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Theory of nonretarded ballistic surface plasma waves in metal films
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We present a theory of surface plasma waves in metal films with arbitrary electronic collision rate τ . Both
tangential and normal modes are investigated. A universal self-amplification channel for these waves is established
as a result of the unique interplay between ballistic electronic motions and boundary effects. The channel is shown
to be protected by a general principle and its properties independent of τ . The effects of film thickness and surface
roughness are also calculated. Experimental implications, such as Ferrel radiation, are discussed.
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I. INTRODUCTION

Surface plasma waves (SPWs) [1–3] are fascinating to a
wide spectrum of scientists not only for their fundamental
physical properties [4–6] but also their promising poten-
tial [7] in a myriad of applications, including microscopy [8],
sensing [9], and nano-optics [10–15] as well as information
processing [16]. As charge density waves highly localized
about the interface between a metal and a dielectric, SPWs
strongly interact and form a bound entity with light that
might render an atomic resolution of molecular dynamics [17].
Nowadays SPWs are pivotal in nano-optics.

The standard theory of SPWs was delivered shortly after
the pioneering work [1] by Ritchie in 1957 and has since been
comprehensively discoursed in many textbooks and review
articles [3,4,11,18]. In this theory, the electrical properties
of a metal are prescribed with a dielectric function ε. To
analytically treat ε, the simple Drude model or the slightly
more involved hydrodynamic model is often invoked [4,19–
24]. For either model to be valid, electronic collisions in the
metal must be sufficiently frequent so that the electronic mean
free path, l0 = vF τ , where vF is the Fermi velocity and τ

the thermal charge relaxation time, is much shorter than the
SPW wavelength or the typical length of the system [25–27].
The general case with arbitrary τ , especially the collision-less
limit, where τ → ∞, defies these models and has yet to
be entertained. Other models based on ab initio quantum
mechanical computations [4] are helpful in understanding
the complexity of real materials but fall short in providing
an intuitive and systematic picture of SPWs underpinned by
electrons experiencing less frequent collisions.

The purpose of this paper is to furnish a comprehensive the-
ory for SPWs of ballistically moving electrons. Ballistic SPWs
are not only interesting in themselves but could have ramified
applications in plasmonics and other arenas. Recently [28,29],
we considered ballistic SPWs in semi-infinite metals. We
showed that such waves are intrinsically unstable and possess
a universal self-amplification channel that exists irrespective
of the value of τ . This result was initially established by
examining the charge dynamics [28] in the system and later
corroborated by an energy conversion analysis [29] in the
waves. In the present work, we study ballistic SPWs in metal
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films, which possess two surfaces and are experimentally more
realistic and interesting.

In the next section, we specify the system under consid-
eration and state our main results. Some preliminary remarks
are made on their experimental implications. In Sec. III, the
theory in support of the results is systematically presented,
followed by a complementary energy conversion analysis in
Sec. IV. We discuss the results and conclude the paper in
Sec. V. Some calculations of technical interest are displayed
in the appendices A, B, and C.

II. RESULTS

A. System

We consider ballistic SPWs in a metal film surrounded by
vacuum. By the so-called jellium model [26,27], the metal
is described as a free electron gas embedded in a static
background of homogeneously distributed positive charges.
This description is valid if the length scale in question is much
longer than the microscopic lattice constant and interband
transitions are negligible. The kinetic energy of electrons is
ε(v) = 1

2mv2, where m and v denote the mass and velocity
of the electrons, respectively. The film resides in the region
0 � z � d with two surfaces located at z = 0 and z = d,
respectively. The surfaces are treated as geometric planes
of a hard wall type and they strictly prevent electrons from
leaking out of the metal. To simplify our analysis, the surfaces
are assumed with identical properties so that the system is
symmetric about the midplane z = d/2. To avoid quantum
size effects, we assume d � h̄/mvF , where h̄ is the reduced
Planck constant. Throughout we write x = (r,z) and reserve
r = (x,y) for planar components while we let t be the time.
We neglect retardation effects in total [20,30].

B. Results

With two surfaces, a film possesses two branches of SPWs,
which at large d degrade into those for two semi-infinite
metals. Reflection symmetry about the midplane requires the
corresponding charge densities to bear a definite sign under the
reflection. The branch whose charge density is invariant under
the reflection is called symmetric while the one whose charge
density changes sign under reflection is called antisymmetric.
In the literature, the symmetric and antisymmetric SPWs
are also designated as tangential and normal oscillations,
respectively. Profiles of the charge densities for symmetric
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FIG. 1. Snapshots of the charge density (color) and electric field (arrows) of SPWs supported in a metal film in the region z ∈ [0,d].
k/ks = 0.1, d = 500/ks , and p = 1, with ks = (ωp/

√
2)/vF . The symmetric mode ρ+(z) and antisymmetric mode ρ−(z) are displayed in

panels (a) and (b), respectively.

and antisymmetric SPWs are mapped in Figs. 1(a) and 1(b),
respectively, together with the electric field accompanying
them.

We find that the SPW frequency ω±
s is significantly (as

much as 30%) higher than ω±
s0 = (ωp/

√
2)

√
1 ± e−kd which

would be obtained by the hydrodynamic/Drude theory. Here
the plus (minus) sign is affixed and refers to symmetric
(antisymmetric) modes, ωp denotes the characteristic plasma
frequency of the metal, and k is the SPW wave number. The
dependences of ω±

s on k, d, and surface scattering, the effects
of which could be summarized in the Fuchs parameter p in the
simplest possible scattering picture, are displayed in the upper
panels of Figs. 2(a), 2(b), and 2(c), respectively. The great
contrast between ω±

s and ω±
s0 would be ideal for experimentally

verifying our theory. Unfortunately, in the most commonly ex-
perimented materials, such as noble metals, due to pronounced

interband transitions there is no simple relation between ωp

and ω±
s0.

More interestingly, we reveal a universal self-amplification
channel for SPWs irrespective of their symmetry. Namely, we
find that the net amplification rate of SPWs can be generally
written as γ ± = γ ±

0 − τ−1, where γ0 is warranted to be non-
negative by a general principle and independent of τ . In the
conventional theory, γ ±

0 vanishes identically and amplification
would be impossible without extrinsic energy supply [31–
38]. The dependences of γ ±

0 on k, d, and p are shown in
the lower panels of Figs. 2(a), 2(b), and 2(c), respectively,
where we observe that (1) γ ±

0 is generally a sizable fraction
(as much as ∼10%) of ωp, (2) it increases as k increases, i.e.,
higher amplification obtains for shorter wavelengths, and (3) it
increases as p increases, i.e., smooth surfaces produce higher
amplification than rough surfaces. We also see that γ +

0 is more
sensitive to film thickness than γ −

0 .
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FIG. 2. Plot of the SPW frequency ωs and self-amplification rate γ0 versus wave number k, film thickness d , and surface roughness
parameter p. Circles and diamonds are designated for symmetric and antisymmetric modes, respectively. ωs and γ0 are obtained by numerically
solving Eq. (39), with Landau damping automatically included. kp = ωp/vF . The cutoff qc = 1.5kp has been used. The error bar is ±0.01,
corresponding to the grid resolution of ω̄ in the complex frequency plane used in our numerical method. In the upper panel of (a), the thick
lines are given by ∝ √

1 − (1 ∓ e−kd )(1 + p)/4 with p = 0. In the lower panel of (c), the thick line is ∼0.1 × (1 + p).
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FIG. 3. Snapshots of the surface-ballistic current density for (a) symmetric and (b) antisymmetric modes, with the same parameters as in
Fig. 2. Note that the currents are directed largely normal to the surface, unlike diffusive currents, which are largely normal to the local electric
field.

