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Shear banding in metallic glasses described by alignments of Eshelby quadrupoles
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Plastic deformation of metallic glasses performed well below the glass transition temperature leads to the
formation of shear bands as a result of shear localization. It is believed that shear banding originates from
individual stress concentrators having quadrupolar symmetry. To elucidate the underlying mechanisms of shear-
band formation, microstructural investigations were carried out on sheared zones using transmission electron
microscopy. Here we show evidence of a characteristic signature present in shear bands manifested in the form
of sinusoidal density variations. We present an analytical solution for the observed postdeformation state derived
from continuum mechanics using an alignment of quadrupolar stress-field perturbations for the plastic events.
Since we observe qualitatively similar features for three different types of metallic glasses that span the entire range
of characteristic properties of metallic glasses, we conclude that the reported deformation behavior is generic for
all metallic glasses, and thus has far-reaching consequences for the deformation behavior of amorphous solids in
general.
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I. INTRODUCTION

Crystals have the ability to deform at constant volume along
slip planes via dislocations since the periodicity of the lattice
provides identical atomic positions for the sheared material
[1]. However, the situation is different for amorphous materials
such as metallic glasses because of their inherent structural het-
erogeneity as well as the absence of topologically well-defined
structural “defects.” As a consequence, extra volume needs to
form in order to accommodate the mismatch between sheared
zones (shear bands) and surrounding matrix [2]. Such zones
are softer than the surrounding matrix enabling the material
to flow. Although less clearly defined on the topological and
atomic level, the free volume in amorphous materials may be
thought of as a carrier of plasticity equivalent to dislocations
in crystalline materials. It is commonly accepted that shear
bands are associated with a structural change such as local
dilatation caused by shear localization, implying a volume
change and thus a change in the atomic density ρ [3–11].
An important issue is therefore the local quantification of
free volume or density inside shear bands. Recently, the
local density within shear bands of an Al88Y7Fe5 metallic
glass has been determined using high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
[12]. These experiments showed that high- and low-density
regions alternate along the propagation direction of the shear
bands with respect to the undeformed glass matrix [12,13].
Thus, densification, in addition to the expected dilatation, also
occurred as a response to plastic shear deformation. So far,
a theoretical and mechanistic understanding to rationalize the
observed features is missing. The model presented here is
capable of describing these new observations quantitatively for
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a series of glass-forming alloys with vastly different fragility,
kinetic stability, and deformability in compression. Moreover,
it predicts an average structural length scale of heterogeneities
that control the plastic deformation of metallic glasses.

Since the pioneering work of Spaepen [3] and Argon [4],
it has been recognized by a large body of simulation studies
that single plastic events in metallic glass are characterized by
local stress fields having quadrupolar symmetry [11,14–19]
resembling Eshelby’s famous description of inclusions within
an elastic continuum [20]. While the local free volume can
provide the effective “inclusions” responsible for the Eshelby
quadrupolar stress fields, one of the remaining great challenges
is to understand how shear bands are actually formed in the
vicinity of these stress concentrators having such complex
stress fields [21]. A quadrupolar stress-field symmetry is
consistent with the basic symmetry of shear deformation in
a disordered lattice of spherical-like atoms [17]. The inherent
heterogeneity of glasses necessarily involves a distribution
of atomic neighborhoods with different effective binding
strengths. Following this line of thought, the concept of local
“soft spots” can be identified with shear-transformation zones
[3,4,17,18,22]. They are characterized by a weak connectivity
and significant local free volume. In such a soft spot, large
nonaffine displacements cause particles in the shear plane
to leave the glassy cage outward along a particular line (in
both directions), whereas they cause particles along the
perpendicular line (again, in both directions) to be pushed
inward and squeezed in toward the center of the glassy cage
[see Fig. 1(a)] [23].

If such soft spots were aligned appropriately this would
lead to alternating densities as observed in our experiments.
This hypothesis is supported by recent work of Dasgupta
et al. [24], in which molecular dynamics was used to simulate
an alignment of regularly spaced quadrupolar stress fields
in metallic glasses. Careful examination of Fig. 4 (right-
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FIG. 1. (a) Schematic of shear deformation in metallic glass.
Large nonaffine displacements cause particles in the shear plane to
leave the glassy cage outward along the 45◦ line or to be pushed
inward towards the center along the 135◦ line leading to local density
changes. (b) Illustration of the idea that density changes are caused
by an alignment of Eshelby-like quadrupoles along the 45° direction.

hand panel) in Ref. [24] shows periodic density variations
originating from the alignment of the quadrupoles.

II. MODEL

Here we propose a model based on the idea that density
changes and thus shear banding are caused by an alignment
of Eshelby-like quadrupoles [see Fig. 1(b)] that can be tested
against experimental observations. We start from the basic
geometry of a quadrupolar stress-field perturbation for a plastic
event, which locally follows an ∼ cos(4θ)/r3 dependence,
where θ is the angle, which spans the shear plane, and r is the
radial coordinate measured from the center of the glassy cage.
The quadrupoles are aligned along the 45° directions, as it has
been shown analytically that such an alignment of quadrupoles
minimizes the strain energy of an interacting array of
Eshelby-like quadrupoles [25]. It should be noted that this

