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Atomic-scale modeling of twinning disconnections in zirconium
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Twin growth in hexagonal close-packed zirconium is investigated at the atomic scale by modeling the various
disconnections that can exist on twin boundaries. Thanks to a coupling with elasticity theory, core energies
are extracted from atomistic simulations, and the formation energy of isolated disconnection dipoles is defined.
For twin systems where several disconnections can exist, because of this core contribution, the most stable
disconnection is not always the one with the smallest Burgers vector. Crystallographic parameters of the
disconnection with the lowest formation energy correlate well with twin modes observed experimentally. On the
other hand, disconnection migration, characterized here by computing their migration energy and Peierls stress,
does not appear critical for twin-mode selection.
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I. INTRODUCTION

Twinning is a necessary deformation mode in crystals where
only a limited number of dislocation slip systems can be acti-
vated. This is the case in hcp metals [1,2] where dislocations
with 1/3 〈1 2 1 0〉 Burgers vectors are the main carriers of
plastic deformation [3] but cannot accommodate any strain
along the 〈c〉 axis. This can be done only through the activation
of twinning or the glide of dislocations with 1/3 〈1 2 1 3〉
Burgers vectors. Whereas 1/3 〈1 2 1 3〉 dislocations account
for plastic deformation at fairly high temperatures, twinning
becomes the dominant mechanism at low temperature or high
strain rate [4]. While the crystallography of twinning is well
asserted [2], the mechanisms controlling twin formation and
growth are still the object of active research [5]. Twinning
can be divided into three steps: twin nucleation, lateral
propagation, and thickening.

This paper focuses on the last step, where the motion of the
twin boundary leads to thickening. This motion occurs thanks
to disconnections [2,6], i.e., interface dislocations with a step
character gliding along the twin boundary to propagate locally
the twin in the parent crystal. The presence of disconnections
on the twin boundary can result from the interaction of the
boundary with dislocations coming from the bulk crystal
[7–13] or from nucleation under the action of the applied stress
and temperature [14,15]. Whether twin thickening is controlled
by the formation or the migration of the disconnections is not
clearly known. In hcp metals, although several disconnections
with different Burgers vectors and/or different step heights are
usually possible on a twin boundary [16–18], only a single
twinning mode, corresponding to a given shear direction and
intensity, is reported for each twin system [1,2]. One can
then wonder if the selection of this mode is driven by a
competition between the formation of the different possible
disconnections or between their migration. Answering such a
question requires a description at the atomic scale. Although
crystallography and elasticity theory can rationalize many
properties of disconnections, the core region of the line defects
controls their migration and has a non-negligible contribution
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to the defect formation energy, sometimes counterbalancing
the elastic contribution as shown below.

In this perspective, disconnections are modeled here at
the atomic scale in Zr, an hcp transition metal of utmost
technological interest in the nuclear industry [19]. The purpose
is to extract from these atomistic simulations the key quantities
describing disconnection formation and migration and to
confront these results with the twinning modes reported
experimentally. The developed method proposes to extract the
disconnection core energy from atomistic simulations using
small simulation cells and to calculate the elastic energy
thanks to an analogy between a disconnection dipole and
an Eshelby inclusion, fully taking into account the elastic
anisotropy and inhomogeneity. Small computation cells are
used in order to later perform ab initio calculations, but for
the moment, this approach is validated using a many-body
potential of the embedded-atom method (EAM) type. The
adequacy of the EAM potential is first assessed by comparison
with ab initio calculations of perfect twin boundaries. All
possible disconnections that have been proposed for the four
different twin systems reported in Zr [20] are then modeled.
The formation energies of disconnection dipoles are then
defined considering both core and elastic contributions. The
disconnection migration is finally studied by calculating their
migration energy and Peierls stress.

II. PERFECT TWIN BOUNDARIES

The empirical interatomic potential is validated by compar-
ing the structures and energies of perfect twin boundaries in
hcp Zr with ab initio calculations. The four twin systems that
can be activated in Zr [20], corresponding to {1 0 1 1}, {1 1 2 2},
{1 0 1 2}, and {1 1 2 1} twin boundaries, are considered.