Additionally, we show that the electrical current density in
the system can be split into two disparate components, which
we call JD and JB , respectively. An example of their profiles is
exhibited in Figs. 3(a) and 3(b), respectively, for the symmetric
and antisymmetric modes. What critically sets them apart rests
with their distinct relations with the electric field E present in
the system. JD responds to E as if the system had no surfaces
and is therefore primarily a bulk property. As such, it can
also be satisfactorily captured by the hydrodynamic/Drude
model. For this reason, we designate it a diffusive component,
regardless of the value of τ . On the contrary, JB represents
genuine surface effects and would totally disappear were the
surfaces absent. In particular, it synthesizes the effects ensuing
from the fact that the system is not translationally invariant
along the direction normal to the surfaces. These effects are
completely beyond the hydrodynamic/Drude model but well
within the scope of Boltzmann’s approach, which is employed
in our theory to be expounded in the next section. We thus
designate JB as a surface-ballistic component.

Finally, we find that the self-amplification channel is a direct
consequence of JB . Indeed, were it not for JB , SPWs would
behave in accord with the hydrodynamic/Drude model. This
is already clear from the orientations of JD/B relative to E. As
seen in Fig. 3, JD points at right angles with E almost locally,
whereas JB flows normal to the surface paying little regard
to E. Therefore, E does no work on JD on average while,
as shown in Sec. IV, it does a negative amount of work on
JB , thereby imparting energy from the electrons to SPWs and
destabilizing the Fermi sea.

C. Remarks

Experimentally verifying the self-amplification channel and
the theory in general would be of considerable interest, as
it would drastically change the way we conceive and utilize
SPWs and renew our interest in surface science in a broad
sense. The self-amplification channel could manifest itself for
instance in the temperature dependence of various spectra, e.g.,
electron loss spectra. We discuss this aspect in Sec. V. Here we

mainly concern ourselves with the experimental implications
of the surface-ballistic current JB .

Being an integral part of the electrical responses of metals,
JB is expected to play a role in virtually every phenomena
where surface is not negligible. Examples include electron
energy losses, reflectance, and van der Waals forces. Unlike
JD , which does not reflect surface scattering effects, JB is
surface specific via the Fuchs parameter. Moreover, they differ
in phase by ∼π/2. To be specific, let us consider the Ferrel
radiation [2]. Ferrel predicted that antisymmetric SPWs in
thin films would radiate in a characteristic pattern. Some
experiments even claimed to have observed this radiation [39–
41]. Ferrel considered only JD . Following him, we find that
including JB could boost the radiation power by a factor
∼1 + (3/2π )2(1 + 2p)2. Though a crude estimate, it does
imply that surface properties could be utilized to tune the
radiation. In this paper, we focus on the fundamental theory
of ballistic SPWs. A systematic treatment of Ferrel radiation
will be published elsewhere.

As aforementioned, a major obstacle in experimentally
studying the theory lies with interband transitions, which have
been neglected in our theory. A detailed discussion of their
effects is presented in Sec. V.

III. THEORY

This section is devoted to a thorough exposition of the
theory. We begin with a discussion of the equation of
continuity in the presence of surfaces. Thence we proceed
to Boltzmann’s approach and analyze how to handle surface
effects in this approach. The electronic distribution functions,
obtained by solving Boltzmann’s equation, are discussed in
detail. The electrical current densities are then calculated
and the exact equation of motion for the charge density is
established. Solutions to the equation are discussed and the
properties of SPWs are analyzed. Various limits are presented
and connections are made with the hydrodynamic/Drude
models.
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A. Equation of continuity

The starting point of our theory is the equation of continuity,
(∂t + 1/τ )ρ(x,t) + ∂x · j(x,t) = 0, which relates the charge
density ρ(x,t) and the current density j(x,t) in a universal
manner. Here j(x,t) arises in the presence of an electric field
E(x,t) and the damping term −ρ(x,t)/τ is included to account
for the thermal currents due to electronic collisions that would
drive the system toward thermodynamic equilibrium. In the
jellium model, ρ(x,t) appears when the electron density is
perturbed away from its equilibrium value n0.

As the surfaces strictly prevent electrons from escaping the
metal, we may write j(x,t) = [
(z) − 
(z − d)]J(x,t), where

(z) is the Heaviside step function. In doing this, we have
embodied the surfaces as hard walls and considered the fact
that J(x,t) may not vanish even in the immediate neighborhood
of the surfaces—as is obviously the case with the Drude
model. With this prescription, the equation of continuity can
be rewritten(

∂t + 1

τ

)
ρ(x,t) + ∂x · J(x,t) = S(x,t), (1)

where the effective source term

S(x,t) = Jz(xd ,t)δ(z − d) − Jz(x0,t)δ(z), (2)

results directly from the presence of the surfaces. Here x0 =
(r,0) and xd = (r,d) denote points on the surface at z = 0
and those on that at z = d, respectively. Physically, S(x,t)
corresponds to the scenario that charges must pile up on the
surfaces if they do not come to a halt before they reach them.

Without loss of generality we seek fields in this form:
ρ(x,t) = Re [ρ(z)ei(kx−ωt)] and J(x,t) = Re [J(z)ei(kx−ωt)].
Similarly, for the electric field E(x,t) = Re [E(z)ei(kx−ωt)] and
the electrostatic potential φ(x,t) = Re [φ(z)ei(kx−ωt)]. In these
expressions, Re/Im takes the real/imaginary part of a quantity,
k � 0 is a wave number, and ω is the eigenfrequency to be
determined. Equation (1) becomes

−iω̄ρ(z) + ∇ · J(z) = S(z), (3)

where ω̄ = ω + i/τ , ∇ = (ik,∂y,∂z), and

S(z) = Jz(d)δ(z − d) − Jz(0)δ(z). (4)

Equation (3) will serve as the equation of motion for ρ(z)
when supplemented with additional relations to be formulated
between J(z) and ρ(z) in what follows.

B. The law of electrostatics

If the SPW phase velocity is much smaller than the speed
of light c in vacuum, i.e., k > k0, where k0 is the wave number
of light at the SPW frequency, the system will be in the
nonretarded regime [30], and we can relate φ(x,t) and ρ(x,t)
by the laws of electrostatics. Without external charges, we
have [30]

φ(z) = 2π

k

∫
dz′e−k|z−z′ |ρ(z′).

Instead of ρ(z), we directly work with its Fourier components.
Generically, we may write

ρ(z) =
∞∑

n=0

ρn cos(qnz), qn = πn

d
.

The components are given by

ρn = 1

dn

∫ d

0
dzρ(z) cos(qnz), dn = d

2 − δn,0
, (5)

where δm,n denotes the Kroneker symbol.
As the surfaces of the film are assumed identical, the system

is invariant under reflection about its midplane. This symmetry
makes it useful to write ρ(z) as a superposition of a symmetric
mode ρ+(z) and an antisymmetric mode ρ−(z). Namely,

ρ(z) = ρ+(z) + ρ−(z),

where ρ+(z) includes all the terms with even n whereas
ρ−(z) those with odd n. As such, ρ+(0) = ρ+(d) and ρ−(0) =
−ρ−(d). Due to the symmetry ρ+(z) and ρ−(z) will be shown
to be strictly decoupled. We impose on qn a cutoff qc of the
order of a reciprocal lattice constant; otherwise, the jellium
model would cease to be valid. Obviously, qc ∼ kF , where kF

is the Fermi wave number of the electrons in the metal.
In terms of ρn, we can rewrite

φ(z) =
∞∑

n=0

2πρn

k2 + q2
n

[2 cos(qnz) − e−kz − (−1)ne−k(d−z)].

