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General scheme for stable single and multiatom nanomagnets according to symmetry selection rules
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At low temperature, information can be stored in the orientation of the localized magnetic moment of an
adatom. However, scattering of electrons and phonons with the nanomagnet leads its state to have incoherent
classical dynamics and might cause fast loss of the encoded information. Recently, it has been understood that
such scattering obeys certain selection rules due to the symmetries of the system. By analyzing the point-group
symmetry of the surface, the time-reversal symmetry and the magnitude of the adatom effective spin, we identify
which nanomagnet configurations are to be avoided and which are promising to encode a stable bit. A new
tool of investigation is introduced and exploited: the quasispin quantum number. By means of this tool, our
results are easily generalized to a broad class of bipartite cluster configurations where adatoms are coupled
through Heisenberg-like interactions. Finally, to make contact with the experiments, numerical simulations have
been performed to show how such stable configurations respond to typical scanning tunneling microscopy
measurements.
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I. INTRODUCTION

In recent years, great effort has been made to scale down
the dimension of spintronic devices able to store classical bits
of information. For this purpose, current research is devoted
to understand the physics of single atoms and small clusters
absorbed on nonmagnetic metallic [1–4] or insulating [5–9]
surfaces. The theoretical description of the dynamics of
such systems is challenging as it lies at the intersection of
classical [10–12] and quantum [13] mechanics.

The low temperature dynamics of suitable adatoms, without
applied magnetic field, may be described by two degenerate
low-energy states with opposite magnetization. These states
can be naturally regarded as the bit constituents. Unfortunately,
not all adatoms present this feature as it relies on specific
environmental conditions like the hybridization mechanism
with the surface and the symmetry of the crystal field produced
by the substrate [14,15]. In particular, some systems exhibit
no degenerate ground state and the two lowest-energy states
have no magnetization at all. This feature is referred to as
ground-state splitting (GSS) and is due to the coupling of the
orbital degree of freedom of the adatom with the crystal field.

To be suitable as memory storage [16], an engineered bit is
required to retain its state over an extended time period [17].
Hyperfine interactions inside the adatom [18] and the contact
with the substrate induce the atomic state to have an incoherent
dynamics. In particular, the scattering of electrons and phonons
off the adatom may be such that the stability of its state is
affected drastically due to frequent switching between the
ground states.

With time the scientific community has started to recognize
the role played by the symmetries of the system [3,17,19].
Their implications are extremely relevant not only in de-
termining whether the two low-energy atomic states are
magnetized but also in constraining their stochastic dynamics.
In particular, first-order processes mediated by the substrate
electrons that make the adatom in one low-energy state to jump
to another one—usually called single-electron (SE) switching
processes—may be inhibited by symmetry selection rules [20].

However, symmetry information alone is not always sufficient.
According to models currently in use [13,21], it must be
contrasted with the magnitude of the effective total angular
momentum of the adatom.

In this paper, we present a general scheme to explain and
predict exceptional long lifetimes of spin orientation in single
and multiatomic systems. Hereby we provide a complete and
rigorous map of such combinations of symmetries and total
angular momentum magnitude, valid for small transversal
crystal field. The symmetries we consider are the spatial
point group Cχv of the surface (see Fig. 1) and time reversal.
We consider the possibility that the time-reversal symmetry
could be broken by a finite magnetic field perpendicular

FIG. 1. (a)–(d) Atoms deposited on different surfaces with Cχv

symmetry. χ = 2, 3, 4, and 6, respectively, for the adatoms (a), (b),
(c), and (d). (Bottom right) Sketch of a scanning tunneling microscope
current measurement to infer the total momentum of the adatom. The
tip of the microscope (in grey) exchanges electrons with the surface
through the adatom.
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to the surface. Our findings are in agreement with existing
experimental [3,9] results and previous numerical [19] and
analytical [22] studies. With the restriction to time reversal
symmetry a classification scheme [23] was presented, which
is related to a nontrivial geometric phase. However, we noticed
a difference in the prediction of stable systems in the common
case of zero magnetic field.

Further, we generalize our findings to multiatom clusters
where adatoms are coupled with each other via bipartite
Heisenberg interactions. This extension creates also a link
between our work and classical research on general properties
of spin systems [24,25].

II. SINGLE-ATOM NANOMAGNET

A. Model

The Hamiltonian we consider can be decomposed as
summation of parts related to the atom (A), to the electrons in
the substrate (S) and their mutual interaction

H = HA + HS + Ht. (2.1)

The atom is assumed to be described, at low temperature,
by a magnetic moment of magnitude J . For instance, this is
the case of some rare-earth atoms [26], whose strong internal
spin-orbit coupling is such that only one multiplet of the total
angular momentum plays a role in the low energy physics, and
transition metal ions [27]. The atom, affected by the substrate
crystal field and subject to an external magnetic field �B, can
be described by the single-spin Hamiltonian

HA = H
(0)
A + H

(1)
A + �B · �J , H

(0)
A = −|D| J 2

z , (2.2)

where H
(0)
A represents the so-called uniaxial (longitudinal)

anisotropy (at second order) and H
(1)
A contains higher order

uniaxial and transversal anisotropy terms. The coefficient |D|
has been found as big as 1.5 meV in Fe deposited on CuN [28]
and 0.1 meV in Fe deposited on Cu(111) [4]. In the rest of
the paper we will refer to J as a spin degree of freedom for
brevity; however, the reader must intend that we mean total
angular momentum. The substrate Hamiltonian is that of a
single-band metallic Fermi liquid with no self-interactions:

HS =
∑
k,σ

εk c
†
k,σ ck,σ . (2.3)

Finally, we describe the effective interaction between metal
and adatom by the Appelbaum Hamiltonian [29]

Ht = κ �J · �j, (2.4)

where κ is a momentum-independent coupling strength and
�j = c

†
x=0 �σcx=0 ∝ ∑

k,k′ c
†
k �σck′ is the effective spin degree of

freedom of the metal electrons coupled to the atom. Here and
later, σi are the Pauli matrices and h̄ = 1.

We assume the temperature to be large enough, to justify a
perturbative master equation approach [30] and neglect strong
correlations with the bath, such as the Kondo effect or energy
renormalization [31]. On the other hand, thermal excitations
should be small enough to ensure only the ground states
to be occupied and resemble switching dynamics of a two
level system. According to the Boltzmann distribution, the
temperature should verify kbT � 0.1�, where � ∝ |D| is the

energy gap between the two lowest-energy levels and the other
ones. We will not treat atomic hyperfine interactions.

B. Operators

Three physical operations on the system are relevant for our
analysis of the stability of the atomic nanomagnet: rotation
with discrete angles with axis perpendicular to the surface,
time reversal (TR) and mirror across a certain mirror plane. We
define here their representations in the atomic spin space. In the
next sections, we will regard these operations as symmetries
of the atomic system and analyze the consequences on the
stability of the ground state.

a. Rotation generator. The rotational symmetry of the
adatom within the crystal field maps onto a rotational sym-
metry into the spin space. The generator of the rotation group
is represented by

Rz,2π/χ = exp

(
i
2π

χ
Jz

)
. (2.5)

The rotation generator has the property Rχ = ±1 (we will
omit the subscript in Rz,2π/χ for the rest of the paper),
where the plus refers to integer spin systems and the minus
to half-integer ones. This generator has at most χ distinct
unit eigenvalues, equal to rχ = exp(i 2πn/χ ) with n ∈ Z,
for integer momentum systems, and n ∈ Z + 1/2, for a half-
integer ones.

b. Time-reversal operator. Time reversal is represented by
the antiunitary operator

T = exp(iπ Jy) K, (2.6)

acting on the basis {|J,jz〉}, where K is the conjugation
operator. In the following we will shorten the notation of the
basis states as {|jz〉}.