is an idealized situation; experiments have shown that shear-
band inclination angles depend on the deformation conditions
(compression or tension) and can vary between 40° and 50°
[26]. Proceeding with our mathematical description, we label
the 45◦ direction as the z axis. The alignment of elastic
quadrupoles gives rise to an alternating distribution of forces
along the 45◦ direction in the shear plane [see Fig. 1(b)]. Using
Fourier’s theorem, we can write the distribution of forces
ρf (z) as a periodic function in a Fourier series expansion
as ρf (z) = ∑∞

n An cos(kz + ϕn), where An is the expansion
coefficient and ϕn is the phase of the nth mode. It is worth
noting while our experimentally observed density variations
are not perfectly periodic, the alternations are such that we
can fit them with a periodic function. The fit is better for
the Pd-based glass [Fig. 2(b)] than for the Al-based glass
[see Fig. 4(a)]. As a first-order approximation to enable
analytical calculations, we truncate the series at the first
Fourier mode in the expansion. If the origin of the z axis
coincides with the center of the band, the phase is fixed by the
symmetry to be ϕ1 ≡ ϕ = 0. However, if the measurement
does not start exactly at the center of the band as in the
subsequent comparison with experiments, the phase will be
nonzero. Hence, we approximate the force-density distribution
along the 45◦ z axis of Fig. 1 as ρf (z) = A1 cos(kz), with
A ≡ A1, which is a normalization constant that depends on
the sample size. Having defined the spatial distribution of
forces, the microscopic displacement field u(z) for longitudinal
displacements along a given direction (z axis in our case)
obeys the fundamental equation of elastic equilibrium [27]
K∇2u(z) = −ρf (z), where ρf (z) is the density of forces along
z, which has units of force per unit volume, consistent with the
left-hand side where K is the bulk modulus. We now use the
formal analogy between elasticity theory and electrostatics
to solve for the microscopic displacement field analytically
[28]. Within this well-known analogy, as explained in detail,
e.g., in Ref. [28], the equation for elastic equilibrium maps
onto the Poisson equation where the electrostatic potential

FIG. 2. (a) HAADF-STEM image of a FIB-prepared Pd40Ni40P20 bulk metallic glass sample showing contrast reversals inside a shear band
(see arrows). Note that the vertical contrast (curtaining) is due to the FIB milling conditions. (b) Top: Corresponding intensity profiles of shear
band (red) and matrix (blue). Bottom: Quantified intensity profile of the shear band relative to the matrix. The red line corresponds to the best
fit using Eq. (2).
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φel is equivalent to the elastic displacement field u, and
the bulk modulus K replaces the dielectric constant ε. The
distribution of forces in our elastic problem plays the same
role as the distribution of charges in the electrostatic problem.
Hence, the distribution of forces can be written as ρe(z) =
ρf (z) = A1 cos(kz). It can be seen that our elastic problem of
microscopic displacement field along the z direction in Fig. 1 is
mathematically identical to the problem of a one-dimensional
(1D) array of electrostatic dipoles placed along the z axis. We
can thus work with the Poisson equation, formally identical
to our elastic equilibrium equation, to obtain the electrostatic
potential, which yields the form of the displacement field u(z)
of the elastic problem. Focusing on a 1D array of electrostatic
dipoles placed along the z axis of Fig. 1 as a consequence of
the quadrupoles alignment, the charge distribution must obey
the Poisson equation, which to a good approximation may
be written as ∇2φel ≈ d2φel/dz2 = −ρf (z)/ε. The qualitative
form of the solution for the electrostatic field is readily
obtained by inspection, and gives φel ∼ (1/ε) sin(kz + ϕ),
upon omitting numerical prefactors. A detailed and more exact
three-dimensional derivation (see Appendix) gives the full
quantitative solution as φel(z) = A

4
√

2π ε
sin(kz + ϕ). Upon

using this mathematical solution of the elastic problem, we
obtain u(z) = A

4
√

2π K
sin(kz + ϕ). Finally, the relative density

change in the shear band along the 45◦ line is obtained as

�ρ(z)

ρ
= A

4K
√

2π
sin (kz + ϕ), (1)

where �ρ(z)
ρ

is the normalized mass density change in the shear
band relative to the average density ρ of the surrounding
undeformed matrix. ϕ, as mentioned above, is an arbitrary
phase shift (i.e., a fitting parameter in the following).

III. METHODS

Ingots of Pd40Ni40P20 were fabricated by ingot copper mold
casting under argon atmosphere. The sizes of the as-cast ingots
were 25 mm (length)×10 mm (width)×1 mm (height). Prior
to casting, the ingots were cycled with boron oxide (B2O3) to
purify the samples [29]. The completely amorphous state of the
cast samples was monitored by x-ray studies performed with a
Siemens D5000 x-ray diffractometer using Cu Kα radiation
and calorimetry using a differential scanning calorimeter
(Perkin Elmer Diamond DSC) with a heating rate of 20 K/min.
Subsequently, the ingots were deformed by cold-rolling to a
thickness reduction of 10%. Regions containing individual
shear bands were prepared to electron transparency using
focused ion beam (FIB) (FEI Helios) milling. Microstructural
characterization was performed using a Zeiss Libra 200FE
transmission electron microscope operated at 200 kV in STEM
mode and equipped with a Schottky field emitter, a HAADF
detector (Fischione model 3000), an in-column (
) energy
filter, and a slow-scan charge-coupled device camera (Gatan
US 4000). During the experiment electrons having a scattering
angle greater than 65 mrad were collected by the HAADF
detector (camera length of 720 mm) and a nominal spot size of
2 nm was used. For the fitting of the experimental data, which

TABLE I. Results of fitting Eq. (2) (see Sec. III) to the
experimental observation.