(6)
The electric field, E(z) = −∇φ(z), can then be obtained
straightforwardly. In equation (6) the exponentials, e−kz

and e−k(d−z), would all vanish if the surfaces were sent to
infinity. We may then write φ(z) = φbulk(z) + φsurf ace(z),
where φsurf ace(z) includes the contributions from all the expo-
nentials while φbulk(z) contains the remaining contributions.
Accordingly, E(z) = Ebulk(z) + Esurf ace(z). Such a partition
proves useful in analyzing surface specific effects.

C. Electronic distribution function

The electric field E(x,t) drives an electrical current J(x,t).
We employ Boltzmann’s equation, which is valid as long as
interband transitions are negligible, to calculate this current.
Including the transitions in our formalism is straightforward
but will be skipped here. Surfaces scatter electrons. On the
microscopic level, one can in principle introduce a surface
potential φs(x) in Boltzmann’s equation to produce such
scattering. The corresponding surface field Es(x) = −∂xφs(x)
should be peaked on the surfaces and may have an infinitesimal
spread complying with the hard-wall picture of surfaces.
However, as φs(x) can hardly be known and varies from one
sample to another, this method is impractical and futile.

Alternatively surface scattering effects can be dealt with
using boundary conditions. This is possible because Es(x) acts
only within the immediate neighborhoods of the surfaces. In
the bulk of the sample, the electronic distribution function
f (x,v,t) sought as solutions to Boltzmann’s equation can
be specified up to some parameters, which summarize the
effects of—while without actually knowing—φs(x). With
translational symmetry along the surfaces, only one such
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parameter, i.e., the so-called Fuchs parameter p, is needed
in the simplest model. Physically, p measures the probability
that an electron is bounced back when impinging upon the
surface. We write f (x,v,t) = f0(ε(v)) + g(x,v,t), where f0(ε)
denotes the Fermi-Dirac distribution and g(x,v,t) represents
the nonequilibrium part due to the presence of E(x,t).
The current density can then be calculated by J(x,t) =
(m/2πh̄)2

∫
d3vevg(x,v,t), where e denotes the charge of

an electron. It is worth pointing out that, as g(x,v,t) is a
distribution for the bulk, the actual charge density is not given
by ρ̃(x,t) = (m/2πh̄)2

∫
d3veg(x,v,t), i.e., ρ(x,t) �= ρ̃(x,t).

Actually, ρ̃(x,t) satisfies (∂t + 1/τ )ρ̃(x,t) + ∂x · J(x,t) = 0
rather than Eq. (1). By comparison, one sees that what is
missing from ρ̃(x,t) is the charges localized on the surface.

As before we write g(x,v,t) = Re [g(v,z)ei(kx−ωt)]. For
linear responses, Boltzmann’s equation can be written

∂g(v,z)

∂z
+ λ−1g(v,z) + ef ′

0(ε)
v · E(z)

vz

= 0, (7)

where λ = ivz/ω̃ with ω̃ = ω̄ − kvx and f ′
0(ε) = ∂f0/∂ε(v).

In this equation, the velocity v is more of a parameter than
an argument and can be used to tag electron beams. It
is straightforward to solve the equation under appropriate
boundary conditions (see Appendix B). We divide g(v,z) into
a bulk and a surface term, i.e.,

g(v,z) = gbulk(v,z) + gsurf ace(v,z),

where the bulk term would exist even in the absence of surfaces
whereas the surface term would not. Using Eq. (6) for E(z),
we obtain

gbulk(v,z) = −ef ′
0

∞∑
n=−∞

2πρn

k2 + q2
n

kvx + qnvz

ω̄ − (kvx + qnvz)
eiqnz,

(8)
where we have defined ρn<0 := ρ−n. For large d equation (8)
converges to the distribution function of a boundless system
for either the symmetric mode or the antisymmetric mode. It
is notable that gbulk(v,z) bears a single form for all electrons
regardless of their velocities.

As for gsurf ace(v,z), we find it with a subtle structure: It
can be written as a sum of two contributions, one of which,
gD,surf ace(v,z), has a single form for all electrons irrespective
of their velocities while the other, gB,surf ace(v,z), does not.
Explicitly, we find

gD,surf ace(v,z) = g
(1)
D,surf ace(v,z) + g

(2)
D,surf ace(v,z),

where

g
(1)
D,surf ace(v,z) = −ef ′

0

∞∑
n=0

2πρn

k2 + q2
n

k(vz − ivx)

kvz + iω̃
e−kz, (9)

and

g
(2)
D,surf ace(v,z) = −ef ′

0

∞∑
n=0

2πρn(−1)n

k2 + q2
n

k(vz + ivx)

kvz − iω̃
e−k(d−z)

(10)

originate from the surfaces at z = 0 and z = d, respectively.
We may combine gbulk(v) and gD,surf ace(v,z) in a single

term,

gD(v,z) = gbulk(v,z) + gD,surf ace(v,z),

in order to separate them from

gB(v,z) := gB,surf ace(v,z).

The subscripts, D and B, refer to ‘diffusive’ and ‘surface-
ballistic,’ respectively. In so doing, we have decomposed

g(v,z) = gD(v,z) + gB(v,z)

in a diffusive and a surface-ballistic component. It is underlined
that gB(v,z) arises only when the surfaces are present. For
boundless systems without surfaces, it does not exist even if the
electronic motions are totally ballistic, i.e., τ → ∞. In other
words, gB(v,z) represents genuine surface effects. It may be
interpreted as a contribution from electrons which experience
the electric field only on the surfaces and propagate freely in
the body. Its expressions are given in what follows.

Electrons in the film can bounce back and forth between
its surfaces. Each bounce gives a factor p1p2e

2iω̃d/|vz|, whose
magnitude is generally smaller than unity (see Appendix B).
Here p1 and p2 are the Fuchs parameters for the surfaces
at z = 0 and z = d, respectively. Consequently, we neglect
multiple bounces, which allows us to write

gB,surf ace(v,z) = g
(1)
B,surf ace(v,z) + g

(2)
B,surf ace(v,z),

where g
(1)
B,surf ace(v,z) and g

(2)
B,surf ace(v,z) originate from the

surfaces at z = 0 and z = d, respectively. They are given by

g
(1)
B,surf ace(v,z) = 
(vz)e

i ω̃z
vz

[
g

(1)
B,emg(v) + p1g

(1)
B,ref (v)

]
,

g
(2)
B,surf ace(v,z) = 
(−vz)e

i
ω̃(z−d)

vz

[
g

(2)
B,emg(v) + p2g

(2)
B,ref (v)

]
,

where g
(1/2)
B,emg(v,z) is contributed by electrons that directly

emerge from the surface at z = 0/d while g
(1/2)
B,ref (v,z) by

reflected electrons and hence proportional to p1/2. In what fol-
lows we take p1 = p2 = p. The expressions of g

(1/2)
B,emg/ref (v)

are involved but with a recognizable structure:

g
(1/2)
B,emg(v) = ef ′

0

∞∑
n=0

2πρn〈1|(−1)n〉
k2 + q2

n

[
2(ω̃kvx) + q2

nv
2
z

ω̃2 − q2
nv

2
z

+ k(vz ∓ ivx)

kvz ± iω̃
+ (−1)ne−kd k(vz ± ivx)

kvz ∓ iω̃

]
, (11)

where the symbol 〈1|(−1)n〉 returns 1 and (−1)n for g
(1)
B,emg and g

(2)
B,emg , respectively. In addition, we have

g
(1)
B,ref (v)=ef ′

0

∞∑
n=0

2πρn

k2 + q2
n

[(
e
i ω̃d

vz (−1)n − 1
)2

(
ω̃kvx − q2

nv
2
z

)
ω̃2 − q2

nv
2
z

+(
1 − e

(
iω̃
vz

−k

)
d
)k(vz − ivx)

kvz − iω̃
+(−1)n

(
e−kd − e

i ω̃d
vz

)k(vz + ivx)

kvz + iω̃

]
,

(12)
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and

g
(2)
B,ref (v) = ef ′

0

∞∑
n=0

2πρn(−1)n

k2 + q2
n

[(
e
−i ω̃d

vz (−1)n − 1
)2

(
ω̃kvx − q2

nv
2
z

)
ω̃2 − q2

nv
2
z

+ (
1 − e

−
(

iω̃
vz

+k

)
d
)k(vz + ivx)

kvz + iω̃

+ (−1)n
(
e−kd − e

−i ω̃d
vz

)k(vz − ivx)

kvz − iω̃

]
, (13)