The action of T can be defined such that T |jz〉 =
(−1)�jz�|−jz〉, where �·� is the floor function. The square of
the TR operator acting on a integer or half-integer momentum
Hilbert space gives 1 or −1, respectively [32].

T commutes with R. Nonetheless, its antiunitarity hinders
the possibility to find a common eigenbasis. Indeed, suppose
|ψ〉 is an eigenstate of R with eigenvalue r , then T R |ψ〉 =
T r |ψ〉 = r∗ T |ψ〉. At the same time T R |ψ〉 = R T |ψ〉 and
we conclude that T |ψ〉 is an eigenstate of R but with eigenvalue
r∗. Considering the quantity 〈T ψ |R|ψ〉 and applying R in
the bracket first to the left and then to the right state, one
immediately concludes that T |ψ〉 ⊥ |ψ〉 when r is non real.
Only if r is real we can find a |ψ〉 which is eigenstate of both
T and R. We will use this feature later, in Sec. II D. In other
words, even though two commuting symmetries are present,
eigenstates cannot be in general labeled with two well defined
quantum numbers at the same time.

c. Mirror operator. Freedom in choosing the coordinate
axes allows to set one mirror plane along yz. We call
M the operator that reflects across this plane. Then, all
other possible reflections with the other mirror planes are
constructed conjugating it with the elements of the rotation
group.

Since �J is a pseudovector, M acts on the spin fundamental
algebra transforming Jy,z to (−Jy,z) while keeping Jx un-
changed. To obtain the explicit representation, we notice that
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this operator is equivalent to a π rotation around x. Therefore

M = eiπ Jx . (2.7)

Notice that M2 = ±1 (the plus refer to integer spins systems
and the minus for half-integer ones) and that M R = R† M .

C. Hamiltonian symmetry constraints
and Stevens operator expansion

Using all symmetries we can characterize the most general
structure that the Hamiltonian can have. In Ref. [26], a general
tesseral harmonic expansion of H compatible with a number
of point symmetry groups is discussed and relative constraints
are found. Here, we stick to the point group Cχ v symmetry
and analyze the Stevens operator expansion of the Hamiltonian
HA in Eq. (2.1). We start considering the spatial symmetries
constraints, then we show the one due to the TR symmetry.

A generic Stevens operator [33] O
q
p (with q < p) is

expressed in a closed form in Ref. [34]. These operators are
Hermitian by construction and, after trivial manipulations, we
can write them in the following form:

Oq
p = 1

2

�(p−q)/2�∑
r=0

c(p,q,r)
{
J

q
+ + J

q
−,J p−q−2r

z

}
,

(2.8)

O−q
p = i

2

�(p−q)/2�∑
r=0

c(p,q,r)
{
J

q
+ − J

q
−,J p−q−2r

z

}
,

where q and p are natural numbers and c(p,q,r) are real
prefactors whose magnitude is not relevant for our discussion.

Since the atomic system has spatial symmetry Cχv , the
equations

[HA,R] = 0, [HA,M] = 0 (2.9)

must hold.
The first equation implies that all matrix elements of

H between states with different eigenvalue rχ must vanish.
Moreover, we can expand HA using the operators in Eq. (2.8).
Each operator O

q
p or O

−q
p , when applied to the basis state

|jz〉, transforms it to a superposition α|jz + q〉 + β|jz − q〉.
The superposition retains the rotation eigenvalue of the latter
state only if rχ (Jz ± q) = rχ (Jz), i.e., if q = mχ,m ∈ N [35].
Therefore only terms proportional to O

±mχ
p , are allowed in the

expansion.
Notice that rotational symmetry in our problem is analogous

to translation symmetry in one dimensional periodic crystals.
The Hamiltonian eigenstates can be labeled with their eigen-
values r and the latter are in one to one correspondence with
a set of quasispin [36] defined in a one dimensional Brillouin
zone (BZ). Such a set is isomorphic to Zχ and can be defined
as {−�χ/2� + 1,−�χ/2� + 2, . . . ,�χ/2�}, for systems with
integer J , and {−�χ/2 + 1/2,−�χ/2 + 3/2, . . . ,�χ/2 −
1/2} for systems with half-integer J (notice the use of floor
and ceiling functions here). For instance, for half-integer spin
systems with χ = 3 the BZ is {−1/2,1/2,3/2}; for integer
ones with χ = 4, the BZ is {−1,0,1,2}. Clearly, every spin
state has a well defined quasispin in the above defined BZs
and this is equal to

J
(q)
Jz

:= ([Jz + (χ − 1)/2] mod χ ) − (χ − 1)/2. (2.10)

FIG. 2. (a) Periodic Brillouin zones (BZs) for integer spin
systems (top) and half-integer ones (bottom). To better visualize the
periodicity of the BZs, their elements (the little circles) are placed at
the complex eigenvalues of R and the number they contain indicates
the associated quasispin. Blue(red) arrows indicate SE transitions
with transfer of positive(negative) quasispin. (b) Typical spectrum
of a three-fold rotation symmetric system with small transversal
anisotropy. On horizontal axis is the average magnetization along
z of the levels. The color code of the level indicates its quasispin
according to the top left case in (a). All figures are adapted from
Ref. [22].

where we make use of the modulo operation (x mod y

indicates the value of x modulo y).
For instance, the spin state with Jz = −4 in a system with

χ = 3 has J (q) = −1. More “bands” are present as soon as
J � χ/2, i.e., when J is such that at least two different spin
states have the same quasispin. Figure 2(a) shows the periodic
BZs for χ = 3,6.

The mirror operator M acts with the transformations
(Jz,J±) → (−Jz,J∓). Equation (2.9) implies [M,O

±q
p ] = 0

and the latter equation constrains the difference p − q to be
even(odd) when the superscript of O is positive(negative).
Hence combining this constraint with the rotational one, we
see that only operators of the form O

mχ

mχ+2n and O
−mχ

mχ+2n+1 with
m,n ∈ N are allowed.

Finally, TR operator acts with the transformation
(J±,Jz) → −(J∓,Jz) and i → (−i). Consequently, TR sym-
metry, if present, implies the label p to be even.

To be explicit, when all symmetries are present, the
allowed Stevens operators in the expansion of HA only
O

(−1)mχ mχ

2n , (m,n ∈ N). Notice that the Hamiltonian would be
always real (in the spin eigenbasis {|jz〉}) for χ �= 3, but is in
general not real for χ = 3 [37].

In the following, we will use the quasispins as quantum
numbers to label the atomic eigenstates. In some cases, the
eigenvalues of the mirror operator M could be added to the set
of the quantum numbers. However, its eigenstates present no
magnetization along the z direction [38] and are not suitable for
the analysis of the next sections. Thus the rotational symmetry
is a central ingredient in determining the stability of the
nanomagnet.

In the rest of the paper, we will allow also for TR symmetry
breaking due to magnetic field. However, only the component
Bz is allowed as is the only one which preserves rotational
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symmetry. Per contra, the mirror symmetry gets broken.
Notice that the antiunitary product operator T M would still
represent a symmetry for the system. We have checked the
implications of this symmetry. It is antiunitary and surprisingly
allows for an additional quantum number for the Hamiltonian
eigenstates. However, since it does not provide strong selection
rules for GSS or SE switching processes, we limit ourselves
to briefly mention them in Appendix B.

