
PHYSICAL REVIEW B 95, 125431 (2017)

Coulomb impurities in two-dimensional topological insulators

Jia-Lin Zhu,1,* Guo Li,1 and Ning Yang2

1Department of Physics, Tsinghua University, Beijing 100084, China, and
State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China

2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
(Received 2 December 2016; revised manuscript received 6 March 2017; published 22 March 2017; corrected 30 March 2017)

Introducing a powerful method, we obtain the exact solutions for a Coulomb impurity in two-dimensional
infinite and finite topological insulators. The level order and zero-energy degeneracy of the spectra are found to
be quite different between topological trivial and nontrivial phases. For quantum dots of topological insulator,
the variation of the edge and Coulomb states with dot size, Coulomb potential, and magnetic field are clearly
shown. It is found that for small dots the edge states can be strongly coupled with the Coulomb states and for
large dots the edge states are insensitive to the Coulomb fields but sensitive to the magnetic fields.
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I. INTRODUCTION

The topological insulators are narrow-gap semiconductors
with topological protected edge (surface) states [1,2]. The
peculiar properties of these states make topological insulators
and their nanostructures useful for future applications ranging
from spintronics to quantum computing [3–8].

As doping affects transport and optical properties of
traditional semiconductors, the influence of impurities to
topological insulators has also drawn extensive attention.
Impurities in topological insulators can induce localized
states [9–11], affect the transport properties [12,13], and give
the quantized anomalous Hall phase [14,15]. So far, most
theoretic works focus on the pointlike Gauss and Anderson
impurities in topological insulators, while studies on the
Coulomb impurities are rare although experimentally they
have been confirmed to significantly change the surface band
structures [16].

In topological insulators, the difference between the
Coulomb impurity states under different topological phases
is an interesting issue. Furthermore, in topological insulator
nanostructures such as quantum dots, the edge states are much
likely to interact with the impurities due to stronger spatial
confinement. Knowing the interplay between the edge states
and the Coulomb impurities as well as their magnetic field
modulations are important for the designing of relevant nano
devices.

The low-energy physics of topological insulators obey
the modified Dirac equation [17,18], where a quadratic
momentum mass term is added to the Dirac equation to
distinguish different topological phases. Therefore, for topo-
logical insulators and their nano structures with impurities and
external fields, one need to deal with the eigenvalue problems
of the second-order differential equation array, while a method
for exact solutions is still lacking so far.

In this work, we develop our series expansion method
[19,20] to the case of the modified Dirac equation, to obtain
the exact solutions of the single Coulomb impurity problem
in infinite two-dimensional topological insulators (2DTIs),
two-dimensional band insulators (2DBIs), and their quantum
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dots both with and without magnetic fields. The significant
differences are shown between the spectra of infinite 2DTIs
and 2DBIs. The coupling effects between the edge and
Coulomb states are investigated in 2DTI quantum dots, and
the variation of the coupling and spectrum characteristics with
dot radius, Coulomb potential, and magnetic field are studied
in detail.

II. METHOD

The modified Dirac Hamiltonian with an in-plane Coulomb
potential is written as [18,21]

H↑↓ = h̄v(σxkx ± σyky) + (M − Pk2)σz − h̄vα

r
, (1)

where v is the Fermi velocity, σx,y,z are Pauli matrices
describing the isospins, and α is a dimensionless value
describing the Coulomb potential strength. Compared with the
gapped graphene, the Pk2 term is added to the mass M where
MP > 0 and MP < 0 are for a 2DTI and a 2DBI, respectively.
In the presence of a weak magnetic field, the model is still
effective [22], and the substitution �k = −i �� + e �A/h̄ is used
with the magnetic vector potential �A = �B × �r/2.