1. Positiveness of Im(ω̄)

What sets gB(v,z) apart from its diffusive counterpart rests
with its disparate z dependence. Let us take the contribution
originating from the surface at z = 0 for example. Here
g

(1)
B,surf ace(v,z) ∝ eiω̃z/vz ∝ e−Im(ω̄)z/vz , where vz � 0. Unless

Im(ω̄) � 0, this expression would diverge for small vz. As
such, we may conclude that Im(ω̄) � 0, a result to be confirmed
in what follows by specific calculations. In Appendix B, we
frame this result as a consequence of the causality principle:
Out-going electrons are determined by in-coming ones, not
otherwise.

D. Current densities

We are now prepared to discuss the behaviors of the current
density, which is written J(z) = JD(z) + JB(z), where

JD/B(z) = (m/2πh̄)3
∫

d3vevgD/B (v,z)

is the diffusive/surface-ballistic component of J(z). The equa-
tion of motion for ρ(z) follows upon inserting J(z) in Eq. (3).
In our calculations, the zero temperature is assumed whenever
a concrete form of f0(ε) is required, though generalization to
finite temperatures is straightforward.

1. Diffusive current density

Since gD(v,z) consists of a bulk and a surface compo-
nent, we accordingly write JD(z) = Jbulk(z) + JD,surf ace(z),
where Jbulk(z) and JD,surf ace(z) arise from gbulk(v,z) and
gD,surf ace(v,z), respectively. By straightforward manipulation,
one may show that JD,surf ace(z) ∝ Esurf ace(z). To the lowest
order in kvF /ωp, where ωp =

√
4πn0e2/m is the characteris-

tic plasma frequency of the metal, we have

JD,surf ace = i

ω̄

ω2
p

4π
Esurf ace(z), (14)

where the prefactor heading Esurf ace(z) is recognized as the
Drude conductivity. In addition, we find

Jbulk(z) = i

ω̄

ω2
p

4π
Ebulk(z) + J′(z), (15)

where

J′(z) =
∞∑

n=−∞

2πρne
iqnz

k2 + q2
n

F(k,qn; ω̄) (16)

signifies nonlocal electrical responses that would engender
dispersive plasma waves. In the expression

F(k,q; ω̄) =
( m

2πh̄

)3
∫

d3v(−e2f ′
0)v

∞∑
l=2

(
kvx + qvz

ω̄

)l

,

(17)
only terms with odd l contribute in the series. Note that the
normal component of J′(z) vanishes identically at all surfaces,
i.e., J ′

z(0) = J ′
z(d) = 0.

Piecing everything together we obtain

JD(z) = i

ω̄

ω2
p

4π
E(z) + J′(z).

As in the hydrodynamic/Drude model, which is valid only for
diffusive electronic motions, the relation between JD(z) and
E(z) assumes the form of a generalized Ohm’s law. This is
why we consider JD(z) a diffusive component, irrespective of
the value of τ . Its divergence is easily found to be

∇ · JD(z) = i

ω̄

∞∑
n=0

�2(k,qn; ω̄)ρn cos(qnz), (18)

where, with k := (k,q),

�2(k,q; ω̄) = ω2
p + 4πω̄k · F(k,q; ω̄)

k · k
. (19)

Fourier transforming Eq. (18) yields

1

dn

∫ d

0
dz cos (qnz)∇ · JD(z) = i

ω̄
�2(k,qn; ω̄)ρn. (20)

We will show that �(k,q; ω̄) is intimately related to the
properties of bulk plasma waves. As expected, �(k,q; ω̄) only
depends on the length of k, not its direction. This becomes
evident by writing kvx + qvz = k · v in Eq. (17). The first
nonvanishing contribution to �(k,q; ω̄) comes from the term
l = 1 in the series in F(k,q; ω̄). Retaining only this term, we
get

�2(k,q; ω̄) ≈ ω2
p

[
1 + 3

5

(k2 + q2)v2
F

ω̄2

]
. (21)

Upon replacing ω̄ with ωp, one immediately revisits the
dispersion relation for bulk waves, which could also be reached
through the hydrodynamic model. In the Drude model, the
dispersion is totally neglected.

It is noted that �(k,q; ω̄) generally possesses an imaginary
part. In case Im(ω̄) is vanishingly small, the imaginary part
arises from a pole, located at ω̄ = kvx + qvz, in the integrand
in Eq. (17), giving rise to Landau damping in bulk waves and
SPWs. In our numerical computation of ω̄, Landau damping
will be automatically included.
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2. Surface-ballistic current density

Separating the contributions of emerging electrons from that of reflected electrons, we write JB(z) = JB,emg(z) + pJB,ref (z).
Explicitly, we find

JB,emg/ref (z) =
( m

2πh̄

)3
∫

d3vev[
(vz)e
i ω̃z

vz g
(1)
B,emg/ref (v) + 
(−vz)e

i
ω̃(z−d)

vz g
(2)
B,emg/ref (v)]

=:
( m

2πh̄

)3
∫

d3vJB,emg/ref (v,z), (22)

where we have defined JB,emg/ref (v,z) as the contribution from the beam of electrons with velocity v. Using the expressions of
g

(1/2)
B,emg/ref (v) given by f [Eqs. (11)–(13)], we can rewrite it

JB,emg/ref,x|z(v,z) = 
(vz)e
2f ′

0

∞∑
n=0

2πρn

k2 + q2
n

Lemg/ref

(
vx,vz,k,qn,ω̄,(−1)n

)
vx|z(e

i ω̃z
vz + (+|−)(−1)nei

ω̃(d−z)
vz ), (23)

where, with s = ±1,

Lemg(vx,vz,k,q,ω̄,s) = 2
(
q2v2

z + ω̃kvx

)
ω̃2 − q2v2

z

+ k(vz − ivx)

kvz + iω̃
+ se−kd k(vz + ivx)

kvz − iω̃
, (24)

Lref (vx,vz,k,q,ω̄,s) = 2
(
q2v2

z − ω̃kvx

)
ω̃2 − q2v2

z

(1 − se
i ω̃d

vz ) + k(vz − ivx)

kvz − iω̃
(1 − e

(i ω̃
vz

−k)d ) + se−kd k(vz + ivx)

kvz + iω̃
(1 − e

(i ω̃
vz

+k)d ). (25)

In the limit d → ∞, all the exponentials in Lemg/ref vanish and we would recover the result for semi-infinite metals; JB,emg/ref (z)
could then be written as a sum of that for two semi-infinite metals. As expected, the surfaces of the film are decoupled in this
limit. For thin films, Eq. (23) implies that JB,emg/ref (v,z) mainly runs along the surface for symmetric modes while normal to it
for antisymmetric modes.