D. Ground-state splitting at Ht = 0

We now turn our attention to the first goal: to show that,
assuming Ht = 0 and �B = 0, it is possible to tell whether
the ground state of the atom is degenerate or it is allowed
not to be, only by knowledge of the symmetries and the
magnitude J of its spin. First, switch off momentaneously H

(1)
A

in H (with Ht = 0 and �B = 0). The two degenerate ground
states are |ψGS〉 := |jz = J 〉 and |ψ̃GS〉 := T |ψGS〉 ∝ |−J 〉
(we will omit jz = for the rest of the paper). Even though
H

(0)
A has symmetry C∞v , it is convenient to identify already

their eigenvalues under the action of the rotation generator
Rz,2π/χ (where χ is defined as the maximum value for
which [H (1)

A ,Rz,2π/χ ] = 0 holds). They are rGS = (rG̃S)∗ =
exp{i J 2π/χ} (rG̃S is the eigenvalue for |ψ̃GS〉) and their
quasispin are defined in Eq. (2.10).

Now, we switch on H
(1)
A adiabatically to its actual value.

Energies and eigenstates change along the process, but the
quasispin of all eigenstates are preserved since [H (1)

A ,R] = 0.
At the end of the process the ground states of the system
would have retained their initial quasispins unless some state
with different quasispin crossed the ground states along the
process, becoming lower in energy. Since H

(1)
A is left generic

in our analysis, we can not have control on the final value of the
ground-state quasispin after such crossings. To prevent these
inconvenience, we assume H

(1)
A to be small enough (roughly

speaking, H
(1)
A � H

(0)
A is sufficient).

Using the properties of the TR operator illustrated in
Sec. II B, we claim that eigenstates |ψ〉 of both HA and R

with nonreal r are degenerate in presence of TR symmetry.
Clearly, this statement is nontrivial only for integer spin
systems because half-integer spin ones under TR symmetry
always exhibit ground-state degeneracy by Kramers theorem.
To prove the claim, remind that if r is nonreal then |ψ̃〉 :=
T |ψ〉 ⊥ |ψ〉. Subsequently, [H,T ] = 0 implies that, on one
hand, T H |ψ〉 = ε0T |ψ〉 = ε0|ψ̃〉 and, on the other hand,
T H |ψ〉 = HT |ψ〉 = H |ψ̃〉. Hence, joining together the two
equations, we get H |ψ̃〉 = ε0|ψ̃〉.

The statement above applies to the ground state. We
conclude that it can get split by tranversal anisotropy terms
only if rGS is real or, in other words, if its associated quasispin
is a TR invariant point of the Brillouin zone (|J (q)

GS | = −|J (q)
GS | +

mχ,m ∈ N). Thus the splitting happens when

∃m ∈ N : J = mχ

2
. (2.11)

This constraint determines the columns GSS in the Tables I
and II. When the system features GSS in presence of TR
symmetry, the two lower states are also non magnetic. They
have to be eigenstates of the TR operator, therefore, {Jz,T } = 0

TABLE I. Sets of integer spin magnitudes {Jn}, with n ∈ N>0,
which exhibit ground-state splitting (GSS) or SE switching processes
(SES), at given system symmetry Cχ v . The etiquette “(T)” and “(BT)”
differentiate on whether time reversal symmetry is, respectively,
present or broken. “{}” indicates the empty set and the notation
“{a}\{b}” stands for the set subtraction of {b} from {a}. The
fourth column (Protected) shows instances of magnitudes which are
protected from both GSS and SES. The last column (Supp) shows the
sets with suppressed SE switching processes at very small H (1) and
Ht , as described in Sec. II F.

χ GSS SES(T) SES(BT) Protected Supp

2 {n} {} {n} {} {}
3 {3n} {} {n} \{1} {1} {1 + 3n}
4 {2n} {} {2n} {1,3,5} {}
6 {3n} {} {3n} {1,2,4,5} {}

implies 〈ψGS|Jz|ψGS〉 = 0. We stress that the splitting may be
also seen as a consequence of lowering the symmetry from
the C∞v subgroup of the free atom point group to the Cχv

subgroup of the atom within the crystal field.

E. Single-electron switching process at Ht �= 0

Finally, we switch on the interaction with the metal, Ht �= 0.
When the substrate gets coupled with the atom, the energy
and quasispin of the atomic state are not preserved anymore,
because of scattering with the metal electrons. Since the metal
has many degrees of freedom with respect to the atom, it
is usually assumed to thermalize quickly and its Boltzmann
distribution, being a classical one, leads the atom to have also
an associated classical distribution [39]. The approximated
Markovian law that describes the dynamics of energy-defined
states of the atom (the pointer basis of the nanomagnet [40]),
is well known in literature [41,42]. However, there is an
ambiguity in the definition of the pointer basis when the atom
presents pairs of degenerate states (which is the case when
the atom has no GSS and applied magnetic field). There are
indications [43] that the states of the pointer basis are those
with maximum magnitude of the average magnetization, as the
dephasing due to the scattering is the largest for these states.
Thus we are allowed to assume that the pointer basis coincides
with the atomic eigenstates considered in the previous sections,
with well defined quasispin.

TABLE II. Same as in Table I, but for half-integer spin mag-
nitudes. Notice that TR symmetry does not provide additional
protection from SE switching processes as it does in integer spin
systems.

χ GSS SES(T,BT) Protected Supp

2 {} {n + 1/2} {} {}
3 {} {n + 1/2} \{ 3

2

} {
3
2

} {
5
2 + 3n

}
4 {} {n + 1/2} \{ 3

2

} {
3
2

} {
3
2 + 2n

}
6 {} {n + 1/2} \{ 5

2 , 3
2 + 3n

} {
3
2 , 5

2 , 9
2 , 15

2

} {
5
2 + 3n

}
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It was shown [31] that the GSS feature might be destroyed
when the Kondo coupling times the substrate electronic density
of states gets large via a mechanism of gap quenching.
However, such a mechanism is not effective in most of the
experiments performed, therefore here we limit the discussion
to small Kondo couplings, i.e., Ht � HA.

The rate of switching between two atomic eigenstates, say
|ψa〉 and |ψb〉, at lowest order in Ht ,, i.e., due to a SE scattering
with the atom, is

�ab = 2πκ2

h̄

∑
μ,ν

|〈ψa,ν|Ht |ψb,μ〉|2 e−βEμδ(x)

= 2πκ2

h̄

∑
μ,ν

∣∣∣∣∣∣
∑

s∈{+,−,z}
〈ψa|Js |ψb〉 〈ν|js̄ |μ〉

∣∣∣∣∣∣
2

e−βEμδ(x),

(2.12)

where μ,ν are states in the substrate, the bar in js̄ indicates that
the subscript takes opposite sign if s = ± and x = Eν − Eμ +
Ea − Eb. It is clear that transitions are possible only when the
states are connected by an operator Js , with s = +,−,z.

We show that the rotational symmetry provides a selection
rule on SE switching processes. The commutation relations
between Js and R are RJs = eiϕs JsR, where ϕs = 0, ± 2π/χ

respectively for s = z,±. Since the states ψa,b are also
eigenvalues of R, one gets

[ei(ϕb−ϕa+ϕs ) − 1]〈ψa|Js |ψb〉 = 0. (2.13)

Thus, given ψa,b, at most one value of s is such that ϕs =
ϕa − ϕb. This means that a SE transition produces a quasispin
change equal to either 0, 1, or −1. When the quasispins of
the states differ by more than one, we are guaranteed that
�ab = 0 and there is no SE transition between the two states.
For instance, systems with χ = 6 and J = 15/2 have ground
states with J (q) = ±3/2 therefore at least three SE transitions
are needed for a ground-state switching. One could easily
check it using Fig. 2(a) (SE transitions from the eigenstates
are shown with arrows).