A. Methods

The atomic interactions are described using the EAM
potential developed by Mendelev and Ackland for zirconium
and referred to as #3 in Ref. [21]. This potential, developed
for bulk hcp Zr with a special emphasis on stacking faults
controlling dislocation dissociation, has already been shown
to give a reliable description of Zr plasticity [22–28].
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Ab initio calculations were performed with the
VASP code [29], using the Perdew-Burke-Ernzerhof [30]
parametrization for the generalized gradient approximation
(GGA) exchange and correlation functional. The interactions
between the core and outer electrons are modeled through
the projector augmented-wave approximation, considering
valence (5s2, 4d2) and semicore electrons (4s2, 4p6) in the
outer shell. The plane-wave cutoff energy is set at 460 eV.
The Brillouin zone is sampled with a regular �-centered mesh
corresponding to 20 × 20 × 9 k points for the primitive hcp
crystal cell. The electronic density of states is integrated using
the Methfessel-Paxton broadening function with a smearing
parameter of 0.1 eV. Atomic positions are relaxed until the

force on each atom is less than 5 × 10−3 eV Å
−1

.
Twin boundaries are modeled with periodic boundary

conditions in all directions, thus introducing two twin planes
in the simulation cell. A minimum number of atomic planes
has to be kept between the two twin planes to limit their
interactions. Relaxation perpendicular to the twin boundary
is considered by allowing an increase or a decrease of the
periodicity vector in this direction, with the corresponding
displacement δz localized in the planes adjacent to the twin
boundaries [31]. Such a relaxation improves the convergence
of the twin energy with the number of atomic planes in the
simulation cell. For ab initio calculations, cells containing
nine atomic planes between twin planes are used, leading to a
convergence better than 5 mJ m−2 on twin energies.

B. Atomic structure

Twinning operations can correspond to either a reflection
in the twinning plane K1 (type I) or a rotation of π along the
twinning direction η1 (type II) [2]. The {1 0 1 1} and {1 0 1 2}
twin systems are simultaneously of types I and II because in
these cases, both operations are equivalent. On the other hand,
the atomic structures obtained by type-I or type-II twinning
are not the same for the {1 1 2 1} and {1 1 2 2} twin systems.
Structures corresponding to both types have been relaxed with
ab initio calculations and the EAM potential. It was found
that type II is unstable for {1 1 2 2} and relaxes to the type-I
twin structure in both ab initio calculations and the EAM
potential. For {1 1 2 1} twins, however, both types are stable,
but the type-I structure has a much lower energy, 144 mJ m−2

(229 mJ m−2 in ab initio calculations) compared to 610 mJ m−2

for the type-II structure (749 mJ m−2 in ab initio calculations).
This is in agreement with previous ab initio calculations not
only in Zr [31,33,34] but also in other hcp elements [35,36]
and with the structures observed experimentally with high-
resolution electron microscopy in various hcp metals such as
Ti [37–39], Zn [40,41], Co [42], and Mg [43]. The structures
predicted by the EAM potential (Fig. 1) agree with ab initio
results with a slight exception for the {1 1 2 1} twin boundary
[Fig. 1(d)]. The stable structure obtained with both the EAM
potential and ab initio calculations is type I. With the EAM
potential, however, there is an additional translation parallel
to the interface. The amplitude of this displacement, 0.07a,
is small (a = 3.234 Å is the lattice parameter). The interface
without the translation [structure drawn in gray in Fig. 1(d)]
has an energy only 3 mJ m−2 higher than the fully relaxed
structure but is unstable. This artifact of the EAM potential
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FIG. 1. Structures of the relaxed twin boundaries predicted by
the EAM potential. The different symbols refer to the depth y of the
atoms along the periodicity vector normal to the figure plane. The
colors refer to atoms of the parent (blue), the twin crystal (red), or
the twin plane (purple). In (d) for the {1 1 2 1} twin system, the gray
symbols show the positions of the perfectly symmetric twin boundary.
The direction perpendicular to the twin boundary z is defined through
a factor λ = 3/(2γ 2), where γ is the c/a ratio of the hcp crystal [32].

is therefore considered harmless for the study of the {1 1 2 1}
twinning system. A similar stable structure for this perfect
twin boundary has been observed by Bacon and Serra [44] in
Ti with a many-body potential of the Finnis-Sinclair form.

C. Energies of twin boundaries

The energies of perfect twin boundaries are gathered
in Table I. Different values are obtained with the EAM
potential and the ab initio calculations. However, if one looks
separately to the twin systems activated under compression
or tension [20], the same relative stability is obtained with
both methods. For compression twins, the {1 0 1 1} boundary
is more stable than {1 1 2 2}, and for tension, {1 1 2 1} is
more stable than {1 0 1 2}. A qualitative agreement is obtained
between the EAM potential and ab initio calculations, similar
to the agreement previously obtained for stacking fault
energies [21,24].