The divergence of JB(z) can be easily obtained. In the first place we have

∇ · JB,emg/ref (z) = iω̄
( m

2πh̄

)3
∫

d3v
(vz)e
2f ′

0

∞∑
n=0

2πρn

k2 + q2
n

Lemg/ref (vx,vz,k,qn,ω̄,(−1)n)
(
e
i ω̃z

vz + (−1)nei
ω̃(d−z)

vz

)
, (26)

whose Fourier transform is

1

dm

∫ d

0
dz cos(qmz)∇ · JB,emg/ref (z) = i

ω̄

∞∑
n=0

Memg/ref,mnρn, (27)

with

Memg/ref,mn = �mn

dm

2πω̄2

k2 + q2
n

(
m

2πh̄

)3 ∫
d3v
(vz)e

2f ′
0

iω̃vz

ω̃2 − q2
mv2

z

(
1 − (−1)nei ω̃d

vz

)
Lemg/ref (vx,vz,k,qn,ω̄,(−1)n). (28)

Here �mn = 1 + (−1)m+n, which would vanish identically unless m and n have the same parity. It follows that

1

dm

∫ d

0
dz cos(qmz)∇ · JB(z) = i

ω̄

∞∑
n=0

Mmnρn, Mmn = Memg,mn + pMref,mn. (29)

We can write M = M+ ⊕
M−, where M± = M±

emg + pM±
ref operates on the space of ρ±(z), with

M±
emg/ref,mn = 1

dm

4πω̄2

k2 + q2
n

( m

2πh̄

)3
∫

d3v
(vz)e
2f ′

0
iω̃vz

ω̃2 − q2
mv2

z

(
1 ∓ e

i ω̃d
vz

)
Lemg/ref (vx,vz,k,qn,ω̄, ± 1). (30)

In Appendix C, we show that M± is of the order of kvF /ωp.

E. Equation of motion and SPW solutions

1. Symmetric and antisymmetric modes

We proceed to transform Eq. (3) into the equation of motion
for ρ(z). In the first place let us show that ρ+(z) and ρ−(z) are
strictly decoupled. As is clear from preceding subsections,
∇ · J(z) and hence the entire left hand side of Eq. (3) are block
diagonal with respect to the subspaces, respectively, spanned

by ρ+(z) and ρ−(z). We can prove that S(z) disconnects the
subspaces as well. To this end, we Fourier transform S(z) in
Eq. (4) to obtain

Sm = 1

dm

∫ d

0
dz cos(qmz)S(z) = 1

dm

[Jz(d)(−1)m − Jz(0)].

Linearly depending on ρ(z) = ρ+(z) + ρ−(z), Jz(z) can be
split as Jz(z) = J+

z (z) + J−
z (z), where J

+/−
z (z) denotes the

contributions from ρ+/−(z). From their expressions given in
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preceding sessions, we easily deduce that

J+/−
z (0) ± J+/−

z (d) = 0, (31)

by which we rewrite

Sm = − 1

dm

[J+
z (0)(1 + (−1)m) + J−

z (0)(1 − (−1)m)]. (32)

This equation allows us to organize Sm in the form of
a column vector S = S+

⊕
S−, where S+,l = S2l contains

all the elements m = 2l with l = 0,1,..., while S−,l = S2l+1

contains all the elements m = 2l + 1. As such, the symmetric
and antisymmetric modes belong to different sectors and are
strictly decoupled. We can write

S+/− = −4J
+/−
z (0)

d
E+/−, (33)

where E+,l = 1 − δl,0/2 and E−,l = 1.

2. Equation of motion

The equation of motion is obtained by Fourier transforming
Eq. (3) and using Eqs. (20), (27), and (30) as well as (33). We
find

[H+/−(ω̄) − ω̄2I]ρ+/− = iω̄J+/−
z (0)

4

d
E+/−, (34)

where the matrix reads

H+/−
ll′ (ω̄) = δl,l′�

2(k,q
+/−
l ; ω̄) + M+/−

ll′ .

Here the column vectors are defined by ρ+
l = ρ2l and ρ−

l =
ρ2l+1. We can rewrite

J+/−
z (0) = − i

ω̄

d

4

∞∑
l=0

G+/−
l ρ

+/−
l = − i

ω̄

d

4
G+/−ρ+/−, (35)

where G+/− = G+/−
D + G+/−

B is a row vector. We have

G+/−
l = 4πG+/−(k,q

+/−
l ; ω̄)

k2 + (q+/−
l )2

, (36)

where G+/−(k,q; ω̄) = G
+/−
D (k) + G

+/−
B (k,q; ω̄), with

G
+/−
D (k) = 2

d

ω2
p

4π
k(1 ∓ e−kd ),

which is comparable to the counterpart for semi-infinite
metals, and

G
+/−
B (k,q; ω̄)

= iω̄
2

d

( m

2πh̄

)3
∫

d3v
(vz)(−e2f ′
0)

( ± e
i ω̃d

vz − 1
)

× vzL(vx,vz,k,q,ω̄, ± 1), (37)

where L(vx,vz,k,q,ω̄,s) = Lemg(vx,vz,k,q,ω̄,s) +
pLref (vx,vz,k,q,ω̄,s), with Lemg/ref given by Eqs. (24)
and (25).

3. SPWs as localized solutions

Two types of solutions exist to Eq. (34), depending
on whether J

+/−
z (0) vanishes or not. SPWs are described

by solutions with J
+/−
z (0) �= 0. These solutions represent

localized surface waves, for which the equation can be directly
solved. We obtain

1 = G+/−[H+/−(ω̄) − ω̄2I]−1E+/−, (38)

which involves no approximations.
Let us write the solution as ω̄ = ωs + iγ0 and hence the

SPW eigenfrequency is given by ω = ωs + iγ with γ = γ0 −
1/τ . One can show that ωs + iγ0 always occurs with −ωs +
iγ0, in accord with the fact that ρ(x,t) is real valued. We shall
take ωs � 0 for definiteness.

Dropping M+/− as an approximation, the equation be-
comes

1 =
∞∑
l=0

4πG+/−(k,q
+/−
l ; ω̄)

k2 + (q+/−
l )2

(1 − δl,0/2)|1
�2(k,q

+/−
l ; ω̄) − ω̄2

. (39)

In addition, we have

ρ
+/−
l = iω̄J

+/−
z (0)

�2(k,q
+/−
l ; ω̄) − ω̄2

4

d
[(1 − δl,0/2)|1]. (40)

Notably, τ is not explicitly involved in any of the above
equations, implying that the value of ω̄ does not depend
on τ .

F. Approximate and numerical solutions

1. Hydrodynamic/Drude limits

The hydrodynamic model is attained when the surface-
ballistic effects, synthesized in the quantity G

+/−
B (k,q; ω̄), are

ignored in total and the bulk plasma wave dispersion is taken as
given by Eq. (21), i.e., �(k,q; ω̄) ≈ ω2

p + (3/5)(k2 + q2)v2
F .

In the Drude model, the dispersion is also ignored. In
both models, ω̄ is real valued and Im(ω) = −1/τ . Solving
Eq. (39) without G

+/−
B (k,q; ω̄), for large d we obtain ω

+/−
s =

ω
+/−
s0 , with ω

+/−
s0 = (ωp/

√
2)

√
1 ± e−kd for the symmet-

ric/antisymmetric modes of SPWs. Note that the bulk wave
frequency always lies above the SPW frequency and hence the
factor 1/(�2(k,q; ωp) − ω̄2) never develops a pole near ωs :
SPWs cannot decay via bulk waves.

2. Approximate solutions

We can solve (39) approximately. To the lowest order in
γ0/ωs , we may determine ωs by approximating the real part
of (39) as follows

1 ≈
∞∑
l=0

4πRe[G+/−(k,q
+/−
l ; ωs)]

k2 + (q+/−
l )2

(1 − δl,0/2)|1
�2(k,q

+/−
l ; ωs) − ω2

s

.