A second selection rule comes from the TR symmetry. It
protects degenerate ground states of integer spin systems from
SE switching. Given |ψGS〉 and |ψ̃GS〉 as the two time-reversal
ground-state partners and making use of {Jz,T } = 0 and
J+ T = −T J− one finds [3,20] for all s ∈ {+,−,z},

〈ψGS|Js |ψ̃GS〉 = 0 for integer spin. (2.14)

Actually, this constraint is nontrivial only with χ = 3. In
the other cases, the ground states are either already split by
transversal anisotropy or have quasispin difference greater than
one. For instance, in the experimental set of Ref. [28] (Fe atoms
on CuN substrate with J = 2,χ = 2) GSS is present and SE
transitions between the two lowest-energy states are indeed
observed even at B = 0.

Other weak constraints come from the mirror symmetry but
they are not enough to make SE switching to vanish. We leave
this discussion to Appendix B.

As a final remark, we notice that also small spin systems
with χ > 2J > 1 are protected against SE switching process.
This happens because there are no pairs of states with the
same phase or, in other words, there is only one “band” in the

Brillouin zone. Only if J = 1/2, the system ground states can
be connected by SE transitions.

F. Suppression of SE switching process at Ht � H (1)
A � H (0)

A

As an application of the tools of analysis developed in
the previous sections, we describe here a feature related
to the suppression of SE switching rate in some systems,
when the terms in H

(1)
A gets uniformly small. We assume,

therefore, that Ht � H
(1)
A � H

(0)
A , making the further assump-

tion that the different prefactors in front of each J n
s (n �

0; s = +,−,z), in the expansion of H
(1)
A , have all the same

order of magnitude ε � 1. In this regime, we can treat H
(1)
A as

perturbation of the system with Hamiltonian H
(0)
A .

Consider now �ψGS,ψ̃GS
in Eq. (2.12), the transition rate of

the SE switching process between the true ground states. The
ground states can be expressed as a perturbation series in ε:

|ψGS〉 = |J 〉 + ε
∑
m

αm|J − mχ〉 + O(ε2),

|ψ̃GS〉 ∝ |−J 〉 + ε
∑

n

α′
n|−J + nχ〉 + O(ε2), (2.15)

where m(n) is a natural number such that J − m(n)χ > −J

and {αm(n)} are expansion coefficients [44].
The quantity 〈ψGS|Js |ψ̃GS〉 in �ψGS,ψ̃GS

gets contributions of
different perturbative orders, of the form ε α′

n〈J − mχ |Js |−J 〉
or ε αm〈J |Js |−J + nχ〉 and ε2 αmα′

n〈J − mχ |Js |−J + nχ〉.
We notice that, inside the sets of systems which exhibit SE
switching, we can distinguish two subsets. The systems in the
first one presents the O(ε) contributions while the systems in
the second one not. The first subset contains systems in which
the unperturbed ground state |−J 〉, call it the left one, has the
same quasispin of either |J 〉 (in the half-integer case only) or
|J − 1〉. On the contrary, systems of the second subset possess
a left ground state, which would have the same quasispin of
the state |J + 1〉. Of course, this state is not allowed, thus, the
O(ε) contributions are vanishing. A systems falls in the second
group when the difference between the quasispin of |ψ̃GS〉 and
|ψGS〉 (modulo χ ) is equal to one. The magnitude of its spin,
then, must verify [we make use of Eq. (2.10)]

(2J ) mod χ = χ − 1. (2.16)

In this perturbative regime, the SE switching rates are

�ψGS,ψ̃GS
∝

{
κ2(ε2 + O(ε3) ) for the first subset,

κ2(ε4 + O(ε5) ) for the second subset,
(2.17)

where κ � ε (the assumption H
(1)
A � Ht is to guarantee that the

dominant switching path for the second subset remains the SE
one and not a multiple-electrons one). From this expression
is clear how systems in the second subset have smaller SE
switching rates in the perturbative limit. They are listed in the
column “Supp” in Tables I and II.

G. Numerical simulations

We demonstrate the consequences of the symmetry consid-
erations on the switching rate of a single-atom nanomagnet
when experimentally measured by spin-resolved scanning
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FIG. 3. Bias-dependent switching rate of a spin with J =
13/2 . . . 17/2 in a sixfold rotational symmetric crystal (χ = 6). Other
parameters are κ2/D = 0.1, α6

6/D = 5 × 10−5, kT /D = 0.01, and
P = 0.1 (P is the tip polarization) and � is the first excitation energy
of the spin.

tunneling microscopy (STM). In previous experiments, the
stability of few-atoms clusters was investigated by means of
this technique [4,6,17]. In particular, the switching rate be-
tween ground states has been observed in the telegraph noise.
Such an experimental setup can be described by adding the
STM tip Hamiltonian to Eq. (2.1), while accessible quantities
like the bias voltage, temperature and external magnetic field
are varied. For this purpose, we solve the master equation
(see Refs. [4,19]) for a sixfold rotational symmetric system
with small transversal anisotropy, H

(1)
A = α6

6O
6
6 , and several

different spin magnitudes. As already mentioned before, we
neglect the small energy renormalization of the atomic levels
due to the coupling with the tip. All rates will be given in units
of the direct tunneling rate �0 = πv4

S(ρT ↑ρS↑ + ρT ↓ρS↓).
Figure 3 shows the bias-dependent switching rate for

several spin magnitudes. We observe that in all cases an
increasing switching rate is observed for voltage higher than
the spin excitation energy � of the magnet (� is the energy
difference between the first excited state and the ground state
of the system with B = 0). For the protected cases J =
7, 15/2, 8, however, the switching rate becomes negligible for
low temperatures kT � � in accordance to Tables I and II. In
contrast, J = 13/2 and 17/2 show SE switching even at low
bias voltages resulting in a finite switching time τ = �−1.

Temperature-dependent switchings are investigated often
by x-ray absorption spectroscopy and magnetic circular
dichroism (XCMD) measurements to infer the stability of
an atom or cluster (Fig. 4). Similar to the bias-dependent
measurement, one can observe, in all cases, an onset of the
switching rate for temperatures high enough to excite the spin.
At low temperature, the switching rate becomes negligible
for the stable cases while remaining finite for unstable ones.
In contrast to the bias dependency where the switching sets
in abruptly at eV = � for stable atom configurations, the
onset of the switching with temperature appears continuous
and monotonously.

In a next step, we break TR symmetry by applying a
magnetic field of strength B along the z axis (Fig. 5). For
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Γ
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15/2
8
17/2

FIG. 4. Zero-bias temperature dependency of the switching rate
of a spin with J = 13/2, . . . ,17/2 in a sixfold rotational symmetric
crystal (χ = 6). Other parameter as in in Fig. 3.

the chosen magnetic field range, the cases J = 13/2 and 17/2
show SE switching as they are not protected by symmetry.
In particular, J = 13/2 shows a Lorentzian-like peak at the
magnetic field strength at which one of the former ground
states gets degenerate with one of the former first excited
states. The specific shape has to be associated to the fact
that the two states have the same quasispin and hybridize.
In contrast, J = 7 is stable for low magnetic field. However,
spin switching gets activated at higher applied fields when the
former ground state is brought in resonance with one excited
state. In this case, the curve profile is different since the two
states have different quasispins.