Zr52.5Cu17.9

Fit function (see Sec. III) Pd40Ni40P20 Al88Y7Fe5 Ni14.6Al10Ti5

k (1/nm) 0.047 0.039 0.042
L = 2π/k(nm) 135 163 150
Correlation length = L/2 67.5 81.5 75
y0 −2.8 −2.6 −0.9

are summarized in Table I, we used

�ρ(z)

ρ
= A

4K
√

2π
sin (kz + ϕ) + y0

∼= ISB − IM

IM

, (2)

where ISB and IM are the intensities extracted from the
HAADF-STEM image as shown in Fig. 2(a), A is a conver-
sion/scaling factor, K is the bulk modulus of the investigated
material, k = 2π/L is the period, ϕ is an arbitrarily introduced
phase shift (see above) and y0 is an offset value since the signal
is not symmetric to the mathematical origin. This accounts for
the different amplitudes of dilated and densified shear-band
regions observed in the experiment. The Poisson ratios of the
three metallic glasses [Pd40Ni40P20, Zr52.5Cu17.9Ni14.6Al10Ti5,
and Al88Y7Fe5 (partially crystallized cast material)] were
determined from ultrasonic measurements carried out with
an Olympus 38DL Plus device.

IV. RESULTS

The deformation by cold-rolling of Pd40Ni40P20 bulk
metallic glass produced numerous shear bands visible by the
macroscopic shear offsets at the surfaces. Individual slices
of such shear bands were cut out and thinned down to
electron-transparent thicknesses of about 100 nm using a FIB.
Figure 2(a) displays part of such a FIB lamella containing a
representative shear band marked by arrows and having a width
of about 16 nm. The FIB lamella also displays a curtaining
contrast due to the milling conditions used. The onset of the
shear band was identified by the shear offset at the surface of
the foil [see Fig. 3(a)]. It was reported that the observation of
shear bands in Pd40Ni40P20 is difficult [30]. While this is true,
we were able to identify shear bands successfully and carefully
analyze them in the following manner: A HAADF-STEM
intensity profile was extracted from inside the shear band
along the propagation direction as well as two on each side
to determine the matrix intensity at the position of the shear
band. The profile of the matrix intensity was then subtracted
from the profile of the shear-band intensity and the result of
the difference was normalized by the profile of the matrix
intensity [see Fig. 2(b)]. (The method used for the density
determination is described in more detail in Refs. [12,13]).
This procedure allows extraction of the density changes in the
shear band relative to the matrix. For comparison, a reference
measurement (see Fig. 3) following the same procedure as
described above was performed at a matrix position without
a shear band in order to prove that the curtaining in the
TEM foil or other hidden artifacts do not cause or affect the
observed periodic density variations in Fig. 2. The result of
the reference measurement is shown in Fig. 3. The result of
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FIG. 3. (a) HAADF-STEM overview of the FIB-prepared Pd40Ni40P20 bulk metallic glass sample showing the analyzed shear band of
Fig. 2(a) at low magnification. Note the surface offset of the shear band (red arrow). The black and blue lines indicate the position of the
reference measurement. (b) Line profiles of the reference measurement using a region next to the observed shear band. Bottom: Calculated
relative intensity/density change using Eq. (2) showing scatter/noise only.

the density variations along the real shear band is shown at the
bottom of Fig. 2(b). We observe small but noticeable periodic
density variations with a confidence of 4σ for the smallest
observed amplitude. The signal occurs periodically with
larger negative and smaller positive amplitudes [Fig. 2(b)].
Negative amplitudes correspond to dilated regions whereas
the positive amplitudes refer to densified regions of the shear
band compared to the surrounding matrix. Similar periodic
changes between dilatation and densification (see Fig. 4)
were found for a marginal glass former Al88Y7Fe5 and
for Zr52.5Cu17.9Ni14.6Al10Ti5 (Vitreloy105). The periodicity
of density variation is more pronounced for Pd40Ni40P20

glass; however, the amplitudes of the density variations are
about 10 times smaller than for the marginal glass former
Al88Y7Fe5. The smaller magnitude of the density changes in
shear bands in some glasses seems to be the underlying reason
for the difficulty in observing a distinct shear-band contrast
in TEM. Since we found similar observations for three very
different metallic glasses, the question of an existing generic
deformation mechanism for metallic glasses/amorphous solids
with periodic density variations as a significant feature is now
discussed.

V. DISCUSSION

An analytical solution of Eq. (1) using the framework of a
continuum mechanics approach for the displacement field in
analogy to electrostatics [28] fits the experimental observation
well since it accounts for the sinusoidal density distribution
along the propagation direction of shear bands as well as for the
(nontrivial) difference in amplitude for dilated and densified
regions. The accordance between model and experiment
strongly suggests that the density changes observed in the
postdeformation state are caused by an alignment of Eshelby-
like quadrupoles along the shear-banding propagation line [see
Fig. 1(b)]. The results are summarized in Table I. We find a
periodic length of about 135 nm for the Pd-based bulk metallic

glass compared to about 163 nm for the marginal Al-based
glass former and 150 nm for the Zr-based bulk metallic glass.