(41)
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The as-obtained ωs is then substituted in the imaginary part of Eq. (39) to get γ0. We find

γ0

ωs

≈ −1

2

∑∞
l=0

4π

k2+(q+/−
l )2

(1−δl,0/2)|1
�2(k,q

+/−
l ;ωs )−ω2

s

Im[G+/−(k,q
+/−
l ; ωs)]∑∞

l=0
4π

k2+(q+/−
l )2

(1−δl,0/2)|1
�2(k,q

+/−
l ;ωs )−ω2

s

Re[G+/−(k,q
+/−
l ; ωs)]

ω2
s

�2(k,q
+/−
l ;ωs )−ω2

s

, (42)

which can be brought into a rather simple form if we take �(k,q; ωs) ≈ ωp and ω2
s /ω

2
p ∼ 1/2 for kd � 1. We get

γ0

ωs

≈ −1

2

∑∞
l=0

(1−δl,0/2)|1
k2+(q+/−

l )2
Im[G+/−(k,q

+/−
l ; ωs)]∑∞

l=0
(1−δl,0/2)|1
k2+(q+/−

l )2
Re[G+/−(k,q

+/−
l ; ωs)]

= 1

2

Re[J+/−
z (0)]

Im[J+/−
z (0)]

, (43)

with J
+/−
z (0) evaluated by Eq. (35) with ωs in place of ω̄. This

relation can also be established by an energy analysis, see
Sec. IV. By virtue of the relation that Im[G+/−(k,q; ωs)] +
Im[G+/−(k,q; −ωs)] = 0, the same Im(ω̄) exists for −ωs , as
anticipated from the fact that charge density waves are real-
valued waves.

To make progress, we need to evaluate G
+/−
B (k,q; ω̄).

Writing the integration in Eq. (37) in spherical coordinates
and performing it over the magnitude of v, we arrive at

G
+/−
B (k,q; ω̄) = −i

2

d

ω2
p

4π

3ω̄

4πvF

∫ 2π

0
dϕ

∫ π/2

0
dθ sin θ cos(θ )

× L̃(vF sin θ cos ϕ,vF cos θ,k,q,ω̄,±), (44)

where we have written v = v(sin θ cos ϕ, sin θ sin ϕ, cos θ )
and L̃(vx,vz,k,q,ω̄,s) = (1 ∓ eiω̃d/vz )L(vx,vz,k,q,ω̄,s). We
expand all factors other than eiω̃d/vz in L(vx,vz,k,q,ω̄,s) into
a series of kvF /ω̄ and retain only the leading term. We find

L(vx,vz,k,q,ω̄,s) ≈ 2q2v2
z

ω̄2 − q2v2
z

(1 + p − speiω̃d/vz )

+ (1 − se−kd )

[
kvx

ω̄
(1 − p + peiω̃d/vz )

+ kvz

iω̄
(1 − p − peiω̃d/vz )

]
. (45)

Upon being formally integrated over ϕ, the integral in
Eq. (44) ends up in this form,

∫ 1
0 dr(L0(r) + eir0/rL1(r) +

e2ir0/rL2(r)), where only the dependence on r = cos θ is
explicitly noted down in the integrand and r0 = ω̄d/vF � 1.
As eir0/r and e2ir0/r are rapidly oscillating functions whereas
L1,2,3(r) are slowly varying functions, L0(r) is the dominant
contribution to the integral. We neglect other contributions and
obtain

G
+/−
B (k,q; ω̄) ≈ −i

2

d

ω2
p

4π

3ω̄

vF

(1 + p)
∫ 1

0
dr

q2v2
F r3

ω̄2 − q2v2
F r2

− 2

d

ω2
p

4π
k(1 ∓ e−kd )

1 − p

2
. (46)

This expression explicitly shows that Im[G+
B (k,q; ωs)] =

Im[G−
B (k,q; ωs)] < 0, leading to γ0 > 0 by virtue of Eq. (42).

It follows that Re[G+/−(k,q; ωs)] =
(2/d)(ω2

p/4π )k(1 ∓ e−kd )(1 + p)/2. Substituting this in
Eq. (41) and converting the sum therein into an integral for
large d, we get ω

+/−
s /ωp =

√
1 − (1 ± e−kd )(1 + p)/4. See

that ω
+/−
s depends on surface properties via the parameter

p. Only for p = 1 would the conventional value, ωp/
√

2,
be recovered. For p = 0 and at large kd, ωs = (

√
3/2)ωp is

slightly larger than the former. It is notable that, ω+
s remains

finite even for k = 0, in distinct contrast with the Drude
model. The reason is simple: In the Drude model no electric
field could exist in the metal for symmetric modes at k = 0,
while in our theory, due to a spatial spread of charge density,
the electric field does not vanish. The same conclusion applies
to semi-infinite metals.

To estimate γ0 by Eq. (42), we take in Eq. (46)∫ 1
0 dr

q2v2
F r3

ω̄2−q2v2
F r2 ≈ (qvF /2ω̄)2 for simplicity. Thus,

Im[G+/−
B (k,q; ωs)]≈ − (2/d)(ω2

p/4π )(3/4)(vF /ωs)(1+p)q2,

which is then plugged in Eq. (42) to produce
γ0 ∼ (3/2π )(ωp/

√
2)/(1 ∓ e−kd ) ≈ 0.35ωp. In obtaining

this expression, we have put
∑

l

(q+/−
l )

2

(q+/−
l )

2+k2
≈ qcd/2π with

qcvF ∼ ωp/
√

2. Landau damping has been excluded here, as
the approximation only takes the real part of �(k,q; ωs).

3. Numerical solutions

We can also accurately solve Eq. (39) numerically. The
results are displayed in Figs. 1(a), 1(b), and 1(c). A com-
parison with the approximate solution is not direct, because
the approximate solution has excluded while the numerical
solution has automatically taken care of Landau damping. It
is stressed that the numerical solutions do not depend on the
value of qc, provided it is large enough—in excess of ks .

IV. ENERGY CONVERSION WITH SURFACES

In this section, we show that the surface plays a critical
role in the energy conversion of bounded systems. While it
might be straightforward to handle this issue if the surface
potential φs(x,t) is exactly known, it is less clear otherwise.
Here we derive from Eq. (1) a generic equation that governs
the evolution of the electrostatic potential energy, denoted by

Ep(t) = (1/2)
∫

d3xρ(x,t)φ(x,t)

of the system, dispensing with the need to know φs(x,t). We
then use it to furnish another proof of Eq. (43). For this purpose,
we multiply Eq. (1) by φ(x,t) and integrate it over space to
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obtain (
∂t + 2

τ

)
Ep(t) = −P (1)(t) − P (2)(t), (47)

where P (1)(t) = ∫
d3xJ(x,t) · E(x,t) is no more than the work

done by the electric field on the electrons per unit time and

P (2)(t) = 1

2

∫
d3xJ (x,t)Ez(x,t),

(48)
J (x,t) = Jz(x0,t)
(z) − Jz(xd ,t)
(z − d).

It is evident that P (2)(t) signifies the work done by the surface
on the electrons per unit time: Electrons impinging toward the
surface may lose their momentum. As far as we are concerned,
this term and its consequences have hitherto not been discussed
in existing work. We can translate Eq. (47) into the following,
see Appendix A for details,

γ0

∫
dz(Re[ρ(z)]Re[φ(z)] + Re → Im)

= −1

2

{∫
dz(Re[J(z)] · Re[E(z)] + Re → Im)

+ 1

2

∫
dz(Re[J (z)]Re[Ez(z)] + Re → Im)

}
, (49)

where the integral is extended over the metal. If the phase of
ρ(z) is global, i.e., independent of z, Eq. (49) holds valid even
without the abbreviated term.