H. Discussion

The results of our single-atom analysis are summarized in
Tables I and II. From our considerations, we can conclude that
the higher the symmetry the more stable will be the bit encoded
in the ground states. To substantiate this statement we bring to
the attention of the reader the cases of χ = 2 and 6. The former
case does not host good nanomagnets as either their ground
states are split or present SE switching processes. On the

−1.0 −0.5 0.0 0.5 1.0
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FIG. 5. Magnetic field dependency of the switching rate of a spin
with J = 13/2, 7, and 17/2 in a sixfold symmetric crystal (χ = 6)
for eV/D = 6 and other parameters as in Fig. 3.
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contrary, the latter case hosts nanomagnets with high stability
against both SE and single-phonons switching processes [45].
Indeed, in half-integer spin systems with J = 3

2 + 3n,

(n ∈ N) the difference between the ground states quasispins is
maximal, equal to 3.

We remark the advantage in working with the quasispin
formalism, analog to the quasimomentum formalism in crystal
theory, in order to get universal formula for the presence of
GSS and other features. The quasispin would also be a more
natural horizontal axis in typical spectrum plots encountered
in literature, like the one in Fig. 2(b).

Notice that the mirror symmetry plays only a marginal
role in our qualitative discussion: it does not provide strong
constraints to GSS or SE switching processes. However,
its inclusion is relevant for quantitative numerics where the
correct (symmetry preserving) Stevens operators must be
taken into account.

We warn the reader that our results refer to “generic”
Hamiltonians, that is, within a nonzero measure subset of
the set of all possible symmetry preserving Hamiltonian. For
example, a system with J = 9/2 and χ = 3 would not present
SE switching processes (in contrast with Table II) if only the
Stevens operator O3

4 is included in H
(1)
A . However, inclusion

of higher order Stevens operators like O6
6 would restore the

agreement with our theory. The absence of SE switching
processes in the case J = 3/2 and χ = 3 is explained at the
end of Appendix A.

As a final remark, we comment a few relevant, recent exper-
iments. One experiment is Ho on Pt(111) where the substrate
has threefold degeneracy. One experimental group [3] found
the adatom spin magnitude to be J = 8 and measured low
ground states switching rate. According to our theory, such
system would be protected from both GSS and SE switching if
the transversal anisotropy is not too big (see Table I). The
latter was actually computed by the authors by means of
ab initio calculations. The ratio between the uniaxial
anisotropy term and the biggest transversal anisotropy term
was found to be approximately 0.1%. Such value is compatible
with the absence of level crossing and allows the usage of
our theory. However, another experimental group [14] found a
strong fourth-order uniaxial term inducing a ground-state level
crossing. The system ground state then does not occupy the
spin state |Jz| = 8 anymore but rather it occupies the spin state
|Jz| = 6. In this case, we can still use our theory in this way: the
ground-state quasispin can be inferred using Eq. (2.10) with
Jz = 6 and not with Jz = 8. Table I can be used assuming
the system as effective spin J = 6. However, the suppression
feature of Sec. II F does not take place anymore. According to
our table, GSS had indeed to be expected.

Another experiment [9] is Ho on MnO. Here, χ = 4 while
spin magnitude is found to be J = 8. Also in this case,
ab initio calculations reveal the presence of a ground-state
level crossing. The ratio between the uniaxial anisotropy
term and the biggest transversal anisotropy term is found
to be as big as 5%. The latter term favours a ground-state
occupation of the spin state with |Jz| = 7, rather than |Jz| = 8.
With the prescriptions above indicated, Tab. I can still be
exploited (using J = 7) and protection from GSS and SE
switching are found, in agreement with the statements of the
authors.

A similar situation happens in a third experiment. Dy
atoms are deposited on graphene [46]. Hence χ = 6 and
J = 8. Again, a strong uniaxial field leads to a ground-state
occupation of the spin state |Jz| = 7. The authors found
protection from GSS and SE switching, which agrees to the
indication of Table I (using J = 7).

This comparison with real experiments shows that level
crossing is likely to happen. When this is case, the ground-state
quasispin can not be inferred from the spin magnitude (and χ )
only. Nonetheless, as shown above, our theory can still be
applied, for a deep understanding of the system properties,
if additional independent information, e.g., from ab initio
calculations or direct measurements, give access to the ground-
state quasispin.

III. MULTIATOM CLUSTER SYSTEMS

Since not only single-atom nanomagnets but also multiatom
clusters are under the attention of researchers [1,4,6,47], we
generalize the single atom results to nonfrustrated multiatom
configurations.

A. Model

We assume that the atoms interact through Heisenberg-like
couplings due to, e.g., direct ferromagnetic exchange or
indirect Ruderman-Kittel-Kasuya-Yosida interaction [48,49].
For simplicity, we do not include Dzyaloshinsky-Moriya
interactions [50]. As they might play a role when dealing
with rare-earth adatoms and in general with systems with
broken inversion-symmetry [51], their inclusion is left to future
investigations. Thus the total Hamiltonian

HA =
∑

i

[
H

(0)
A (i) + H

(1)
A (i) + �Bi · �J (i)

] +
∑
i>j

H int
A (i,j )

(3.1)

includes the uniaxial anisotropy felt by the ith atom

H
(0)
A (i) = − |Di | J 2

z (i), (3.2)

further anisotropy terms H
(1)
A (i), and the multiatom Heisenberg

interaction

H int
A (i,j ) =Gij J (i) · J (j ). (3.3)

The effective interaction between the electrons in the metallic
surface and the atoms is

Ht =
∑

l

κl J (l) · jxl
, (3.4)

where jxl
= c

†
xl
σ cxl

∝ ∑
k,k′ ei (k−k′)·xl c

†
kσck′ is the effective

spin degree of freedom of the metal electrons coupled to the
atom at position xl .

To avoid magnetically frustrated configurations, we restrict
the discussion to clusters where one can distinguish two
groups of atoms, say A and B, such that they have intragroup
ferromagnetic coupling (Gij < 0 if the ith and the j th atoms
are in the same group) and intergroup antiferromagnetic
couplings (Gij > 0 if the ith and the j th atoms are in different
groups). A part from this restriction, the clusters are not
required to have other additional properties like, for instance,
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a specific symmetric spatial configuration of the adatoms that
compose it.

B. Operators

Similarly to R in Eq. (2.5), the rotation generators for every
atom may be defined as R(l) = exp[i Jz(l) 2π/χ ]. We define
the operator associated to the rotation of all spins as

Rtot = ⊗lR(l) = exp(i Jz,tot 2π/χ ), (3.5)

where Jz,tot = ∑
l Jz(l) is the projection along the z axis of the

total spin. The mirror operators M(l) at mirror planes by each
atom may be defined analogously. The time-reversal operator
is also trivially generalized to act on multiple spins.

C. Ground-state splitting for Ht = 0

As a first step, we show that a quasispin can be asso-
ciated to the ground states of the multiatom configuration.
With H

(1)
A (i) = H

(int)
A (i,j ) = �Bi = 0 (∀i,j ), the noninteract-

ing ground states of the system are products of the ground
states of every independent atom. For instance, with only two
atoms, the four ground states are |±J1〉 |±J2〉, Ji being the
magnitude of the spin of the ith atom.