One can conclude that this empirical potential leads to a
reasonable description of the various twinning systems that
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TABLE I. Perfect twin-boundary energies in mJ m−2. The regime
of strain corresponding to the experimental activation of the twinning
system [20] correlates to compression (C) or tension (T), and the
temperature regime correlates to high temperature (HT) and low
temperature (LT).

Strain Temperature Twin EAM GGA

C HT {1 0 1 1} 150 96
LT {1 1 2 2} 209 355

T HT {1 0 1 2} 264 272
LT {1 1 2 1} 144 229

can be activated in Zr, thus justifying its use to study twin
growth at an atomic scale.

III. DISCONNECTION FORMATION

Twin boundaries move thanks to the migration of discon-
nections [2,6]. Disconnections are formed either by absorption
of dislocations coming from the bulk [7,9,11,12] or by nucle-
ation on the twin boundary [15]. Once formed, disconnections
migrate along the twin boundary and propagate the twinned
crystal. The next section describes the structure of the different
disconnections that can appear on the four twinning systems
activated in Zr and define their formation energy, with their
migration addressed in the subsequent section.

A. Crystallography

Disconnections are defined as steps along the twin boundary
with a dislocation character [45]. The step height is called
h and for the purpose of simplicity is hereafter divided by
the interplanar spacing dK1 , so that h is an integer. The
dislocation content is characterized by the Burgers vector �bh

corresponding to the shear needed to make the twin grow
by h planes at the expense of the parent crystal. Several
disconnections corresponding to different h and �bh can exist
for a given twinning system. Keeping only the possibilities
leading to the smallest h and �bh, as in previous atomistic
studies [7,8,16,17,46–48], Table II gathers the crystallographic
definitions of the different disconnections considered in this
study (see also the dichromatic patterns in Fig. 2). All these
disconnections have been found to be stable. In Table II,
the Burgers vector is decomposed into edge and screw
components, with the line direction �ζ of the disconnection
taken normal to the experimental twinning direction �η1 [2].
Due to this choice, the twin modes observed experimentally
correspond to pure edge disconnections. The orientation has
also been chosen so that compression (tension) along the 〈c〉
axis activates twinning through the glide of disconnections
with a negative (positive) edge component.

From a purely elastic point of view, the disconnections
with the smallest Burgers vectors are expected to have the
lowest formation energies. However, the steps also induce
atomic rearrangements that represent a core energy cost. This
contribution can be intuitively expected to be minimal for the
smallest step heights. Since the smallest Burgers vectors are
usually not obtained for the smallest step heights (Table II),
the competition between the core and elastic energies prevents

us from predicting which disconnection is the most stable for
a given twinning system.

In the particular case of the {1 1 2 1} twin system, the �b1

disconnection is not stable and spontaneously dissociates into
two �b1/2 disconnections [16,17,48]. Although the height of this
disconnection is not an integer, the �bh notation will be kept.

A shuffling is imposed on the atoms between the former
and new twin planes following the method described by
Serra et al. [16,17]. Several initial shufflings may be possible,
leading in some cases to different disconnection cores after
relaxation, that is to say, disconnections with the same �bh and h

but different atomic structures and thus different formation and
migration energies. This happens for �b3 and �b4 disconnections
on {1 1 2 2} twin planes, where two different configurations of
the disconnection dipole can be stabilized, depending on the
initial shuffling.

Most disconnection dipoles are symmetrical: both discon-
nections are then equivalent. But some asymmetric dipoles
have also been found. The two different core regions are then
characterized by a different atomic density. The disconnection
with the higher (lower) density will be labeled �b+

h (�b−
h ).

B. Atomistic simulations

The atomistic simulations of disconnections are performed
with the EAM potential described in the previous section. The
twin plane lies in the (xy) plane with the x direction along the
�η1 twinning direction. The unitary cell is repeated from 30 up
to 200 times in this direction, leading to a cell length L along x

(Fig. 3). The cell dimension H in the z direction normal to the
twin plane is chosen to be large enough for the twin boundary
not to interact with its periodic images. In practice, cells with
up to 60 planes between the two twin boundaries have been
used.

A disconnection dipole of length 	, with a line vector �ζ
along the y direction, is introduced in the simulation box by
displacing all atoms according to the elastic field created by a
dislocation dipole of Burgers vector �bh located at a distance
h above the twin boundary, fully taking into account periodic
boundary conditions [50].