Now we show how Eq. (43) can also be reached from
Eq. (49). Neglecting Landau damping, by Eq. (40) we can
show that ρ(z) has a global phase. We can then ignore in
this equation the terms abbreviated as Re → Im without
affecting the results. To the zeroth order in γ0, it is obvious that
Re[JD(z)] · Re[E(z)] = 0 and Re[JD(z)]Re[Ez(z)] = 0, i.e.,
diffusive currents do not bear net work from the electric field.
As for the surface-ballistic currents, note that JB(v,z) contains
the rapidly oscillating factor eiω̃z/vz , which suppresses the term∫

dzRe[JB(z)] · Re[E(z)] by the factor kvF /ωp, echoing the
fact that M+/− can be neglected in Eq. (34). As such, we have

γ0 ≈ −1

2

1
2

∫
dzRe[JB(z)]Re[Ez(z)]∫
dzRe[ρ(z)]Re[φ(z)]

= −1

4

Re
[
JB,z(0)

]
Re[φ(0)] − Re

[
JB,z(d)

]
Re[φ(d)]∫

dzRe[ρ(z)]Re[φ(z)]

= −1

2

Re[Jz(0)]Re[φ(0)]∫
dzRe[ρ(z)]Re[φ(z)]

,

where in the last equality, we have used the fact that,
for either symmetric or antisymmetric modes Jz(d)φ(d) +
Jz(0)φ(0) = 0 and that Re[Jz(0)] = Re[JB,z(0)]. To evaluate
the denominator, we utilize the equation of motion in real
space. It can be easily obtained from Eq. (3) with ∇ · J(z) ≈
∇ · JD(z) ≈ (i/ω̄)ω2

pρ(z). We find

ρ(z) ≈ 1

i

ω̄

ω2
p − ω̄2

[Jz(d)δ(z − d) − Jz(0)δ(z)],

=⇒ Re[ρ(z)] ≈ ωs

ω2
p − ω2

s

(Im[Jz(d)]δ(z − d)

− Im[Jz(0)]δ(z)), (50)

As a result,
∫

dzRe[ρ(z)]Re[φ(z)] ≈ − ωs

ω2
p−ω2

s
Im[Jz(0)]

Re[φ(0)]. By substitution, we immediately recover Eq. (43).

V. DISCUSSIONS AND CONCLUSIONS

Thus, on the basis of Boltzmann’s equation, we have
established a rigorous theory for SPWs in metal films with
arbitrary electronic collision rate 1/τ . As a key consequence of
the theory, we find that there exists a self-amplification channel
for SPWs, which would cause the latter to spontaneously
amplify at a rate γ0 if not for electronic collisions. Surprisingly,
the value of γ0 turns out to be independent of τ . The presence of
this channel is guaranteed by the causality principle. Whether
the system could actually amplify or not depends on the
competition between γ0 and 1/τ . If γ0 > 1/τ , SPWs will
amplify and the system will become unstable. In our theory,
the nonequilibrium deviation g(v,z) refers to the Fermi-Dirac
distribution f0(ε); as such, the instability is one of the Fermi
sea. Needless to say, the instability will be terminated once the
system deviates far enough from the Fermi sea and settles in a
stable state. Clarifying the nature of the destination state is a
subject of crucial importance for future study.

One central feature of our theory is the classification of
current densities into a diffusive component JD(z) and a
surface-ballistic component JB(z). This classification is not
based on the value of τ but according to whether the component
obeys the (generalized) Ohm’s law or not. Apart from this,
these components are also discriminated in other ways. Firstly,
they are controlled by different length scales. As it largely
follows the local electric field E(z), the characteristic length
associated with JD(z) is k−1. On the other hand, the length
for JB(z) is vF /γ0, because of simple z dependence. Secondly,
they are oriented disparately. JD(z) is largely oriented normal
to E(z) locally whereas JB(z) is normal to the surfaces—
especially for p close to unity. Considering energy conversion,
this explains why JD(z) does not destabilize the Fermi sea
but JB(z) does. Thirdly, JD(z) is a bulk property and exists
regardless of the surface. On the contrary, JB(z) reflects true
surface effects and it would disappear without surfaces.

Although our theory applies at finite temperature, our
calculation of ω̄ is done only at zero temperature, i.e., we have
taken f0(ε) to be a step distribution. Clarifying the temperature
dependence of Im(ω̄) is important for experimental studies
of the present theory, because the net amplification/damping
rate γ = γ0 − 1/τ can be directly measured. Arguably, γ0

could bear a different temperature dependence than 1/τ . In
sufficiently pure samples, in which the residual resistivity is
small enough, there might exist a critical temperature T ∗,
above which γ < 0 while below it γ > 0. In other words,
T ∗ marks the transition of the system from the Fermi sea to a
more stable state.

Another problem that needs to be addressed in the future
for experimental studies is concerned with the effects of
interband transitions. In the most experimented materials,
such as silver and gold, these transitions are known to have
dramatic effects. They not only open a loss channel due
to interband absorption but also significantly shift the SPW
frequency. Including them in our formalism consists of a
simple generalization: In addition to JD(z) and JB(z), the
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total current density J(z) must now also have a component
Jint (z) accounting for interband transitions. The equation of
motion is obtained by substituting J(z) in Eq. (3). One may
write Jint,μ(z) = ∑

ν

∫
dz′σμν(z,z′; ω)Eν(z′), where μ,ν =

x,y,z and the interband conductivity σμν can in principle
be calculated using Greenwood-Kubo formula. In practice,
calculating σμν could be a formidable task even for the
imaginably simplest surfaces. Nevertheless, one may argue
that Jint (z) primarily affects the properties of bulk waves,
namely, �(k,q; ω̄). The causality principle should still protect
the amplification channel, though the value of ω̄ may depend
on τ . A systematic analysis will be presented elsewhere.

To conclude, we have presented a theory for SPWs in
metal films taking into account the unique interplay between
ballistic electronic motions and boundary effects, from which it
emerges a universal self-amplification channel for these waves.
It is expected that the study will bear far-reaching practical
and fundamental consequences, which are to be explored in
the future. We hope that the work could stimulate more effort
on this subject.
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APPENDIX A: MORE ABOUT EQS. (47)–(49)

The not-so-obvious step in proving Eq. (49) is to show that

∂tEp(t) =
∫

d3xφ(x,t)∂tρ(x,t). (A1)

For this purpose, we write φ(x,t) = Re[e−iωtφ(x)] and
ρ(x,t) = Re[e−iωtρ(x)], where φ(x) = eikxφ(z) and ρ(x) =
eikxρ(z). Moreover, we put ω = ωs + iγ , φ(x) = φ′(x) +
iφ′′(x) and similarly for other complex quantities. By sub-
stitution, we find

∂tEp(t) −
∫

d3xφ(x,t)∂tρ(x,t)

= e2γ t

2

∫
d3x[φ′′(x)ρ ′(x) − φ′(x)ρ ′′(x)]. (A2)

However,
∫

d3xφ′(x)ρ ′′(x) = ∫
d3xφ′′(x)ρ ′(x) = 0. Actually,

we have

∫
d3xφ′(x)ρ ′′(x)

=
∫

dz

∫
d2r(φ′(z)ρ ′′(z) cos2 kx − φ′′(z)ρ ′(z) sin2 kx)

∝
∫

dz(φ′(z)ρ ′′(z) − φ′′(z)ρ ′(z))

∝
∫

dz

∫
dz′[ρ ′′(z)e−k|z−z′|ρ ′(z′) − ρ ′(z)e−k|z−z′ |ρ ′′(z′)]

= 0, (A3)

thus completing the proof.
Let us suppose ρ(z) has a global phase, i.e., ρ(z) = cn(z),

where c is a complex constant and n(z) is real valued. One can
show that Eq. (49) can be turned into an equation that involves
only n(z), wherein c plays no role. In other words, Eq. (49)
can be evaluated by simply pretending c [and ρ(z)] to be real.
The proof is evident considering the linear relations between
ρ(z) and J(z) and that between ρ(z) and φ(z) as well as that
between ρ(z) and E(z).