We now switch on adiabatically all the interactions
H int

A (i,j ). These terms have actually a higher symmetry than
Cχ , namely, they are isotropic, and preserves Jz,tot. Since the
noninteracting ground state has high degeneracy, at first sight
it is not clear a priori, which states remain ground state of
the system after the switching process. However, such clusters
seam to have the following, per se interesting, feature:

Conjecture. Given the Hamiltonian in Eq. (3.1) with
vanishing H

(1)
A (i), the ground state is an eigenstate of Jz,tot,

with eigenvalue in modulus equal to |JA − JB |, where JA(B) :=∑
i∈A(B) J (i). By TR symmetry, the ground state is doubly

degenerate if JA �= JB .
Through the analysis of the spectrum of several HA

and numerical simulations (see Sec. III E), we got evidence
that this conjecture [52] holds true. We are able to give a
rigorous proof only in first order perturbation theory in the
intergroup couplings of the matrix G (the intragroup couplings
being allowed to have arbitrary magnitude). This regime is
enough to understand how the single-atom features, found in
Sec. II, appear also in the multiatom case. Notice that purely
ferromagnetic configurations fall into the range of our proof (as
either group A or B is empty). Due to the technical character
of the proof, we present it in Appendix C.

The Marshall theorem, in the generalized fashion by Lieb
and Mattis [24], ensures that, at H

(0,1)
A = �Bi = 0, for each

l � |JA − JB |, the lowest Hamiltonian eigenvalue with total
spin magnitude Jtot equal to l is a monotone increasing function
of l while, for l � |JA − JB |, it is monotone decreasing. Lieb
and Mattis have proven that a magnetic field, proportional to
Jzi

, destroys this order. Our conjecture regards the same kind
of systems but with an additional finite and negative definite
TR symmetric term, the uniaxial anisotropy (also higher order
negative definite uniaxial terms may be added). The magnitude
of the total spin is not anymore a good quantum number and
the ordering of levels is destroyed. Still, according to our

conjecture, the ground states have the property

|Jz,GS| = |JA − JB | (3.6)

and, crucially, we can associate them well defined quasispins.
The latter are inferred by their eigenvalue under Rtot [see
Eq. (3.5)] and are computed via Eq. (2.10) inserting Jz

according to Eq. (3.6).
As a further step in the discussion upon the presence of

GSS, we switch on the H
(1)
A (i) terms. As in Sec. II D, if we

assume these terms to be small enough such that the initial
ground states are not crossed (in energy) by other levels, then
the ground states quasispins are preserved. At this point, the
discussion about the GSS is identical to one done for the single-
atom case: when the ground states quasispins are integers and
are at the TR invariant points of the Brillouin zone, then GSS
takes place. Notice that, according to the conjecture, equal-spin
dimers have zero Jz,tot (and quasispin) and their ground state
is generically nondegenerate. We conclude that dimers present
GSS even with vanishing H

(1)
A (i) terms.

D. Single-electron switching process at Ht �= 0

We now switch on the small interaction with the metal.
Similarly as before [cf. Eq. (2.12)]

�ab = 2π

h̄

∑
μ,ν

|〈ψa,ν|Ht |ψb,μ〉|2 e−βEμδ(x)

= 2π

h̄

∑
μ,ν

∣∣∣∣∣∣∣〈ψa,ν|
∑

i

s∈{+,−,z}

κiJs(i) · jxi s̄ |ψb,μ〉

∣∣∣∣∣∣∣
2

× e−βEμδ(x)

= 2π

h̄

∑
μ,ν

|�κ · �V |2 e−βEμδ(x), (3.7)

where ( �V )i = ∑
s∈{+,−,z}〈ψa|J (i)

s |ψb〉 〈ν|jxi s̄ |μ〉, (�κ)i = κi ,
and x = Eν − Eμ + Ea − Eb.

� = 0 only when �V · �κ = 0 for all possible μ,ν states, i.e.,
when 〈ψa| J (i)

s |ψb〉 are vanishing for every i. Fortunately, an
analog of Eqs. (2.13) and (2.14), with Js replaced by J (i)

s ,
does hold and, in particular we get again protection from SE
switching process for integer spin system. The protection here
may be subtle. Consider, for instance, a system with χ = 6
made up of two atoms with spins J = 7/2. If their coupling G

is ferromagnetic, the total spin is J = 7 and the system presents
no SE switching process, according to Eq. (3.7) and Table I. In
particular, this fact holds true even when the atoms are set at big
reciprocal distance. However, in this situation, the two atoms
may be regarded as noninteracting and present individually
SE switching processes, according to Table II. We remark that
there is no contradiction between the two viewpoints: the full
ground state, being a product of the ground states of the two
atoms in the noninteracting limit, needs two electrons to be
fully switched. Even though quantitatively, the dimer has a
big rate of switching, qualitatively it remains SE switching
protected.

We warn the reader that switching transitions between
degenerate ground states of integer spin systems can be
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FIG. 6. Bias-dependent switching rate of a dimer with spin
magnitudes J1 and J2 in a sixfold symmetric crystal (χ = 6), at
different strength of the exchange coupling G12 (in unit of D). The
tip is placed on top of the first atom, i.e., κ2

1 /D = 0.1 and κ2
2 /D = 0.

Here, α6
6/D = 1 · 10−3, all other parameters are as in Fig. 3.

observed. However, these transitions must be attributed to 2n-
electrons processes, with n integer [as one can see generalizing
Eq. (2.14)] and not to single-electron ones [53].

Finally, we notice that the suppression feature of Sec. II F
is not present for the multiatom case. The difference with the
single-atom case lies in the fact that the state |1 + J 〉 was a
forbidden state there, while here its analog, |1 + |JA − JB |〉
is, in general, allowed.

E. Numerical simulations

We perform numerical simulations similar to the ones
shown in Sec. II G, focusing only on the bias dependency of the
switching rate. We analyze the cases of two dimers with same
quasispins when they are in a ferromagnetic configuration but
different when in a antiferromagnetic one (see Figs. 6 and 7).
Since we are interested only in the stability features, we assume
vanishing distance between the atoms.

When the coupling is ferromagnetic (G12 < 0), both dimers
are predicted to be unstable, as in both cases |J (q)

GS | = 5/2.
Both our simulations confirm the expectation. The case
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J2 = 9/2

FIG. 7. Same as in Fig. 6 but for a dimer with different spin
magnitudes.

G12 = −0.1 in Fig. 7 points to an important feature of
multiatom configurations: the rate (at zero voltage) can be
very small. Notice that, in order to get rates � comparable
with the single-atom case, we need to increase the transversal
anisotropy (α6

6/D) about two orders of magnitude. When the
coupling is antiferromagnetic (G12 > 0) the case in Fig. 6 is
predicted to be stable, as |J (q)

GS | = 3/2, while the other one
unstable, as |J (q)

GS | = 1/2.
Notice that the cases G12 = ±0.1 in Fig. 7 present the

first kink at higher voltage than the one which corresponds to
the first excitation energy (�). This interesting phenomenon
is a prerogative of multiatom systems (with χ = 6): the
first excited states can be not SE-connected to the ground
states. When it happens, the transition rates between these
states are suppressed and a new channel of switching opens
only at higher voltage when second excited states can get
excited. This feature may be exploited to increase the energy-
window of stability (in units of �). For instance, a dimer
with J1 = 4 and J2 = 2 with the same parameter set as in
the figures and antiferromagnetic coupling G12 = −0.1 has
ground-state quasispin |J (q)

GS | = 2, while the first excited states
have |J (q)

GS | = 0. The ground states are then SE-switching
protected and the switching (at small T ) activates only
at eV ∼ 2� in correspondence with the second excited
states.