A homogeneous strain ε0, corresponding to the plastic
strain introduced in the simulation cell by the creation of the
disconnection dipole, is also applied to cancel the stress in the
cell [51]. Its nonzero components are given by

ε0
k3 = ε0

3k = bk	

2HL
. (1)

Atomic positions are then relaxed thanks to a conjugate-
gradient algorithm. As this relaxation can change the length 	

of the dipole, a residual stress may be observed after relaxation.
The applied homogeneous strain is adjusted to cancel this
stress. Further relaxation does not change the atomic structure
of the disconnections and leads to zero stress. In the following,
the actual length 	 of the disconnection dipole will be defined
through Eq. (1), using the strain ε0

13 that has been applied to
the simulation box to cancel the stress. In cases where the
applied strain ε0

23 is not zero, i.e., when the disconnection
has a screw component, it has been found that the lengths

134102-3



MACKAIN, COTTURA, RODNEY, AND CLOUET PHYSICAL REVIEW B 95, 134102 (2017)

TABLE II. Crystallographic definition of the disconnections found to be stable in zirconium for different twinning systems. The four
systems are defined by their twin plane K1, their experimental twinning vector �η1, and their vector �ζ normal to the experimental shear plane.
dK1 is the interplanar distance between two K1 planes. The disconnection Burgers vectors �bh are decomposed into edge and screw components,
be and bs , respectively, along �η1 and �ζ . The sign of the edge component is calculated for Zr (γ = 1.598). γ is the axial c/a ratio, and every
distance is normalized by the lattice constant a. Energy properties of the disconnections are also defined: core energy Ecore, elastic energy
prefactor k, core radius rc entering the definition of the formation energy [Eq. (4)], migration energy Emig, and Peierls stress τP.

�bh be bs ||�bh|| Ecore k rc/h Emig τP

(meV Å
−1

) (meV Å
−3

) (meV Å
−1

) (GPa)

K1={1 0 1 1}; dK1 =
√

3γ√
4γ 2 + 3

; �η1 = [101̄2̄]; �ζ = [12̄10]

�b1
3√

4γ 2 + 3
> 0 0 0.826 −87 742 0.5 10 0.30

�b2
9 − 4γ 2

2
√

4γ 2 + 3
< 0 ±1

2
0.529 −4 544 0.28 6 0.17

�b−/+
3e

2(3 − 2γ 2)√
4γ 2 + 3

< 0 0 1.08 236 742 0.5 120/208 0.21/>0.21

�b−/+
3m

15 − 4γ 2

2
√

4γ 2 + 3
> 0 ±1

2
0.826 289 648 0.37 25/20 >0.39/0.39

�b4
9 − 4γ 2√
4γ 2 + 3

< 0 0 0.334 117 742 0.5 116 >2

K1={1 1 2 2}; dK1 = γ

2
√

γ 2 + 1
; �η1 = [112̄3̄]; �ζ = [11̄00]

�b1
1√

γ 2 + 1
> 0 0 0.529 −74 750 0.5 0.2 0.02

�b3

2 − γ 2√
γ 2 + 1

< 0 0 0.294 119 750 0.5 22 1.87

�b−/+
3

2 − γ 2√
γ 2 + 1

< 0 0 0.294 237 750 0.5 40/10 >1.47/1.47

�b4

3 − γ 2√
γ 2 + 1

> 0 0 0.238 254 750 0.5 32 1.82

�b−/+
4

3 − γ 2√
γ 2 + 1

> 0 0 0.238 250 750 0.5 22/14 2.38/>2.38

K1={1 0 1 2}; dK1 =
√

3γ

2
√

3 + γ 2
; �η1 = [101̄1̄]; �ζ = [12̄10]

�b2
3 − γ 2√
3 + γ 2

> 0 0 0.189 5 753 0.5 2 0.15

K1={1 1 2 1}; dK1 = γ√
4γ 2 + 1

; �η1 = [112̄6̄]; �ζ = [11̄00]

�b1/2
1

2
√

4γ 2 + 1
> 0 0 0.149 −25 758 0.5 <0.1 <0.01

	 deduced either from ε0
13 or ε0

23 do not differ by more than
1 Å.