APPENDIX B: ELECTRONIC DISTRIBUTION FUNCTIONS

The general solution to Eq. (7) is given by

g(v,z) = e
i ω̃z

vz

(
C(v) − e∂vf0

mvz

·
∫ z

0
dz′e−i ω̃z′

vz E(z′)
)

, (B1)

where C(v) is an arbitrary integration constant to be
determined by boundary conditions. Let p1 and p2 be the
Fuchs parameters for the (uniform) surfaces at z = 0 and
z = d, respectively. The boundary condition at z = 0 is taken
that g((vx,vy,vz > 0),z = 0) = p1g((vx,vy, − vz),z = 0)
while that at z = d assumes g((vx,vy,vz < 0),z = 0) =
p2g((vx,vy, − vz),z = 0), both evaluated at Ez(z) = 0. After
some algebra, one finds

g(v,z) = e
i ω̃z

vz

⎧⎪⎨
⎪⎩

1

p1p2−e
− 2dω̃

vz

∫ d

0 dz′ eE(z′)·∂vf0

mvz

(
e
−i

(2d+z′)ω̃
vz + p1e

−i
(2d−z′ )ω̃

vz

) + ∫ d

z
dz′ eE(z′)·∂vf0

mvz
e
−i ω̃z′

vz , for vz � 0,

−1

p1p2−e
2dω̃
vz

∫ d

0 dz′ eE(z′)·∂vf0

mvz

(
e
i

(2d−z′)ω̃
vz + p1e

i ω̃z′
vz

) − ∫ z

0 dz′ eE(z′)·∂vf0

mvz
e
−i ω̃z′

vz , for vz < 0.
(B2)

The electronic distribution functions presented in the main text in Sec. III are obtained by approximating (1 − p1p2e
i 2dω̃

vz )
−1 ≈ 1

for vz � 0 and (1 − p1p2e
−i 2dω̃

vz )
−1 ≈ 1 for vz < 0 in this equation.

1. Causality principle

It should be pointed out that, in applying the boundary
conditions, we have implicitly assumed Im(ω̃) � 0; otherwise,
we would find unphysical solutions that violate the principle of
causality, which states that the number of outgoing electrons

is determined by the number of incoming electrons, not
otherwise. It is easy to show that, had we assumed Im(ω̃) < 0,
we would have found the opposite: the number of reflected
electrons would be fixed while the number of incident electrons
would go to infinity as p1/2 → 0.
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APPENDIX C: THE MATRIX M+/−

In the first place, we show that M+/−/ω2
p ∝ ikvF /ω̄ + ..., where the ellipsis stands for higher order terms in kvF /ω̄. We

take the symmetric modes for illustration, as the reasoning can be replicated for the antisymmetric modes as well. Writing∫
d3v
(vz) = ∫ 2π

0 dϕ
∫ π/2

0 dθ sin θ
∫ ∞

0 dv2(v/2) and integrating over v, we find

M+
l,l′

ω2
p

= i

(
1 − δl,0

2

)
3

2πkd

∫ 2π

0
dϕ

∫ π/2

0
dθ sin θ

ω̄2 cos θ − ω̄kvF sin θ cos θ cos ϕ

(ω̄ − kvF sin θ cos ϕ)2 − (q+
l )2v2

F cos2 θ

kω̄/vF

k2 + (q+
l′ )2

×(
e
i
(

ω̄
vF cos θ

−k tan θ cos ϕ
)
d − 1

)
L(vF sin θ cos ϕ,vF cos θ,k,q+

l′ ,ω̄, + 1). (C1)

To the lowest order in kvF /ω̄, we only need to retain L(0) in the expansion Lsym = ∑∞
m=0 L(m)(kvF /ω̄)m. Thus,

L(vF sin θ cos ϕ,vF cos θ,k,q,ω̄, + 1) ≈ 2
q2v2

F cos2 θ

ω̄2 − q2v2
F cos2 θ

(
1 + p − pe

i
(

ω̄
vF cos θ

−k tan θ cos ϕ
)
d)

. (C2)

Substituting this back in (C1) and approximating

ω̄2 cos θ − ω̄kvF sin θ cos θ cos ϕ

(ω̄ − kvF sin θ cos ϕ)2 − q2v2
F cos2 θ

≈ ω̄2 cos θ

ω̄2 − q2v2
F cos2 θ

,
q2

q2 + k2
≈ 1, (C3)

we arrive at

M+
l,l′

ω2
p

= i

(
1 − δl,0

2

)
3

πkd

(
kvF

ω̄

) ∫ 2π

0
dϕ

∫ π/2

0
dθ sin θ

cos3 θ

1 − (q+
l vF /ω̄)2 cos2 θ

L(θ,ϕ)

1 − (q+
l′ vF /ω̄)2 cos2 θ

, (C4)

where

L(θ,ϕ) = (
e
i
(

ω̄
vF cos θ

−k tan θ cos ϕ
)
d − 1

) × (
1 + p − pe

i
(

ω̄
vF cos θ

−k tan θ cos ϕ
)
d)

. (C5)

Clearly, we have M+/ω2
p ∼ kvF /ω̄, as stated.

We may proceed further if we take

3

π

∫ 2π

0
dϕ

∫ π/2

0
dθ sin θ

cos3 θ

1 − (q+
l vF /ω̄)2 cos2 θ

L(θ,ϕ)

1 − (q+
l′ vF /ω̄)2 cos2 θ

≈ 3

π

∫ 2π

0
dϕ

∫ π/2

0
dθ sin θ cos3 θL(θ,ϕ) ∼ −1, (C6)

from which it follows that M+
l,l′ ≈ M0 = −iω2

p(1/kd)(kvF /ω̄), which is a constant. Therefore, M+
l,l′ ≈ M0Zl,l′ , where Zl,l′ = 1

constitutes a unity matrix. We write, with W+
l,l′ = δl,l′�(k,q+

l ; ω̄),

[(W+)2 − ω̄2I + M+]−1 = U−1[(W̃+)2 − ω̄2I + M̃+]−1U, (C7)

where U is a similarity transformation that brings M+ and hence Z to a diagonal form. We have used a tilde to indicate the
transformed matrices, e.g., we write Z̃ = UZU−1. See that Z̃ has only one nonvanishing element, whose value amounts to the
dimension Nc of the matrix. Let it be the l0th element. Then Z̃l,l′ = Ncδl,l0δl′,l0 . Obviously, Nc = qcd/2π ∼ (ω̄/kvF )(kd/2π ).
As such, M0 ∼ 1/Nc and M̃+

l,l′ ∼ −i(ω2
p/2π )δl,l0δl′,l0 . Introducing G̃+ = G+U−1 and Ẽ+ = UE+, we can rewrite the equation

of motion for the symmetric modes as

1 = G̃+[(W̃+)2 − ω̄2I + M̃+]−1Ẽ+. (C8)

Taking W+ ≈ ωpI and hence W̃+ ≈ ωpI, this equation becomes

1 =
∑

l

G̃+
l

1

ω2
p − ω̄2 + M̃+

l,l

Ẽ+,l =
∑

l

G+
l

1

ω2
p − ω̄2

E+,l +
[
G̃+

l0

1

ω2
p(1 + i/2π ) − ω̄2

Ẽ+,l0 − G+
l0

1

ω2
p − ω̄2

E+,l0

]

≈
∑

l

G+
l

1

ω2
p − ω̄2

E+,l .

The term in the square bracket makes only a contribution of the order of ∼1/Nc and can be neglected for large Nc.
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