As a final remark, we see that our numerical simulations
support the conjecture in Sec. III C. Indeed, the cases with
G12 = 1 fall outside the range of validity of our proof (see
Appendix C), but the numerics confirms our expectations in
terms of the stability of the ground states.

F. Discussion

Clusters seem to behave as single atoms as far as our
analysis is concerned. We can associate them a quasispin
and they have analogous selection rules for SE switching
processes. A difference with the single-atom case is that the
magnitude of total spin of the ground states is not well defined
anymore (a part in the ferromagnetic case). Nonetheless,
this is of no consequence since the unique quantum number
needed to determine the symmetry selection rules is the
quasispin.

One other caveat is that the feature of missing SE switching
process for small spin systems (see Sec. II E) is not present here
unless for all atoms, that compose the cluster, χ >2J >1 holds.
These systems do not follow our tables but could be addressed
separately as they are relatively simple to be studied. Moreover,
also the suppression feature of Sec. II F is not present.

To conclude, we inform that Tables I and II can be used
for the multiatom case. However, the spin magnitude of the
single atom has to be replaced with an effective ground-state
spin magnitude |JA − JB | + χ , where the “+χ” term is
conveniently added to avoid those small spins constraints, as
illustrated above.

IV. SUMMARY AND OUTLOOK

We focused on the dynamic properties of generic nano-
magnets made of absorbed adatoms on metallic or insulat-
ing surfaces. We presented a complete and comprehensive
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discussion on the implications of the symmetries of the system
on the stability of the magnetic states. In particular, the
symmetries of interest are the rotational, the mirror and the
time-reversal symmetry. All our results are summarized in
Tables I and II. Given the effective spin magnitude of the
adatoms and the symmetries of the system, our main results,
the tables (Tables I and II), indicate whether a nanomagnet
is stable by its desirable properties: absence of ground-state
splitting and single-electron switching processes. Further, we
discovered the interesting feature of suppression of single-
electron switching process in some systems with uniform and
weak transversal anisotropy.

Finally, we presented an extension of our symmetry
considerations to a rather generic class of multiatom clusters.
The tables (Tables I and II) can still be used if the effective
spin magnitude of each adatoms composing the cluster is
known. Here, we limited our study to generic nonfrustrated
configurations. Our analysis of the multiatom clusters could
be in future extended to many other symmetries (for example
to systems where the adatoms form chains or lattices). All our
results are supported by numerical simulations which show the
switching behavior of these nanomagnets and offer guidance
for experimental measurements, e.g., by scanning tunneling
microscopy.

We notice that high rotational symmetry is desirable for the
stability of nanomagnets. Indeed, the Brillouin zone associated
to the adatom or cluster eigenstates has many elements
and systems with a big difference between the groun-states
quasispin can be found. We found that the mirror symmetry
does not influence qualitative results.

As one rules out the translation symmetry of the substrate,
χ is not restricted anymore by the crystallographic restriction
theorem [54]. However, our expressions, been generic, are
still valid and applicable. For instance, if a single adatom is
put at the high symmetric point of a pentagonal quasicrystal,
our expressions apply with χ = 5 and we expect the system
to have similar (but richer) properties compared to a system
with χ = 3. Moreover, the adatom could be put on top of
an high symmetric molecule with χ > 6 [55]. However, a
quantitative analysis that ensures that environmental crystal
field (the one due to the support of the molecule) is negligible
must be attached to the study. Future work may be done in this
direction or to prove the conjecture in Sec. III C at arbitrary
Heisenberg intergroup couplings.
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APPENDIX A: MATRIX REPRESENTATION OF THE
HAMILTONIAN IN THE SINGLE-ATOM CASE

Here, we analyze an explicit matrix representation of
HA in the single-atom case. This is an alternative to the
most straightforward Stevens operator expansion presented

in the main text. It proves to be useful for finding the weak
constraints on SE switching due to the mirror symmetry and
for checking calculations done with other approaches. It may
be used for statistical analysis of the system with the tools
of random matrix theory [56,57]. As in Sec. II C, we start
considering the spatial symmetry constraints, then we show
the one due to TR symmetry.

a. Rotational symmetry. The symmetry [R,H ] = 0 im-
poses all matrix element between different elements with
different r to be zero. Clearly, the unspecified H can be
represent in an hermitian block diagonal form which has,
in general, three kinds of blocks: blocks associated to R

eigenspaces with real eigenvalue r and pairs of blocks
associated to eigenspaces with conjugated pairs of eigenvalues
r . To simplify the discussion, assume one real r block, call it
Q, and one pair of blocks, call them X and Y , then

H =
⎡⎣Q 0 0

0 X 0
0 0 Y

⎤⎦. (A1)

b. Mirror symmetry. When acting on the spin eigenbasis
{|jz〉}, the mirror operator in Eq. (2.7) can be written as

M =
{
A for integer spin,

iA for half integer spin,
(A2)

with A a matrix with antidiagonal filled with ones and zeros
outside.

The Hamiltonian elements get the simple constraint:

〈jz|H |jz〉 = 〈−jz|H |−j ′
z〉. (A3)

It is convenient, to order the elements of this basis in
each block by putting states with descending order in jz,
for blocks Q and X , and with ascending order for Y .
For instance, with J = 3 and χ = 3 such basis is {|jz〉} =
{|3〉,|0〉,|−3〉,|2〉,|−1〉,|−2〉,|1〉}. This choice will be particu-
larly useful when we will implement the TR symmetry. We see
clearly that the mirror symmetry creates a constraint between
the elements of block Q and implies that the block X must be
equal to the block Y .

c. Time reversal symmetry. We show the constraint due
to TR symmetry alone; spatial symmetries are not necessarily
present. We order the states of the spin eigenbasis such that TR-
partners are grouped together. For instance, with J = 3 and
χ = 3 such basis is {|jz〉} = {|3〉,|−3〉,|2〉,|−2〉,|1〉,|−1〉,|0〉}.
In this basis the operator T is represented as

T = K ⊕J
j �=0

[
σ (j )

x cos(π j ) + iσ (j )
y sin(π j )

]
⊕

{
1(j=0) for integer spin,

−− for half integer spin,
(A4)

where the superscript (j ) indicates that the operator acts on
the time reversal pair {|j 〉,|−j 〉} (or on the singlet state when
j = 0). For the sake of the discussion, we discard the presence
of the Jz = 0 state for integer spin systems; we reintroduce it
next paragraph. The TR symmetry constraint reads

h̄lk =
{

(−1)l+kσx h̄∗
lk σx for integer spin,

(−1)l+k−1σy h̄∗
lk σy for half integer spin.

(A5)
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Here, all h̄lks are 2 × 2 Hamiltonian submatrices acting on
time reversal pairs with |jz| = l,k.

We see that, for integer systems,

h̄lk =

⎧⎪⎪⎨⎪⎪⎩
(

a b

b∗ a∗

)
, for l + k even,(

a b

−b∗ −a∗

)
, for l + k odd.