Figure 4 represents the relaxed atomic structure of a �b2

disconnection dipole on the {1 0 1 2} twin boundary. Two steps
can be clearly seen on the interface separating the parent and
twinned crystals. Away from these steps, one recovers the
structure of the perfect twin boundary. A Nye tensor can be
extracted from the relaxed configurations [49] to visualize
the Burgers vector density created by both disconnections.
The density is located at the steps and vanishes over a
distance approximately equal to 5 times the lattice parameter a,
confirming the localized character of the shear incompatibility.

The dipole length 	 calculated with Eq. (1) is also reported in
this figure. This definition of 	 agrees with the dipole length
that can be inferred from the relaxed atomic structure. The
same behavior is observed for the different disconnection
dipoles studied in the present work.

C. Formation energy

The formation energy Eform of a disconnection dipole
is defined as the energy difference between a simulation
cell containing a disconnection dipole along one of its twin
boundaries and the same cell with two perfect twin boundaries,
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FIG. 2. Dichromatic patterns for the four twin systems showing
the different possible Burgers vectors �bh.

with both cells being under zero stress. The formation energy
depends not only on the length 	 of the disconnection dipole but
also on the dimensions of the simulation cell. This is illustrated
in Fig. 5, where the formation energy of the �b2 disconnection
dipole on the {1 0 1 2} twin boundary is displayed as a function
of 	 for various cell heights H and a fixed cell width L. The
energy variations are caused by the interactions between the
two disconnections composing the dipole and their periodic
images. As these interactions are elastic, one can decompose
the formation energy into two parts, an elastic contribution and
a core contribution:

Eform(	,H,L) = Eelas(	,H,L) + 2Ecore. (2)

The elastic energy Eelas, which contains all the interactions
with the surrounding microstructure, varies with the cell
dimensions and with the dipole length. On the other hand,

FIG. 3. Sketch of the setup used in atomistic simulations with full
periodic boundary conditions (left) and the corresponding isolated
dipole configuration (right) deduced through elastic modeling.
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FIG. 4. Relaxed structure of the �b2 disconnection dipole along the
{1 0 1 2} twin boundary. Colored areas represent the Burgers vector
density (normalized by the lattice parameter a) corresponding to the
Nye tensor [49]. The double-headed arrow shows the length 	 of the
disconnection dipole deduced through Eq. (1) from the total plastic
strain.

the core contribution Ecore accounts for the cost of atomic
disorder at the very core of the disconnections, which cannot
be described by linear elasticity. This contribution should be
an intrinsic property of the disconnections and thus should
not depend on the surrounding microstructure. For symmetric
dipoles, both disconnections have the same core energy,
explaining the factor of 2 in Eq. (2). For asymmetric dipoles,
Ecore is then the average core energy between the �b+

h and �b−
h

disconnections.
To check the validity of the energy decomposition in

Eq. (2), the elastic energy of the disconnection dipole is
calculated separately. In this elastic calculation, the dipole
is modeled as an Eshelby inclusion [52] of length 	 and
height h with an eigenstrain ε∗

i3 = bi/2h (Fig. 6). The elastic
energy is computed within linear elasticity theory thanks to
the fast Fourier transform (FFT) approach of Moulinec and
Suquet [53], fully taking into account elastic anisotropy, elastic
inhomogeneity, and periodic boundary conditions.

As one can see in Fig. 5, the calculated elastic energy shows
the same variations with dipole length and cell dimensions as
the formation energy extracted from the atomistic simulations,
confirming that these variations are elastic in nature. With-
drawing the elastic contribution from the formation energy,
one obtains a constant energy contribution corresponding to
the core energy (Fig. 5). The variation of core energies obtained

with such a procedure does not exceed 2 meV Å
−1

, confirming
that the decomposition of the formation energy into elastic and
core contributions [Eq. (2)] is meaningful.

The core energies obtained for all disconnection dipoles
are given in Table II. As the elastic energy may be larger
than the formation energy, negative core energies are obtained
for some of the disconnections. We will show in the next
paragraph that this is simply a consequence of the energy
decomposition assumed when modeling the disconnection
dipole as an Eshelby inclusion. One has to remember that
this decomposition is arbitrary and that despite those negative
core energies, the formation energy of all dipoles is positive.

D. Isolated disconnection dipoles

Now that the decomposition of the formation energy into
elastic and core contributions [Eq. (2)] has been validated, the
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cell is L = 228 Å.

elastic energy of an isolated dipole is calculated in order to
withdraw the interactions with the periodic images.