Due to the rotation symmetry, the angular operator ĵz =
−i h̄∂θ + h̄

2 σz is conserved, so the eigenfunctions of H↑ can
be expressed as ψ(r,θ ) = (ϕ(r)eil−θ ,χ (r)eil+θ )T where l± =
j ± 1

2 , and the half integer j is the eigenvalue of ĵz. Then we
get the radial form of H↑

H↑(r) =
[
M + Q− − h̄vα

r
S+ − i h̄vr

2l2
b

S− + i h̄vr

2l2
b

−M − Q+ − h̄vα
r

]
,

(2)

where Q± = P ( ∂2

∂r2 + 1
r

∂
∂r

− l±2

r2 − r2

4l4
b

− l±
l2
b

), S± =
−i h̄v( ∂

∂r
± l±

r
), and lb =

√
h̄

eB
is the magnetic

length. The radial form of H↓ satisfies the relation
H↓(r,j,B) = H↑(r,−j,−B). Therefore, each level is twofold
degenerate for B = 0 while it splits for B �= 0.

In order to obtain the exact solutions of the eigenequa-
tions H↑ψ = Eψ , we develop our method introduced ear-
lier [19,20] with use of the theory of first-order differential
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equation array [23,24]. To obtain the first-order equation
array, a four-component spinor w = (f1,f2,f3,f4)T is defined
as f1 = ϕ

r
,f2 = dϕ

dr
, f3 = i

χ

r
, and f4 = i

dχ

dr
. Using f1(3) +

r
df1(3)

dr
= f2(4), and H↑ψ = Eψ , the equation array is

dw

dr
=

3∑
k=−1

Akr
kw, (3)

where Ak are 4 × 4 real coefficient matrices. Then the series
form of the exact solutions in the regular (0,r0), Taylor
(ri,ri+1) with i = 0,1, . . . ,I − 1 and irregular (rI ,∞) regions
for infinite 2DTIs (2DBIs) are found as follows:

w =

⎧⎪⎨⎪⎩
rρ

∑∞
k=0 akr

k r ∈ (0,r0)∑∞
k=0 bk(r − xi)k r ∈ (ri,ri+1)

eq(r)rη
∑∞

k=0 ckr
−k r ∈ (rI ,∞)

. (4)

In the regular region, ρ = ρ1,2 with ρ1 = ρ2 + 1 = l− for
j > 0 and ρ1 = ρ2 + 1 = −l+ for j < 0, and in the irregular
region,

q(r) =
{−λ±r for B = 0

− r2

4l2
b

for B �= 0
, (5)

where λ± = [(h̄v)2 − 2MP ± √
�]1/2/

√
2|P | with � =

(h̄v)4 − 4MP (h̄v)2 + 4P 2E2 and the corresponding η = η±
can be directly determined. For B �= 0, two η = η1,2 are
determined by a quadratic equation. In each Taylor regions,
the expansion are made about the center xi = (ri + ri+1)/2.
The expansion coefficients ak , bk , and ck have been obtained
by deducing the recurrence relations. In the Appendix, we give
the details of the series expansion process.

Using the continuity of the wave functions and its derivative
at r = ri , the exact energy levels and then wave functions for
infinite 2DTIs and 2DBIs can be fixed by exact numerical
calculations. In the calculations, we need properly choose
r0,r1, . . . ,rI−1 and rI . For 2DTI and 2DBI quantum dots with
the radius R, the vacuum boundary conditions at r = rI = R,
i.e., ϕ(R) = χ (R) = 0, are used and here only solutions
in the regular and Taylor regions are needed. The method
is suitable for the eigenvalue problem of the high-order
ordinary differential equation arrays when the external fields
allow series solutions in the subregions. Besides topological
insulators, multiband systems such as bilayer graphene and
semiconductor light-heavy hole coupling are also examples
where the method can be used to get exact solutions.

The Coulomb states for H↑ and H↓ are respectively labeled
by (n,j )↑ and (n,j )↓, with the radial quantum number n =
0,1,2, . . . . Different from the general bound states in 2DTI
quantum dots, the helical edge states are only dependent on
the spins and the angular numbers, and can be labeled by (↑,j )
and (↓,j ). For convenience, we use the lowercase (uppercase)
letters to denote the states with up (down) spins and the super-
script ± to distinguish the states (n,±|j |). Then the denotation
of states used in this paper are a±(0,±1/2)↑, A±(0,±1/2)↓,
b±(1,±1/2)↑, c±(0,±3/2)↑, and d±(2,±1/2)↑. Additionally,
e±(↑,±1/2) and E±(↓,±1/2) are used for the edge states in
2DTI quantum dots.

