynamical matrix is defined up to a
multiplicative constant.

The mode effective charge can be experimentally deter-
mined. It is related to the ionic contribution to the dielectric
constant by [33]

εαβ(�) = ε∞
αβ + 4π

V0

∑

m

Z∗
m,αZ∗

m,β

�2
m − �2

,

where V0 is the unit cell volume and �m is the frequency of
the mode m. This expression shows that the oscillator strength
measured in optical spectroscopy is the square of the mode
effective charge.
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TABLE II. The coefficients of the harmonic, anharmonic, and nonlinear coupling terms of cubic and strained KTaO3. The units of a

QmQnQp term are meV Å
−(m+n+p)

amu
−(m+n+p)

2 . The sign of the coupling is relevant only when the coordinates come with even powers.

Coefficient Order Cubic Strained Coefficient Order Strained

�2
lz Q2

lz 27.06 1.39 �2
hz

Q2
hz

1034.38

�2
lx Q2

lx 27.06 55.27 b4 Q4
lx 36.56

�2
h Q2

hx
1043.77 1136.10 b6 Q6

lx −5.05
a4 Q4

lz 47.55 51.72 b8 Q8
lx 1.12

a6 Q6
lz −6.45 −8.69 b10 Q10

lx −1.79 × 10−1

a8 Q8
lz 1.47 2.73 b12 Q12

lx 1.85 × 10−2

a10 Q10
lz −2.35 × 10−1 −6.91 × 10−1 b14 Q14

lx −1.07 × 10−3

a12 Q12
lz 2.43 × 10−2 1.28 × 10−1 b16 Q16

lx 2.64 × 10−5

a14 Q14
lz −1.41 × 10−3 −1.61 × 10−2 d4 Q4

hz
61.23

a16 Q16
lz 3.47 × 10−5 1.30 × 10−3 d6 Q6

hz
−7.24 × 10−1

a18 Q18
lz −6.04 × 10−5 d8 Q8

hz
3.97 × 10−1

a20 Q20
lz 1.23 × 10−6 d10 Q10

hz
−1.38 × 10−2

c4 Q4
hx

63.17 78.60 d12 Q12
hz

5.99 × 10−5

c6 Q6
hx

−7.33 × 10−1 −1.00 v1 Q3
lzQhz

119.42

c8 Q8
hx

4.38 × 10−1 7.22 v2 Q2
lzQ

2
hz

212.45

c10 Q10
hx

−1.68 × 10−2 −3.79 × 10−2 v3 QlzQ
3
hz

169.37

c12 Q12
hx

1.29 × 10−4 6.49 × 10−4 w1 Q5
lzQhz

2.88

l Q2
lzQ

2
hx

−5.95 −5.81 w2 Q4
lzQ

2
hz

11.23

m1 Q4
lzQ

2
hx

−1.03 −1.00 w3 Q3
lzQ

3
hz

23.54

m2 Q2
lzQ

4
hx

−3.05 −4.12 w4 Q2
lzQ

4
hz

25.42

n1 Q4
lzQ

4
hx

1.85 × 10−1 2.41 × 10−1 w5 QlzQ
5
hz

13.46

n2 Q6
lzQ

2
hx

4.35 × 10−3 0.00

n3 Q2
lzQ

6
hx

−2.37 × 10−1 −3.14 × 10−1

t1 Q3
lx Qhx

−118.35 97.38
t2 Q2

lx Q
2
hx

215.00 208.76
t3 Qlx Q

3
hx

−175.58 195.22
u1 Q5

lx Qhx
−2.72 1.73

u2 Q4
lx Q

2
hx

10.64 6.93
u3 Q3

lx Q
3
hx

−22.81 18.34
u4 Q2

lx Q
4
hx

25.38 24.27
u5 Qlx Q

5
hx

−13.70 15.57
p Q2

lzQ
2
lx 6.29 6.02

q1 Q4
lzQ

2
lx −1.70 −1.56

q2 Q2
lzQ

4
lx −1.70 −1.39

r1 Q4
lzQ

4
lx 9.35 × 10−2 7.39 × 10−2

r2 Q6
lzQ

2
lx 5.23 × 10−3 7.12 × 10−3

r3 Q2
lzQ

6
lx 5.23 × 10−3 1.45 × 10−2

d Q2
lzQlx Qhx

−19.09 15.02

e1 Q2
lzQ

3
lx Qhx

6.61 −5.5

e2 Q2
lzQ

2
lx Q

2
hx

−13.16 −13.62

e3 Q2
lzQlx Q

3
hx

11.32 −13.03

f1 Q2
lzQ

5
lx Qhx

2.99 × 10−1 −2.06 × 10−1

f2 Q2
lzQ

4
lx Q

2
hx

−6.80 × 10−1 −4.44 × 10−1

f3 Q2
lzQ

3
lx Q

3
hx

1.39 −1.10

f4 Q2
lzQ

2
lx Q

4
hx

−1.45 −1.34

f5 Q2
lzQlx Q

5
hx

8.75 × 10−1 −9.52 × 10−1

g Q4
lzQlx Qhx

1.02 −4.06 × 10−1

h1 Q4
lzQ

3
lx Qhx

−4.62 × 10−1 3.31 × 10−1

h2 Q4
lzQ

2
lx Q

2
hx

8.13 × 10−1 7.51 × 10−1

h3 Q4
lzQlx Q

3
hx

−7.45 × 10−1 7.51 × 10−1
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