The elastic energy of an isolated dipole is calculated using
the same FFT approach as in the previous section. In practice,

FIG. 6. Inclusion model used to calculate the elastic energy of a
disconnection dipole.
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FIG. 7. Comparison of the elastic energy obtained either with the
FFT method (crosses) or with the analytical expression (line) given
in Eq. (3) for �b2 and �b4 disconnection on the {1 0 1 1} twin plane.
The inset highlights the differences observed for the lowest dipoles
lengths. The FFT calculations are performed with L = H = 1260 Å.

the cell used for this calculation remains periodic, but the
cell dimensions H and L are chosen to be much larger than
the dipole dimensions h and 	, so that the result becomes
independent of these cell dimensions. Figure 7 shows that
the elastic energy varies as the logarithm of the dipole length
following the same expression as for a dislocation dipole:

Eelas(	) = 1

4π
kb2 ln

(
	

rc

)
. (3)

The FFT calculations differ from this analytical expression
only at small dipole lengths. However, as soon as the dipole
length becomes larger than its height (	 � h), the elastic
energy can be expressed analytically through Eq. (3). k is
a constant that depends only on the elastic constants and the
disconnection orientation [54], while rc is an effective core
radius. These two parameters are obtained by fitting Eq. (3) to
the results of the FFT calculations at the large dipole lengths,
and the results are displayed in Table II. The main variations of
k are caused by the disconnection character, with k being larger
for pure edge than for mixed disconnections. Elastic anisotropy
also leads to a slight variation of this parameter. On the
other hand, the ratio rc/h depends only on the disconnection
character, with rc ≈ h/2 for pure edge and smaller values
for mixed orientations. The effective core radius entering the
definition of the elastic energy [Eq. (3)] is therefore much
smaller than the actual extension of the disconnection core,
as can be inferred, for instance, from the spreading of the
Burgers vector density obtained from the Nye tensor (Fig. 4).
As a consequence, the region where linear elasticity breaks
down is more extended than the cylinder of radius rc around
the disconnection line.

Combining Eqs. (2) and (3) gives the formation energy of
an isolated disconnection dipole:

Eform(	) = 1

4π
kb2 ln

(
	

rc

)
+ 2Ecore. (4)

The core radius inferred from FFT calculations being smaller
than the actual extent of the disconnections is the reason
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FIG. 8. Formation energy of an isolated disconnection dipole as
a function of the dipole length 	 for the different disconnections that
can exist on the four twin boundaries. A logarithmic scale is used for
the abscissa. The symbols in (a) and (c) show the results of atomistic
simulations, whereas the lines correspond to the analytical expression
[Eq. (4)]. Atomistic simulations are performed with (a) L = 2350 Å
and H = 1575 Å and (b) L = 3048 Å and H = 1519 Å.

why negative core energies are obtained for some of the
disconnections (Table II).

Figure 8 shows the formation energy [Eq. (4)] as a
function of the disconnection dipole length for all isolated
disconnection dipoles that exist in zirconium. Since the atomic
simulations are relying on an EAM potential, one can also
use these simulations with large enough cells to obtain a
disconnection dipole isolated from its periodic images. This
offers a way to validate the analytical model. The points
in Figs. 8(a) and 8(c) are the results of those atomistic
calculations and show a quantitative agreement with the
analytical expression. As the size of the simulation cells
used to obtain the core energy is compatible with ab initio
calculations, one can conceive using the same approach based
on the partition of the disconnection energy into core and
elastic contributions to obtain an ab initio prediction of the
formation energy of the disconnection dipole. This is, however,
left for future work.

Because of the two contributions entering the formation
energy, the most stable disconnection on a twin boundary
is not always the one with the smallest Burgers vector.

This is the case for the {1 1 2 2} twin boundary where the
symmetric configuration of the �b3 disconnection dipole has
a low core energy that compensates its elastic energy. As
a consequence, in the considered range of dipole lengths
(10 � 	 � 300 Å), this disconnection dipole has a lower
formation energy than the �b4 dipole (Fig. 8), despite its
higher Burgers vector (Table II). The �b4 disconnection dipole
will become more stable only for lengths 	 larger than
1.5 106 Å, a length too large to be meaningful for disconnection
nucleation. Both �b3 and �b4 disconnections are pure edge with
a Burgers vector collinear to the twinning direction 〈1 1 2 3〉,
which has been experimentally reported for this {1 1 2 2} twin
boundary [1,2,4,55–57]. But because their Burgers vectors
have edge components of opposites signs ( Table II), the �b3

disconnection dipole propagates the twin under compression
of the 〈c〉 axis, whereas the �b4 disconnection is activated
under tension. The lower formation energy obtained for the
�b3 disconnection dipole is therefore in agreement with the
{1 1 2 2} twinning system being active in compression [4,58].
The shear magnitude s = −b3/3d{1 1 2 2} = 0.231 induced by
the glide of this disconnection also corresponds to the
magnitude s = 0.225 determined experimentally [55,56].