In this paper, we choose h̄v = 3.65 eV Å, M = 30 meV,
while P = −100 eV Å2 and P = 100 eV Å2 are used for

2DBIs and 2DTIs, respectively. The chosen parameters satisfy
h̄2v2 > 2MP , which are in agreement with those of the
HgTe/CdTe quantum wells and in this condition the energy
gap is (−|M|,|M|).

III. COULOMB STATES IN INFINITE CASE

We first investigate the ideal case that the 2DTIs are infinite
large, where the edge states are absent as there is not an edge.
We will focus on the states bounded near the Coulomb center
and study their differences between 2DTI and 2DBI.

The energy spectra as a function of α are shown as the solid
lines both for an infinite 2DBI (PM < 0) and an infinite 2DTI
(PM > 0) in Fig. 1. One can see the Coulomb states can be
present in the range E2 < M2. In fact, for E2 > M2 the index

FIG. 1. The Coulomb states of H↑ as a function of α for an infinite
2DBI (a) and 2DTI (b). The signals a±, b±, and c± stand for the
Coulomb states (0,±1/2)↑, (1,±1/2)↑, and (0,±3/2)↑, respectively.
The dash-dotted lines stand for the states (0,j ) of gapped graphene.
The dashed lines in panel (b) show the edge states (↑,j ) for a 2DTI
quantum dot with R = 500 nm.
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λ− in the irregular solutions are purely imaginary, which allow
the electrons to tunnel to infinity. It is quite different from
the gapped graphene (P = 0), where the Coulomb collapse
occurs [25] when α2 = j 2. Due to the Pk2 term, the index ρ

in the regular solutions is independent of α rather than ρ =√
j 2 − α2 in gapped graphene, then α2 of the (0,j )↑ states at

E = 0 in an infinite 2DTI (2DBI) can be much larger than j 2,
as shown in Fig. 1.

Let us note the spectra in Fig. 1 in detail. For P = 0,
the states (n + 1,|j |)↑ and (n,−|j |)↑ are degenerate [26]. For
PM < 0, such degeneration is only conserved at E = 0. The
energy order is quite same as the case of P = 0, which can
be understand since both of them describe topological trivial
systems.

However, for PM > 0, the spectra are quite different. The
energy levels can generally be grouped into different bunches,
with each bunch described by the quantum number Nq = n +
|j | + 1

2 . The number of states in the Nq bunch is determined
by the all possible combinations of n and j . The energy levels
do not cross between different bunches, but cross near E = 0
within the same bunches. By a closer look of Fig. 1(b) one can
find the degeneracy between ±j states at E = 0 are still strict,
but they are now between (n,|j |)↑ and (n,−|j |)↑ states, which
is in contrast with the case of PM < 0.

As analyzed above, the level order and zero-energy degen-
eracy of the Coulomb states in 2DTIs and 2DBIs are quite
different. In fact, our calculations show that the spectra with
α �= 0 are discontinuous when P changes across zero, which
supports that the above differences are the manifestation of the
topological phase in the Coulomb spectra.

IV. EDGE AND COULOMB STATES IN FINITE CASE

In this section, we consider the Coulomb impurities in 2DTI
and 2DBI quantum dots. By introducing a finite edge, the
edge states will be present in 2DTI, and then an interesting
problem is how the edge states are affected by the Coulomb
impurity. We will show that the edge states are insensitive
to the Coulomb impurity, unless the dot size is small and the
Coulomb potential strength is strong with which the edge states
can be strongly coupled to the Coulomb states.

The levels of the edge states in a large quantum dot with
R = 500 nm are shown by the dashed lines in Fig. 1(b).
A remarkable characteristic of the edge states is that their
energies decrease linearly with α. The slope is ∂E

∂α
= 〈 h̄v

r
〉,

which indicates that the wave functions of edge states are
almost unchanged for different α. In other words, the edge
states are insensitive to the attraction of the Coulomb potential
for a large dot size, which should be attributed to the
topological nature of these states.

Then we seek for the coupling effects between the im-
purities and the edge states under different dot size and
potential strength. Since there is no coupling between states
with different j , we will focus on states with a fixed j below.