The experimentally determined values of the periodic
lengths allow calculation of an average correlation length be-
tween two Eshelby-like quadrupoles (Table I). The correlation
length, which yields an average value of (75 ± 10) nm, is
half of the periodic length. This value corresponds to the
distance between the heterogeneities in these glasses which
control their plastic deformation. Intuitively, a distance on the
order of 75 nm may appear to be too long for a characteristic
unit in the glass. Yet, it should be kept in mind that the
first initiation of nonaffine transformations occur only in the
most “fertile” or softest spots, i.e., in regions which have a
local configuration that resides in the low-coordination tail
of the continuous distribution of atomic packing. Moreover,
independent submicrometer strain analysis using nanodot
deposition [31] shows strain profiles with a periodicity on the
order of about 100 nm switching from compression to tensile
strain.

The difference in amplitude for dilated and densified
regions seems to be characteristic for all three metallic glass
systems. Rearranging Eq. (1), where the compressibility 1/K
can be expressed in terms of density and pressure, leads to

�ρ(z)

ρ
= A

4K
√

2π
sin(kz + ϕ) = A

4
√

2π

1

ρ

dρ

dP
sin(kz + ϕ)

(3)

which clearly elucidates the 1/ρ dependence of the prefactor.
One should note that while ρ(z) denotes the local position-
dependent density, ρ denotes the overall average density
of the sample, which is uniform. It is interesting to note
that the trends of the average correlation lengths and the
deformability of the three different metallic glasses are also
paralleled in the glass-forming abilities of the three glasses
(see Table II). Moreover, the average correlation length would
also account for microalloying effects [32–35] in which minor
elements can drastically change the deformability. While three
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FIG. 4. (a) Top: HAADF-STEM image showing contrast rever-
sals (bright-dark-bright) in a shear band of cold-rolled Al88Y7Fe5

metallic glass. Bottom: Corresponding quantified density oscilla-
tions along the shear band for different collection angles of the
HAADF detector. The results clearly indicate that the results are
independent of the collection angle. Note that the amplitudes for
the denser shear-band segments are about half of the dilated states.
(b) Top: HAADF-STEM image showing contrast reversals (bright-
dark-bright) in a shear band (see arrows) of a compression-deformed
bulk metallic glass sample (Zr52.5Cu17.9Ni14.6Al10Ti5, Vitreloy105).
Bottom: Corresponding quantified density oscillations along the shear
band.

different glass-forming systems are not sufficient to dismiss
coincidence, this observation might indicate the importance
of the width of the distribution of local excess volume (or
coordination) for the mechanical properties and the kinetic
stability of metallic glasses.

VI. CONCLUSIONS

Density variations in shear bands of metallic glasses
(Pd40Ni40P20, Al88Y7Fe5, and Zr52.5Cu17.9Ni14.6Al10Ti5) were
observed along their propagation direction having periodicities
between 135 and 163 nm with smaller positive and larger
negative magnitudes. A model using an alignment of Eshelby-
like quadrupoles as input is presented. It crucially provides
the nontrivial connections between the different magnitudes
for dilated and densified regions, on one hand, and the
bulk modulus and sample’s density, on the other. The good
accordance between model and experiment strongly suggests
that the observed density changes originate from aligned
Eshelby-like quadrupolar stress fields. Moreover, the model
predicts an average structural length scale of heterogeneities
on the order of 75 nm that controls the plastic deformation
of metallic glasses. Since qualitatively similar features were
observed for different types of metallic glasses having dif-
ferent compositions and vastly different characteristics, the
conclusion is drawn that alternating density variations in shear
bands, resulting from the alignment of Eshelby plastic events,
are fundamental for the plastic deformation of all metallic
glasses, and possibly for all amorphous materials in general.
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APPENDIX

1. Density determination using HAADF-STEM intensities

The dark-field intensity I/I0 contains information about the
mass thickness ρ�t as follows [12]:

I

I0
=

[
1 − exp

(
−NA · σ · ρ · t

A

)]
= 1 − exp

(
−ρ · t

xk

)
,

and for small arguments

I

I0

∼= ρ · t

xk

, (A1)

where NA is Avogadro’s number, σ is the total scattering cross
section, ρ is the density, t is the foil thickness, and A is the

TABLE II. Table of properties for the three investigated metallic glasses: The list contains the density ρ, Poisson’s ratio ν, bulk modulus
K, shear modulus G, Young’s modulus E, glass transition temperature Tg, first crystallization onset temperature Tx, width of the supercooled
liquid region Tx-Tg, and the average correlation length L/2 determined from the observed density oscillations in shear bands.

ρ(g/cm3) ν K (GPa) G (GPa) E (GPa) Tg(K) Tx(K) Tx-Tg(K) L/2 (nm)

Al88Y7Fe5 [38] 3.12a 0.30a 82a 38a 98a 479 522 43 81.5
Zr52.5Cu17.9Ni14.6Al10Ti5 6.60 0.37 113 33 91 681 743 62 75.0
Pd40Ni40P20 [39] 9.47 0.41 186 36 101 575 641 66 67.5

aMeasured on partially crystallized cast material.
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atomic weight. xk is the contrast thickness, which is defined as
NA·σ

A
. For experimental data, an acquired electron-energy-loss

signal allows calculation of the specimen foil thickness t from
the low-loss spectral region [36]. Using Eq. (A1) the relative
density change normalized to the intrinsic density of the
material (undeformed surrounding matrix) can be expressed:

�ρ

ρ
= ρSB − ρM

ρM

= ISB · tM · xSB
k

IM · tSB · xM
k

− 1, (A2)

where ρSB , ρM are the mass densities of the shear band (SB)
and the matrix,ISB , IM are the HAADF intensities, xSB

k , xM
k

are the contrast thicknesses, and tSB , tM are the corresponding
local foil thicknesses of SB and matrix. A constant contrast
thickness xk can be assumed here over the SB area which
causes the xk term to cancel out in Eq. (A2) [12]. If the foil
thickness t is uniform or continuously increasing, as for the
case of a wedge-shaped specimen such as in the experiment
where no preferential etching is present at the SB (Fig. 2), the
terms tSB and tM cancel out. Equation (A2) simplifies then to

�ρ

ρ
= ρSB − ρM

ρM

= ISB − IM

IM

. (A3)

Thus the intensity ratio equals the relative density change
as shown in Fig. 2.

2. Derivation of Eq. (1) in the main article

According to Fig. 1 in the main article, taking one particle
as the center of the frame in the shear plane, its nearest
neighbors tend to move away along the extension direction
(π/4), while they are squeezed in along the compression
direction (3π/4). Hence, the local stress field necessarily has
quadrupolar symmetry, in analogy with the Eshelby inclusion
quadrupole. The alignment of quadrupoles in the 45° direction
as schematically depicted in the main article in Fig. 1(b) is
therefore the starting point of our mathematical description.

3. Analogy between electrostatics and elastostatics

When dealing with dipoles, it is most convenient to take
advantage of the analogy between elasticity and electrostatics,
which then includes the use of established relations for
electrostatic dipoles. As is well known, the equations of
elastic equilibrium and electrostatics are formally identical,
provided that for each quantity in the electrostatic problem
the corresponding quantity in the elastic problem is correctly
defined [28,37]. In our case, we are interested in determining
the local displacement field since this directly relates to density
fluctuations. The quantity in the electrostatics problem that
is analogous to the displacement field is the electrostatic
potential, with a change of [28]: φel(	r) ⇒ 	u(	r), while the
corresponding quantity for the bulk modulus is the dielectric
constant K = ε.

For an array of elastic dipoles, the displacement is nonzero
only along the direction of alignment of the dipoles, hence we
can treat the displacement field as a scalar, u(r) ≡ uz(r).

Furthermore, the electrostatic charges, in the electrostatic
problem, play the same role as the forces in the elastic case. Just
as the Poisson equation relates the electrostatic potential to the
charge-density distribution, the same equation with changed

sign relates the displacement field to the density distribution
of mechanical forces in the material.

4. Distribution of forces in the shear band
along the 45° direction

From Fig. 1(b) in the main article, an alignment of Eshelby
quadrupoles causes a distribution of forces along the 45° axis
which can be described by a periodic function.

Relabeling again the 45° axis as the z axis, we thus write
the distribution of forces ρf (equivalent to the distribution of
charges ρe in the electrostatic problem) as a periodic function
in a Fourier series

ρf (z) =
∞∑

n=1

An cos (kz + ϕn), (A4)

since any periodic function can be expanded in Fourier series.
Here An are expansion coefficients, k = 2π/L is the period,
while ϕn is the phase. We can consider the first-order mode
in Eq. (A4) as a first-order approximation to make analytical
calculations.

If the origin of the z axis coincides with the center of
the band, the phase is fixed by the symmetry to be ϕ1 = 0.
However, if the measurements do not start exactly at the
center of the band as in the subsequent comparison with
experiments, the phase will be nonzero. Hence we use the
following approximation:

ρf (z) = A cos (kz), (A5)

for the density distribution of forces, with A ≡ A1 as a
normalization constant which depends on the size of the
sample.

5. Derivation of the displacement field along the 45° direction

We now use the analogy with electrostatics to solve for
the microscopic displacement field analytically under the as-
sumptions presented above. We first solve for the electrostatic
potential φel(z) for a distribution of charges given by Eq. (8),
and at the end we use the relation u(z) = −φ(z) to get to the
displacement field.

The field is related to the local dipole moment 	p(	r) of
a continuous distribution of charges ρ(	r) via the standard
relation [37]

φel(	r) = − 1

4πε

∫
L

d 	p(−→r0 ) · ∇ 1

|	r − −→
r0 | , (A6)

where −→
r0 labels the positions of the forces, while 	r labels the

generic position in space at which the field 	φ is evaluated.
We now take a cylindrical frame where the 45° axis of

the shear-band propagation coincides with the polar axis z,
whereas r is the radial axis (oriented along the compression
direction, 135°). Clearly 	p(−→r0 ) = p(z)−̂→z0 , because the local
dipole moment is oriented along the z axis.

Then we express the dipole moment by introducing the
force-density distribution [28], 	τ = d 	p(z0)

dz0
, which is also

oriented along the z axis. Therefore Eq. (A6) can be rewritten
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as

φel(	r) = − 1

4πε

∫
L

dz0 	τ · ∇ 1

|	r − −→
r0 | , (A7)

where −→
r0 = [0,0,z0], in cylindrical coordinates.

For 	τ = [0,0,τ0(z0)] only the z component is nonzero.
Therefore the scalar product can be easily evaluated and the
integral can be written as

φel(r,z) = − 1

4πε

∫
L

dz0τz(z0)
d

dz0
·
[

1√
[r2 − (z − z0)2]

]
.