For the {1 0 1 1} twin boundary, the �b4 disconnection
dipole is the most stable for dipole lengths larger than
20 Å (Fig. 8). This disconnection has a Burgers vector
in agreement with the twinning direction experimentally
reported [2,4,57], with a sign corresponding to the {1 0 1 1}
twin system active under compression [4,58] and a shear
amplitude s = −b4/4d{1 0 1 1} = 0.109 corresponding to the
amplitude s = 0.104 experimentally assessed in Zr [59]. But
for small dipole lengths, the �b2 dipole becomes more stable
because of its low core energy. This disconnection dipole,
which will also be active under compression, is not pure edge
and thus corresponds to a different twinning direction. As
noted by Serra et al. [17], this second {1 0 1 1} twinning mode
has been proposed [2] but not observed experimentally.

For the {1 1 2 1} twin, our model gives a negative formation
energy below 25 Å. This is unphysical and illustrates the
limits of our approach for this very low energy disconnection:
because of the large spreading of this disconnection, one
cannot assume that the two disconnections composing the
dipole are interacting only through their elastic field for such
small separation distances.

Finally, it is worth noting that the formation energies of the
most stable disconnections vary strongly between the four
different twin systems (Fig. 8). These energies are higher
for the two systems active under compression, {1 0 1 1} and
{1 1 2 2}, and lower for the tension systems, {1 0 1 2} and
{1 1 2 1}. This is mainly due to the low core energies of
disconnections activated in tension.

IV. DISCONNECTION MIGRATION

After modeling disconnection dipole formation, we now
focus on their migration. Both the migration energy and Peierls
stress of a disconnection are calculated, i.e., respectively, the
energy barrier to be overcome by the disconnection to glide
without any applied stress and the resolved shear stress which
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FIG. 9. Migration energies of the various disconnections under zero applied stress.

cancels this barrier, thus allowing the disconnection to glide
without the help of thermal activation.

A. Migration energy

Migration energies are calculated with the nudged elastic
band (NEB) method [60]. The initial and final states of the
NEB chain correspond to the same disconnection dipole with
a length 	 differing by one periodicity vector. The dipoles
are chosen to be large enough that this length variation
leads to a negligible variation of the elastic energy along
the path. The energy variation given by the NEB calculation
then corresponds directly to the disconnection migration
energy. When dipoles were asymmetrical, we performed NEB
calculations for both disconnections separately in order to
obtain the two different migration barriers. Calculations were
performed under zero applied stress. The NEB calculations
were performed with the same periodicity vectors for each
replica. Keeping fixed the periodicity vectors implies, through
Eq. (1), that the applied stress along the path is not rigorously
constant. The variations are, however, small, and we chose
in practice the periodicity vectors canceling the stress for a
disconnection dipole halfway between the initial and final
states.

Finally, one should point out that the length of the discon-
nection dipoles along their line direction is minimal and thus
does not allow for the formation of kinks [61]. The obtained
energy barriers therefore correspond to the one-dimensional
migration of the disconnections. They constitute an upper limit
of the three-dimensional energy barriers when disconnection
migration proceeds via the nucleation of double kinks and are
a necessary input for line tension or elastic models predicting
kink pair formation [62,63].

Results displayed in Fig. 9 show the barriers for the different
disconnections on the four twin boundaries. It can be observed
that the energetic landscapes are different for all disconnection
cores. On the other hand, the migration energies are, in general,
much lower than the formation energies (Fig. 8).

For the {1 0 1 1} twin system, only the �b4 disconnection is
compatible with the experimental twinning elements [twinning
direction, intensity, and activity under 〈c〉 compression]. This
disconnection has, nevertheless, a migration energy one order
magnitude higher than the �b1, �b2, and �b3m disconnections,
which can also exist on this twinning plane. The migration
energy therefore does not appear as a key factor in the selection

of the disconnection responsible for twin growth. The same
conclusion is reached for the {1 1 2 2} twin system where the
�b3 disconnections, which are the only ones that can account
for twin growth under compression, do not have the lowest
migration energy.