The levels of a+(0, 1
2 )↑ and e+ (↑, 1

2 ) as a function of R are
shown in Fig. 2. Both in 2DBI and 2DTI quantum dots, the
a+ states are always present, and their levels converge quickly
to the infinite case with increasing R. The choice of vacuum
boundary condition allows the bound states to exist in the
region E2 > M2. Due to the bulk-boundary correspondence,

FIG. 2. The levels of Coulomb states a+ and edge states e+ of
H↑ under different α as a function of R for 2DTI (a) and 2DBI (b).
The red and blue dot lines are the levels of a+ for gapped graphene.
The radial density distribution ρr of a+ and e+ states for α = 1.2 at
R = 34 nm and 100 nm (c) and at R = 44 nm (d) in 2DTI quantum
dots.

the e+ states can only exist in 2DTI quantum dots. When
R → ∞, the levels of e+ for different α always trend to zero. In
Figs. 2(a) and 2(b), the corresponding a+ levels of the gapped
graphene dots are also shown by the dot lines, where the infinite
mass boundary condition [27] is used in the calculations. It
is seen that the a+ levels for P = 0, both with and without
Coulomb potentials, are lower than those for P �= 0 with the
increasing of size confinement. Besides, for P = 0 the edge
states are absent, and when α2 > j 2 the Coulomb states also
disappear due to the Coulomb collapse.

Note that for 2DTI dots the levels of states a+ at large
R fall below zero for strong Coulomb potential of α > 0.85;
see Fig. 1(b). With decreasing R, the levels of states a+ and
e+ increase and decrease, respectively. The levels of a+ and
e+ have to meet at some R, but the crossings of levels with
the same j are generally avoided, and, an anticrossing occurs
as shown by the case of α = 1.2 in Fig. 2(a). Through the
anticrossing, the energy order of the a+ and e+ states is
changed. We notice that for R = 34 nm, an additional peak
near the edge (center) on ρr for a+ (e+) arises in Fig. 2(c). It
is an effect of coupling between a+ and e+. When R is more
closed to the coupling region center Rc = 44 nm, where the
two levels are nearest, a+ and e+ will be strongly coupled. It is
hard to distinguish the edge and Coulomb states according to
their wave functions, as shown in Fig. 2(d). Besides, as shown
in Fig. 2(a), with larger α, R is smaller where the coupling
occurs.

To further study the coupling effects, the energy levels of
states (n, 1

2 )↑ and e+ as a function of α with fixed R = 50 nm
are shown in Fig. 3(a). The levels of a+ overlap with the
corresponding infinite levels for α > 0.4, and they decrease
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FIG. 3. The energy levels of Coulomb states (n, 1
2 )↑ and edge

states e+ in a 2DTI dot as a function of α with R = 50 nm (a) and
R = 30 nm (b). The red dashed lines are the corresponding Coulomb
levels in an infinite 2DTI. (c) The values of γ = 〈r̂〉/R for a+ and e+

as a function of α. (d) The wave functions of the states e+ respectively
for R = 30 nm and R = 50 nm when α = αc − 0.1, as labeled by the
dots in panel (c).

more quickly than levels of e+ with increasing α. Therefore,
the coupling between a+ and e+ is inevitable at some α,
and it further occurs between e+ and b+, d+(2, 1

2 )↑,..., with
increasing α. It is found that for a smaller dot size the level
space at the coupling region center is larger, as shown in
Fig. 3(b). To understand this, we define a dimensionless value
γ = 〈r̂〉/R ∈ (0,1) to describe the distribution of the states and
show its plot as a function of α in Fig. 3(c). The γ values of the
upper and lower levels cross near the coupling region center,
i.e., αc = 1.14 and αc = 1.51 for R = 50 nm and R = 30 nm,
respectively. Compared with the case of R = 50 nm, γ values
for R = 30 nm change much gently in a larger region of α.
Meanwhile, it is shown in Fig. 3(d) that when α is away from
αc with the same amplitude, the changes of the edge state wave
functions for R = 30 nm are obviously larger. It means that the
coupling is stronger for a smaller dot because the overlapping
of edge and Coulomb states is larger.