(A8)

Upon evaluating the derivative we get

φel(r,z) = 1

4πε

∫
L

dz0τz(z0)
(z − z0)

[r2 − (z − z0)2]
3/2 . (A9)

Since we are interested in the displacement field along
the z axis (45° direction) at the center of the band, we take
the near-field approximation [37], r � (z − z0), and focus on
the integral

φel(z) = 1

4πε

∫
L

dz0τz(z0)
1

(z − z0)2 . (A10)

The density of dipole moment τ along z is related to the
charge-density distribution along z, via ρf (z0) = − d

dz0
τ (z0).

Using Eq. (A5) we thus obtain τ (z0) = −A(1 + sin(kz0)
k

).
Upon putting this into Eq. (A10), we get the following
expression:

φ(z) = −A

4πε

∫
L

dz0

(
1 + sin (kz0)

k

)
1

(z − z0)2 . (A11)

Upon considering an infinite medium (or at least a macro-
scopic size which is much larger than the atomic scale, as
is always the case)

∫
L

dz0 → ∫ +∞
−∞ dz0, and letting the z0

coordinate start at the center of the band (ϕ = 0) for ease
of notation and without loss of generality, the integral can be
evaluated analytically after recognizing that it is a standard
convolution integral:

h(t) =
∫ +∞

−∞
dt ′f (t − t ′)g(t′), (A12)

with the following straightforward identifications: z0 = t ′,
z = t , g(t ′) = 1 + sin(kz0)

k
, and f (t − t ′) = 1

(z0−z)2 . As is
well known [37], convolution integrals satisfy the following

property:

h(z) = 1

2π

∫ +∞

−∞
dqe−iqzf̂ (q)q̂(q), (A13)

where q is a dummy variable which in our case has dimensions
[1/length] and f̂ (q) denotes the Fourier transform of the
function f (z), with q = 2π/z.

With the previous identifications we obtain

f̂ (q) = −π

2
qsgn(q),

ĝ(q) =
√

2πδ(q) +
√

π

2

iδ(z − k)

k
−

√
π

2

iδ(z + k)

k
. (A14)

Hence, upon taking advantage of the convolution theorem
[Eqs. (A12) and (A13)], we can find the field φel(z) along
the band propagation direction by simply taking the Fourier
transform of the product f̂ (q)q̂(q), which gives

φel(z) = − A

8πε

√
π

2
e−ikz(e2ikz − 1). (A15)

Using the standard Euler relations, this simplifies to

φel(z) = − A

4
√

2πε
sin (kz + ϕ), (A16)

where the phase ϕ is added to fit the experimental data.
This is a central result, which shows that a periodic

distribution function of forces, as a consequence of the
alignment of Eshelby quadrupoles, generates a sinusoidal
microscopic displacement field u(z) ⇒ φel(z), which upon
replacing ε with the bulk modulus K reads as

u(z) = A

4
√

2πK
sin (kz + ϕ). (A17)

Here the arbitrary phase ϕ takes care of any arbitrary sign
convention and of the fact that the experimental measurements
do not necessarily start from the center of the band (which
would be z = 0 in our treatment).

The parameter k is the same as that which modulates the
period of the force distribution in the Eshelby quadrupoles
array in Fig. 1 and Eq. (1), and its value depends on the
atomic structure and size of the building blocks. Its value
therefore varies depending on the density and composition of
the material.

Finally we obtain the relative density change in the band
along the 45° direction as

�ρ(z)

ρ
= 1 + u(z) = A

4
√

2πK
sin (kz + ϕ), (A18)

where �ρ(z) = ρ(z) − ρ and ρ is the average density of the
material in the band.

[1] G. I. Taylor, Proc. R. Soc. London, Ser. A 145, 362 (1934).
[2] F. Spaepen, Nat. Mater. 5, 7 (2006).
[3] F. Spaepen, Acta Metall. 25, 407 (1977).
[4] A. S. Argon, Acta Metall. 27, 47 (1979).
[5] P. E. Donovan and W. M. Stobbs, Acta Metall. 29, 1419 (1981).

[6] J. Li, F. Spaepen, and T. C. Hufnagel, Philos. Mag. A 82, 2623
(2002).

[7] D. Klaumünzer, A. Lazarev, R. Maaß, F. H. Dalla Torre, A.
Vinogradov, and J. F. Löffler, Phys. Rev. Lett. 107, 185502
(2011).

134111-7

https://doi.org/10.1098/rspa.1934.0106
https://doi.org/10.1098/rspa.1934.0106
https://doi.org/10.1098/rspa.1934.0106
https://doi.org/10.1098/rspa.1934.0106
https://doi.org/10.1038/nmat1552
https://doi.org/10.1038/nmat1552
https://doi.org/10.1038/nmat1552
https://doi.org/10.1038/nmat1552
https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1016/0001-6160(81)90177-2
https://doi.org/10.1016/0001-6160(81)90177-2
https://doi.org/10.1016/0001-6160(81)90177-2
https://doi.org/10.1016/0001-6160(81)90177-2
https://doi.org/10.1080/01418610208240056
https://doi.org/10.1080/01418610208240056
https://doi.org/10.1080/01418610208240056
https://doi.org/10.1080/01418610208240056
https://doi.org/10.1103/PhysRevLett.107.185502
https://doi.org/10.1103/PhysRevLett.107.185502
https://doi.org/10.1103/PhysRevLett.107.185502
https://doi.org/10.1103/PhysRevLett.107.185502


HIERONYMUS-SCHMIDT, RÖSNER, WILDE, AND ZACCONE PHYSICAL REVIEW B 95, 134111 (2017)

[8] A. L. Greer, Y. Q. Cheng, and E. Ma, Mater. Sci. Eng., R 74, 71
(2013).