B. Peierls stress

In addition to migration energies, the Peierls stress τP has
been determined by gradually applying a strain producing
a resolved shear stress on the disconnections in their glide
direction (see Table II). The Peierls stress corresponds to
the critical resolved shear stress for which a disconnection
of the dipole moves by at least one Peierls valley without
the help of thermal fluctuations. We checked by performing
NEB calculations under applied stresses that the Peierls stress
thus obtained corresponds to the applied stress which cancels
the disconnection migration barrier. An example is shown in
Fig. 10 for the �bS

3 disconnection of the {1 1 2 2} twin system.
The direct calculation leads to a Peierls stress of 1.87 GPa
(Table II), in agreement with the NEB calculation showing
almost no energy barrier for an applied stress of 1.8 GPa
(Fig. 10). We note that for asymmetric dipoles, only the lowest
Peierls stress is obtained.

As for the migration energy, the obtained Peierls stresses
(Table II) exhibit a large variability among disconnections. For
the twinning systems where several different disconnections
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FIG. 10. Migration barrier for the �b3 disconnection of the {1 1 2 2}
twin system under various applied stresses.
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exist, the ones corresponding to the experimental twinning
elements, �b4 on {1 0 1 1} and �b3 on {1 1 2 2}, are not the ones
with the lowest Peierls stress.

The �b4 disconnection, which is responsible for {1 0 1 1}
twin growth, shows a particular behavior. It was not possible
to make this disconnection glide, even for an applied stress
as large as 2 GPa. This is confirmed by NEB calculations
under applied stresses (Fig. 11), showing that an energy
barrier still remains with an applied stress of 2 GPa. The
motion of the �b4 disconnection along the {1 0 1 1} plane
takes place in four successive steps, with three intermediate
metastable configurations. Despite a different sensitivity to
the applied stress, none of the energy barriers associated
with these successive steps disappears under applied stress. In
particular, the first barrier appears uncoupled from the applied
stress. Migration of the �b4 disconnection will therefore require
thermal activation, which may be the reason why {1 0 1 1}
twinning is active only at high temperature [20], typically
above 400 ◦C in Ti.

V. CONCLUSIONS

The two stages of disconnection nucleation relevant for twin
thickening, i.e., the formation of disconnection dipoles and
migration of disconnections along twin boundaries, have been
modeled in hcp zirconium. Using an EAM potential validated
with ab initio calculations, four different twin systems were
studied at an atomic scale.

A precise definition of the disconnection dipole energy
is allowed thanks to an approach coupling elasticity and

atomistic simulations developed here. It was shown that the
formation energy of a disconnection dipole is composed of
an elastic contribution, which depends on the surrounding
microstructure, and a core energy, which is an intrinsic
property of the disconnections. Computing separately the
elastic contribution, thanks to an analogy with an Eshelby
inclusion, core energies could be extracted from atomistic
simulations to define the formation energy of an isolated
dipole. This method was shown to reproduce well the behavior
of large systems despite being parameterized on simulations
of small sizes. Of course, once the core energy is known,
it becomes possible to compute formation energies in more
complex environments, like stress concentrations or, for
more complex geometries, like disconnections loops [15].
In the latter case, the variation of the core energy with the
disconnection character will need to be known. The present
study was restricted to disconnections normal to the twinning
direction, which usually have a pure edge character. But the
same approach can be applied to various line orientations of
the disconnection dipole to obtain the variation of the core
energy with the disconnection character.

Considering the different disconnections that can exist
on twin boundaries, it has been shown that the most stable
is not always the one with the smallest Burgers vector,
i.e., the one with the lowest elastic energy. Because of the
core contribution, it sometimes happens that a disconnection
with a larger Burgers vector is more stable over a wide
range of dipole lengths. It appears that the energy scale
controlling disconnection formation and migration in Zr is
much higher for the {1 0 1 1} and {1 1 2 2} twin systems
active under compression than for the {1 0 1 2} and {1 1 2 1}
tensile twin systems. Considering both the core and elastic
contributions, atomistic simulations predict that the twinning
modes experimentally observed in hcp Zr correspond to the
disconnections with the lowest formation energy. On the
other hand, these disconnections are not necessarily the ones
migrating the most easily. They generally have neither the
lowest migration energy nor the lowest Peierls stress. As a
consequence, the nucleation of disconnection dipoles appears
to be more critical than their migration for twin-mode selection
in Zr.
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