From the above discussion, the coupling of the Coulomb
and edge states manifest via the anticrossing of the levels.
Strong Coulomb potentials can make the levels closer, and
smaller dot sizes induce large wave function overlaps. With
the changes of levels and transition probabilities, the coupling
effects in 2DTI quantum dots are expected to be observed
experimentally.

V. MAGNETIC FIELD EFFECTS

Now we consider the magnetic field modulations of the
edge states, Coulomb states, and their coupling in 2DTI

FIG. 4. The energy levels of Coulomb and edge states in a 2DTI
quantum dot with B = 1 T as a function of R at fixed α = 0.3 for
j = 1

2 , H↑ (a) and j = − 1
2 , H↓ (b). The levels as a function of α at

fixed R = 50 nm for j = 1
2 , H↑ (c) and j = − 1

2 , H↓ (d). Both levels
of H↑ (black lines) and H↓ (red lines) as a function of B at fixed
R = 150 nm for α = 0.6 (e) and α = 1.3 (f). The dashed lines are
levels for B = 0 in panels (a)–(d).

quantum dots. The distributions of the edge states have much
larger magnetic moments, especially for the case of a large
dot, and therefore edge states will be quite sensitive to the
magnetic fields. Since H↑(r,j,B) �= H↓(r,−j,B) for B �= 0,
we calculate both levels of H↑ for j = 1

2 and levels of H↓ for
j = − 1

2 .
It is shown in Figs. 4(a) and 4(b) that the differences

between the levels of B = 0 and B = 1 T are quite small for
R < lb = 25.66 nm. With increasing R, the levels of Coulomb
states turn flat for both B = 0 and B = 1 T. However, the
levels of the edge states are quite different between B = 0
and B = 1 T for R > lb. For B = 0 the levels of e+(↑, 1

2 ) and
E−(↓,− 1

2 ) states trend to zero with increasing R, while for
B = 1 T they respectively decrease and increase quickly to out
of gap. The levels of e+ and E− states meet and couple with
the positive-energy and negative-energy states for R � 131 nm
and R � 97 nm, respectively. The coupling effects become
strong for large R, leading to the missing of the edge state
characteristics. It is because the magnetic moments of the edge
states increase with R and have opposite signs for e+ and E−.

125431-4



COULOMB IMPURITIES IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 95, 125431 (2017)

The sensitivity of the edge states to magnetic fields for large
dot size stands in contrast with their insensitivity to Coulomb
fields.

The coupling region center αc of the Coulomb and edge
states is tunable with magnetic fields which make it convenient
to observe the coupling effect experimentally. The levels of a
2DTI quantum dot with fixed R = 50 nm and B = 1 T are
shown in Figs. 4(c) and 4(d). Compared with the case of
B = 0, the levels of e+ and E− are respectively lowered and
lifted while the levels a+(0, 1

2 )↑ and A−(0,− 1
2 )↓ only changes

slightly. The coupling region centers are moved right and left
for H↑ and H↓, respectively.

The level order of the Coulomb and edge states can also be
modulated by magnetic fields. In Figs. 4(e) and 4(f), we show
the splitting of the Kramers’ pairs with B for a large dot size.
Clearly, the levels of the edge states changes more sharply than
the Coulomb states. For α = 0.6, the level order of A− and
E− states changes at B = 0.58 T. When α increases to 1.3,
the decreases of the edge states (compared with α = 0.6) are
much smaller than the Coulomb states, which leads to change
of the energy order of a+ and e+ at B = 0.59 T.

Under weak magnetic fields, the main difference between
gapped graphene and 2DTI is the absence of edge states
such as e+ and E− in Figs. 4(a) and 4(b) in graphene
dots. With increasing of magnetic fields, the levels of 2DTI
and graphene dots will transit from the quantum dot levels
to the corresponding Landau levels. When α = 0, the zero
Landau levels [28] depend linearly on B for P �= 0, i.e.,
L±

0 = ∓(M − ePB/h̄), while they are independent of B for
P = 0, i.e., L±

0 = ∓M . When α �= 0 the degenerate Landau
levels split whereas the above dependence with B can still
hold approximately. This may be the most notable differences
between gapped graphene and 2DTI dots under stronger
magnetic fields.