[9] L. Li, E. R. Homer, and C. A. Schuh, Acta Mater. 61, 3347
(2013).

[10] R. Maaß and J. F. Löffler, Adv. Funct. Mater. 25, 2353 (2015).
[11] T. C. Hufnagel, C. A. Schuh, and M. L. Falk, Acta Mater. 109,

375 (2016).
[12] H. Rösner, M. Peterlechner, C. Kübel, V. Schmidt, and G. Wilde,

Ultramicroscopy 142, 1 (2014).
[13] V. Schmidt, H. Rösner, M. Peterlechner, G. Wilde, and P. M.

Voyles, Phys. Rev. Lett. 115, 035501 (2015).
[14] C. E. Maloney and A. Lemaître, Phys. Rev. E 74, 016118

(2006).
[15] M. Tsamados, A. Tanguy, F. Léonforte, and J. L. Barrat, Eur.

Phys. J. E 26, 283 (2008).
[16] M. Tsamados, Eur. Phys. J. E 32, 165 (2010).
[17] V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall,

Phys. Rev. Lett. 107, 198303 (2011).
[18] K. E. Jensen, D. A. Weitz, and F. Spaepen, Phys. Rev. E 90,

042305 (2014).
[19] A. Lemaître, J. Chem. Phys. 143, 164515 (2015).
[20] J. D. Eshelby, Proc. R. Soc. London, Ser. A 252, 561 (1959).
[21] C. E. Packard and C. A. Schuh, Acta Mater. 55, 5348

(2007).
[22] J. Ding, S. Patinet, M. L. Falk, Y. Cheng, and E. Ma, Proc. Natl.

Acad. Sci. 111, 14052 (2014).
[23] A. Zaccone, P. Schall, and E. M. Terentjev, Phys. Rev. B 90,

140203 (2014).
[24] R. Dasgupta, H. G. E. Hentschel, and I. Procaccia, Phys. Rev.

Lett. 109, 255502 (2012).

[25] R. Dasgupta, H. G. E. Hentschel, and I. Procaccia, Phys. Rev. E
87, 022810 (2013).

[26] R. T. Ott, F. Sansoz, T. Jiao, D. Warner, J. F. Molinari, K. T.
Ramesh, T. C. Hufnagel, and C. Fan, Metall. Mater. Trans. A
37, 3251 (2006).

[27] L. D. Landau and E. M. Lifshitz, Theory Of Elasticity (Perga-
mon, London, 1959).

[28] J. Muggli, Phys. Status Solidi B 44, 279 (1971).
[29] G. Wilde, G. P. Görler, R. Willnecker, and G. Dietz, Appl. Phys.

Lett. 65, 397 (1994).
[30] Y. M. Chen, T. Ohkubo, T. Mukai, and K. Hono, J. Mater. Res.

24, 1 (2009).
[31] I. Binkowski, S. Schlottbom, J. Leuthold, S. Ostendorp, S. V.

Divinski, and G. Wilde, Appl. Phys. Lett. 107, 221902 (2015).
[32] Z. P. Lu and C. T. Liu, J. Mater. Sci. 39, 3965 (2004).
[33] W. Wang, Prog. Mater. Sci. 52, 540 (2007).
[34] X. Wang, Q. P. Cao, Y. M. Chen, K. Hono, C. Zhong, Q. K.

Jiang, X. P. Nie, L. Y. Chen, X. D. Wang, and J. Z. Jiang, Acta
Mater. 59, 1037 (2011).

[35] N. Nollmann, I. Binkowski, V. Schmidt, H. Rösner, and G.
Wilde, Scr. Mater. 111, 119 (2016).

[36] K. Iakoubovskii, K. Mitsuishi, Y. Nakayama, and K. Furuya,
Microsc. Res. Tech. 71, 626 (2008).

[37] A. Zangwill, Modern Electrodynamics (Cambridge University
Press, Cambridge, 2012).

[38] J. Bokeloh, Nanocrystallisation and Shear Bands in Amorphous
Metals, Master thesis, University of Münster, 2008.

[39] N. Nollmann, Plastische Deformation Und Mechanische Eigen-
schaften von Palladium Basierten Metallischen Gläsern, Master
thesis, University of Münster, 2014.