(A6)

For half-integer systems,

h̄lk =

⎧⎪⎪⎨⎪⎪⎩
(

a b

b∗ −a∗

)
, for l + k even,(

a b

−b∗ a∗

)
, for l + k odd,

(A7)

d. General form with all symmetries. When TR symmetry
is added to the spatial symmetries, the Hamiltonian structure
in Eq. (A1) becomes

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣P 0 0
0 S 0
0 0 S

⎤⎦, for χ �= 3,

⎡⎣C†PC 0 0
0 C†SC 0
0 0 C†SC

⎤⎦, for χ = 3,

(A8)

where P is a real matrix where the superdiagonals have com-
ponents disposed in a palindromic way [58]; S is a symmetric
matrix; C = diag{1,i,1,i, . . . } where the alternating pattern is
limited by the dimension of the block. Notice that block Q is
not present for half-integer spin systems with χ �= 3 (hence P

is null), since there are not TR invariant quasispins in the BZ.
We remark that, for χ �= 3, the eigenvectors can be chosen

to be real, since the Hamiltonian matrix is real and symmetric.
For χ = 3, the eigenvectors are complex but can be written in
the form �w = C†�v with �v a real vector. In Dirac notation, the
eigenstates could be written as

|ψ〉 =
{∑

j∈block vj |j 〉, for χ �= 3,∑
j∈block cjj vj |j 〉 for χ = 3.

(A9)

Hermiticity constraints the diagonal elements of the half-
integer cases bringing to Kramers degeneracy. One relevant
consequences of this fact is that systems with J = 3/2 and
χ = 3 are protected from SE switching processes (as indicated
in Table II).

APPENDIX B: WEAK CONSTRAINTS ON THE
SE SWITCHING PROCESSES

Here, we show the constraints to the quantity

〈ψGS|Js |ψ̃GS〉, (s = +,−,z) (B1)

coming from the mirror symmetry and the symmetry under
the operator T M , effective in a specific regime. The analysis
is restricted to the single-atom case. As these constraints
appear to affect the SE switching rates only quantitatively
we call them “weak” as opposed to the constraints due to
time reversal and rotational symmetries. We do not generalize
them to the multiatom case as we expect, also for this case,
similar weak constraints.

a. Constraint from the mirror symmetry. Consider the
quantity in the expression (B1) when the mirror symmetry
is present. The Hamiltonian eigenstates |ψ〉 can be chosen to
be also eigenstates of R, since [H,R] = 0. The commutation
relation RM = MR†, then, implies R(M|ψ〉) = r∗M|ψ〉.
This means that M|ψ〉 is an eigenstate of R but with different
quasispin if r is non real. On the other hand, M|ψ〉 and
|ψ〉 must have the same energy since [H,M] = 0. Therefore,
when r is not real M|ψ〉 ⊥ |ψ〉, i.e., M|ψ〉 = a|ψ̃〉 := aT |ψ〉,
with a a unit complex number. Applying M to both sides
of the previous equation and using M2 = ±1, after a trivial
manipulation one gets M|ψ̃〉 = ±a∗|ψ〉, where plus(minus)
sign refers to integer(half integer) spin systems. About a we
only need to know whether it is real or imaginary, as it will
be clear in a moment. From Eq. (A4) and the specification
of the form of |ψ〉 in Eq. (A9), we see that T maps the
vector v, for χ �= 3, in another real vector, and w = C†v,
for χ = 3, to the vector C†v′ (with v′ �= v). Differently, M

maps the vectors to same-shape vectors but multiplied by the
imaginary unit for half-integer spins [see Eq. (A2)]. Therefore
a is real(imaginary) for integer(half-integer) spin systems. We
are now ready to obtain the SE switching constraint:

〈ψGS|J±|ψ̃GS〉 = 〈ψGS|M†J∓M|ψ̃GS〉
= ±(a∗)2〈ψ̃GS|J∓|ψGS〉
= ±(a∗)2〈ψGS|J±|ψ̃GS〉∗
= 〈ψGS|J±|ψ̃GS〉∗, (B2)

where the external plus(minus) sign refers to integer(half
integer) spin systems. Finally, we conclude

Im〈ψGS|J±|ψ̃GS〉 = 0. (B3)

When r is real, it is of interest to consider whether there is a
constraint on 〈ψGS|Jz|ψ̃GS〉, for half-integer spin systems (then
with χ = 3). We show first that

〈ψ |M|ψ〉 = 0. (B4)

Using Eq. (A9), we can rewrite the left-hand side of the previ-
ous equation as the scalar product (w,Mw) = (C†v,MC†v).
Remember, now, that M = iA and notice that the dimension
of the block Q must be even, therefore iAC† = CA holds. The
quantity, then, simplifies to (v,C2Av), which vanishes since v

is real and C2A antisymmetric. Similarly, as when r is nonreal,
we conclude that M|ψ〉 = b|ψ̃〉.

One could show that b, like a is real(imaginary) for
integer(half-integer) spin systems and, with similar passages
as before, conclude

Re〈ψGS|Jz|ψ̃GS〉 = 0. (B5)

Notice that the constraints (B3) and (B5) are not enough
to make SE switching processes vanish since, respectively,
the real and imaginary parts are left unconstrained and,
unfortunately, they are different from zero, given a generic
systems.

b. Constraint from the T M symmetry operation. Here, we
show the weak constraint on the expression (B1) coming from
the symmetry operator T M , relevant when the time reversal
symmetry is broken by a (rotational symmetry preserving)
magnetic field along the z axis. In this situation, the ground
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state is nondegenerate. However, for small enough Bz, the
two lower energy eigenstates retain the same quasi spins and
eigenvalues under the action of T M as the ones of the two
ground state at Bz = 0. Calling (improperly) these two lower
eigenstates |ψGS〉 and |ψ̃GS〉 one can find

Im〈ψGS|Jz|ψ̃GS〉 = 0,

Re〈ψGS|J±|ψ̃GS〉 = 0 for integer spin,

Re〈ψGS|Jz|ψ̃GS〉 = 0,

Im〈ψGS|J±|ψ̃GS〉 = 0 for half integer spin. (B6)

We limit ourselves to just show this result because its proof
is lengthy and the result is just weak constraints which are not
enough to make SE switching processes vanish. The reader
may appreciate how, at Bz = 0, these constraints plus the
constraints in Eq. (B3) and (B5) imply the time reversal one
in Eq. (2.14).

APPENDIX C: PROVE OF THE CONJECTURE IN
SEC. III C AT SMALL INTRAGROUP COUPLINGS

We show a proof of the conjecture that appears in Sec. III C,
restricted to the case when intragroup couplings of the matrix
G are small in comparison to all other energies in HA.

At zeroth order in the intergroup terms in H int
A , without uniaxial

anisotropy and magnetic field but with finite intragroup terms,
the ground states are (2JA + 1) × (2JB + 1) product states of
the form Jm

−,A|GSA〉 ⊗ J n
+,B |GSB〉 with m(n) = 0, . . . ,2JA(B),

J±,X = ∑
i∈X J±(i) and |GSX〉 is the state with all spin aligned

up, for X = A, and down, for X = B. Clearly, once the
uniaxial anisotropy is switched on, |GSA〉 ⊗ |GSB〉, along
with the other three states obtained by applying the TR
operator to the state in either to A, to B or to both, remains
the unique ground state. Indeed, they are eigenstates with
maximum eigenvalue of both

∑
ij H int

A (i,j ) and
∑

i H
(0)
A (i).

Then, we add small intergroup coupling terms in H int
A , small

with respect to the other energies involved. It is straightforward
to see that configurations in which the spin of the two groups
are oppositely aligned, i.e., |GSA〉 ⊗ |GSB〉 along with its
TR partner, gain a negative first-order perturbation energy.
This energy is equal to −∑

i∈A,j∈B GijJ (i)J (j ). On the
contrary, the other two states (aligned) gain the same term but
with opposite sign. Since the intergroup coupling preserves
the value of Jz,tot of the perturbed states, the new ground
states will have the same Jz,tot of |GSA〉 ⊗ |GSB〉 and its
TR partner, given by ±(JA − JB). Thus the conjecture is
proven for small intergroup couplings as claimed in the main
text.
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