VI. SUMMARY

Developing our series expansion method, the exact spectra
of Coulomb impurities in infinite 2DTIs and 2DBIs are
obtained and compared. For 2DBIs, the level order of Coulomb
states are similar to those of gapped graphene, while for 2DTIs
the spectra show bunchy structures. The degeneracies at E = 0
are quite different between 2DBIs and 2DTIs.

In 2DTI quantum dots, the edge states can be coupled to
the Coulomb states in strong Coulomb potentials. Aside the
coupling region center the level order of the two kind states
change while near the coupling region center the states turn into
mixtures. The coupling are stronger for smaller dots. For larger
dots, the edge states are insensitive to Coulomb potentials
while they are sensitive to magnetic fields.

Finally, the mathematical method is powerful for ordinary
differential equation arrays, which can describe more compli-
cated Dirac-like systems. The results deepen the understanding
of the topological phases and the properties of the edge
states in the present of Coulomb impurities. Based on the
exact energy levels and wave functions, the related properties
such as optical spectra of 2DTI quantum dots can be further
explored.
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APPENDIX: SERIES EXPANSIONS IN
DIFFERENT REGIONS

We will take the H↑ block as an example to illustrate the
series expansion methods for the modified Dirac equation. The
coefficient matrix A−1 in Eq. (3) is

A−1 =

⎛⎜⎜⎜⎝
−1 1 0 0

l2
− −1 0 0

0 0 −1 1

0 0 l2
+ −1

⎞⎟⎟⎟⎠. (A1)

In the regular region (0,r0) the special solutions can be
expressed as

w = rρ

∞∑
n=0

anr
n. (A2)

Substitute w into Eq. (3) and compare the coefficients, we get

(ρ + n − A−1)an =
3∑

k=0

Akan−k−1 (A3)

with n = 0,1,2, . . . , and we have assumed an = 0 for n < 0
here and after. By setting n = 0 we find that ρ have to be the
eigenvalues of A−1 and a0 are the corresponding eigenvectors.
We need the convergence solutions near r = 0, so only two
of the four eigenvalues is preserved, which are ρ = ρ1,2 with
ρ1 = ρ2 + 1 = l− for j > 0 and ρ1 = ρ2 + 1 = −l+ for j <

0. When ρ = ρ1, an for n > 0 can be directly determined via
left multiplying Eq. (A3) by (ρ1 + n − A−1)−1.

It is noticeable that ρ2 < ρ1 differs by an integer with
ρ1, which means that when ρ = ρ2 one should add the
rρ2 lnr

∑∞
n=0 a′

nr
n term to Eq. (A2) to get the other independent

solution. Fortunately, we have proved that this term is
vanishing. Then Eq. (A3) is also suitable for ρ = ρ2. For n > 1
one can similarly left multiply Eq. (A3) by (ρ2 + n − A−1)−1

to get an. For n = 1, however, the matrix (ρ2 + 1 − A−1) is
singular and we obtain

a1 =
[

h̄vα

(2ρ2 + 3)P
,
(ρ2 + 2) h̄vα

(2ρ2 + 3)P
,δ,δ(ρ2 + 2)

]T

(A4)

for j > 0 and

a1 =
[
δ,δ(ρ2 + 2),

h̄vα

(2ρ2 + 3)P
,
(ρ2 + 2)h̄vα

(2ρ2 + 3)P

]T

(A5)

for j < 0 where δ is arbitrary. Once δ is chosen, two linearly
independent solutions corresponding to ρ1 and ρ2 are obtained,
and any different choices of δ will give solutions linearly
dependent with the obtained two.

Away from r = 0, we divide the region (r0,rI ) into I small
regions (ri,ri+1) with i = 0,1, . . . ,I − 1. In region (ri,ri+1),
the special solutions of Eq. (3) are expanded at xi = ri+ri+1

2 as
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the Taylor series

w =
∞∑

n=0

bn(r − xi)
n. (A6)

By substituting this expression into Eq. (3) we get the
recurrence relations for n � 1:

bn = 1

nxi

[
3∑

m=−1

m+1∑
k=0

AmCk
m+1x

m−k+1
i bn−k−1 − (n − 1)bn−1

]
.