134111-8

https://doi.org/10.1016/j.mser.2013.04.001
https://doi.org/10.1016/j.mser.2013.04.001
https://doi.org/10.1016/j.mser.2013.04.001
https://doi.org/10.1016/j.mser.2013.04.001
https://doi.org/10.1016/j.actamat.2013.02.024
https://doi.org/10.1016/j.actamat.2013.02.024
https://doi.org/10.1016/j.actamat.2013.02.024
https://doi.org/10.1016/j.actamat.2013.02.024
https://doi.org/10.1002/adfm.201404223
https://doi.org/10.1002/adfm.201404223
https://doi.org/10.1002/adfm.201404223
https://doi.org/10.1002/adfm.201404223
https://doi.org/10.1016/j.actamat.2016.01.049
https://doi.org/10.1016/j.actamat.2016.01.049
https://doi.org/10.1016/j.actamat.2016.01.049
https://doi.org/10.1016/j.actamat.2016.01.049
https://doi.org/10.1016/j.ultramic.2014.03.006
https://doi.org/10.1016/j.ultramic.2014.03.006
https://doi.org/10.1016/j.ultramic.2014.03.006
https://doi.org/10.1016/j.ultramic.2014.03.006
https://doi.org/10.1103/PhysRevLett.115.035501
https://doi.org/10.1103/PhysRevLett.115.035501
https://doi.org/10.1103/PhysRevLett.115.035501
https://doi.org/10.1103/PhysRevLett.115.035501
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1140/epje/i2007-10324-y
https://doi.org/10.1140/epje/i2007-10324-y
https://doi.org/10.1140/epje/i2007-10324-y
https://doi.org/10.1140/epje/i2007-10324-y
https://doi.org/10.1140/epje/i2010-10609-0
https://doi.org/10.1140/epje/i2010-10609-0
https://doi.org/10.1140/epje/i2010-10609-0
https://doi.org/10.1140/epje/i2010-10609-0
https://doi.org/10.1103/PhysRevLett.107.198303
https://doi.org/10.1103/PhysRevLett.107.198303
https://doi.org/10.1103/PhysRevLett.107.198303
https://doi.org/10.1103/PhysRevLett.107.198303
https://doi.org/10.1103/PhysRevE.90.042305
https://doi.org/10.1103/PhysRevE.90.042305
https://doi.org/10.1103/PhysRevE.90.042305
https://doi.org/10.1103/PhysRevE.90.042305
https://doi.org/10.1063/1.4933235
https://doi.org/10.1063/1.4933235
https://doi.org/10.1063/1.4933235
https://doi.org/10.1063/1.4933235
https://doi.org/10.1098/rspa.1959.0173
https://doi.org/10.1098/rspa.1959.0173
https://doi.org/10.1098/rspa.1959.0173
https://doi.org/10.1098/rspa.1959.0173
https://doi.org/10.1016/j.actamat.2007.05.054
https://doi.org/10.1016/j.actamat.2007.05.054
https://doi.org/10.1016/j.actamat.2007.05.054
https://doi.org/10.1016/j.actamat.2007.05.054
https://doi.org/10.1073/pnas.1412095111
https://doi.org/10.1073/pnas.1412095111
https://doi.org/10.1073/pnas.1412095111
https://doi.org/10.1073/pnas.1412095111
https://doi.org/10.1103/PhysRevB.90.140203
https://doi.org/10.1103/PhysRevB.90.140203
https://doi.org/10.1103/PhysRevB.90.140203
https://doi.org/10.1103/PhysRevB.90.140203
https://doi.org/10.1103/PhysRevLett.109.255502
https://doi.org/10.1103/PhysRevLett.109.255502
https://doi.org/10.1103/PhysRevLett.109.255502
https://doi.org/10.1103/PhysRevLett.109.255502
https://doi.org/10.1103/PhysRevE.87.022810
https://doi.org/10.1103/PhysRevE.87.022810
https://doi.org/10.1103/PhysRevE.87.022810
https://doi.org/10.1103/PhysRevE.87.022810
https://doi.org/10.1007/BF02586160
https://doi.org/10.1007/BF02586160
https://doi.org/10.1007/BF02586160
https://doi.org/10.1007/BF02586160
https://doi.org/10.1002/pssb.2220440129
https://doi.org/10.1002/pssb.2220440129
https://doi.org/10.1002/pssb.2220440129
https://doi.org/10.1002/pssb.2220440129
https://doi.org/10.1063/1.112313
https://doi.org/10.1063/1.112313
https://doi.org/10.1063/1.112313
https://doi.org/10.1063/1.112313
https://doi.org/10.1557/JMR.2009.0001
https://doi.org/10.1557/JMR.2009.0001
https://doi.org/10.1557/JMR.2009.0001
https://doi.org/10.1557/JMR.2009.0001
https://doi.org/10.1063/1.4936388
https://doi.org/10.1063/1.4936388
https://doi.org/10.1063/1.4936388
https://doi.org/10.1063/1.4936388
https://doi.org/10.1023/B:JMSC.0000031478.73621.64
https://doi.org/10.1023/B:JMSC.0000031478.73621.64
https://doi.org/10.1023/B:JMSC.0000031478.73621.64
https://doi.org/10.1023/B:JMSC.0000031478.73621.64
https://doi.org/10.1016/j.pmatsci.2006.07.003
https://doi.org/10.1016/j.pmatsci.2006.07.003
https://doi.org/10.1016/j.pmatsci.2006.07.003
https://doi.org/10.1016/j.pmatsci.2006.07.003
https://doi.org/10.1016/j.actamat.2010.10.034
https://doi.org/10.1016/j.actamat.2010.10.034
https://doi.org/10.1016/j.actamat.2010.10.034
https://doi.org/10.1016/j.actamat.2010.10.034
https://doi.org/10.1016/j.scriptamat.2015.08.030
https://doi.org/10.1016/j.scriptamat.2015.08.030
https://doi.org/10.1016/j.scriptamat.2015.08.030
https://doi.org/10.1016/j.scriptamat.2015.08.030
https://doi.org/10.1002/jemt.20597
https://doi.org/10.1002/jemt.20597
https://doi.org/10.1002/jemt.20597
https://doi.org/10.1002/jemt.20597