(A7)

For n = 0, b0 are completely underdetermined and can be
chosen as the column vectors of the 4 × 4 unit matrix, which
correspond to four independent solutions.

In the irregular region (rI ,∞), we need treat respectively
the case of B = 0 and B �= 0 as the magnetic field changes the
properties of Eq. (3) at r = ∞. We will illustrate the techniques
of the asymptotic expansion in case of B = 0, while the case
of B �= 0 is similar.

When B = 0, we use the transformation

ξ = Uw =

⎛⎜⎝r 0 0 0
0 1 0 0
0 0 r 0
0 0 0 1

⎞⎟⎠w, (A8)

and then ξ is proved to satisfy the differential equation array

dξ

dr
=

0∑
k=−2

Bkr
kξ. (A9)

Compared with Eq. (3), the highest power of r decreases to
the lowest in Eq. (A9). The coefficient matrix B0 is

B0 = 1

P

⎛⎜⎜⎜⎝
0 0 0 0

E − M 0 0 h̄v

0 0 0 0

0 h̄v −(E + M) 0

⎞⎟⎟⎟⎠.
(A10)

The formal solutions of Eq. (A9) are written as

ξ = e
∑s

i=1 qi r
i

r η̃

∞∑
n=0

c̃nr
−n. (A11)

By substituting Eq. (A11) into Eq. (A9) and comparing the
coefficients we find s = 1 and

(B0 − q1)̃cn = (̃η − n − B−1)̃cn−1 − B−2c̃n−2. (A12)

By setting n = 0 in Eq. (A12) it is seen that

q1 = ±
√

(h̄v)2 − 2MP ±
√

(h̄v)4 − 4MP (h̄v)2 + 4P 2E2

2P 2

(A13)
are the four eigenvalues of B0, and c̃0 are the corresponding
eigenvectors. When q1 > 0, Eq. (A11) is divergent at r = ∞;
therefore we only chose the two solutions corresponding to
q1 = −|q1|. For determination of η̃, we need notice that the
rank of (B0 − q1) is three. It allows us to find a matrix T so
that T (B0 − q1) is in the form of row echelon. Left multiplying
Eq. (A12) by T , we get

Cc̃n = Dc̃n−1 − F c̃n−2, (A14)

where C = T (B0 − q1), D = T (̃η − 1 − B−1), and F =
T B−2. Remember that the fourth row of the matrix C is zero,
and by setting n = 1 in Eq. (A14) we have

row{D,4}̃c0 = 0, (A15)

where row{D,i} denotes the row vector formed by the i’s row
of the matrix D. Equation (A15) fixes η̃ for each chosen q1.

Having known c̃n−2 and c̃n−1, one cannot get c̃n directly
from Eq. (A12) since (B0 − q1) is singular, which is different
from the regular and Taylor series expansions. We again use
Eq. (A14) and take the first three rows as three independent
equations to fix c̃n. Then we set n → n + 1 and take the fourth
row of Eq. (A14) as the other independent equation. The above
argument leads to the following recurrence relation

c̃n =

⎡⎢⎢⎢⎣
row{C,1}
row{C,2}
row{C,3}
row{D,4}

⎤⎥⎥⎥⎦
−1

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

row{D,1}
row{D,2}
row{D,3}
row{F,4}

⎤⎥⎥⎥⎦c̃n−1 −

⎡⎢⎢⎢⎣
row{F,1}
row{F,2}
row{F,3}

0

⎤⎥⎥⎥⎦c̃n−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (A16)

For the asymptotic solutions, one can establish the relation
of Eq. (4) and Eq. (A11) through Eq. (A8). For example we
have λ± = −|q1| and η = η̃ − 1. Instead of deducing ck and
then calculating w(r = rI ) to connect the asymptotic solutions
and the Taylor solutions, it is more convenient to first calculate
ξ (r = rI ) and then use Eq. (A8) to obtain w(r = rI ) in the
numerical calculations.
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