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Because disorders are inevitable in realistic nanodevices, the capability to quantitatively simulate the
disorder effects on electron transport is indispensable for quantum transport theory. Here, we report a unified
and effective first-principles quantum transport method for analyzing effects of chemical or substitutional
disorder on transport properties of nanoelectronics, including averaged transmission coefficient, shot noise, and
disorder-induced device-to-device variability. All our theoretical formulations and numerical implementations
are worked out within the framework of the tight-binding linear muffin tin orbital method. In this method,
we carry out the electronic structure calculation with the density functional theory, treat the nonequilibrium
statistics by the nonequilbrium Green’s function method, and include the effects of multiple impurity scattering
with the generalized nonequilibrium vertex correction (NVC) method in coherent potential approximation
(CPA). The generalized NVC equations are solved from first principles to obtain various disorder-averaged
two-Green’s-function correlators. This method provides a unified way to obtain different disorder-averaged
transport properties of disordered nanoelectronics from first principles. To test our implementation, we apply
the method to investigate the shot noise in the disordered copper conductor, and find all our results for different
disorder concentrations approach a universal Fano factor 1/3. As the second test, we calculate the device-to-device
variability in the spin-dependent transport through the disordered Cu/Co interface and find the conductance
fluctuation is very large in the minority spin channel and negligible in the majority spin channel. Our results
agree well with experimental measurements and other theories. In both applications, we show the generalized
nonequilibrium vertex corrections play a determinant role in electron transport simulation. Our results demonstrate
the effectiveness of the first-principles generalized CPA-NVC for atomistic analysis of disordered nanoelectronics,
extending the capability of quantum transport simulation.
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I. INTRODUCTION

In realistic nanoelectronic devices, disorders, such as
intentional dopants, surface roughness, interfacial defects,
vacancies, impurities, etc., are unavoidable and play important
roles in the electron transport. The presence of disorders
allows the electron to transport through interchannel scattering
and through the disordered impurity states, thus changing the
transport into the diffusive regime [1]. Moreover, at nanoscale,
devices with different disorder configurations can behave
very differently, giving rise to the large device-to-device
variability, known as the “random dopant fluctuation” which is
an especially important phenomena in the design of nano-FETs
[2]. Therefore, quantitative understanding of the disorder
effects is of great importance for practical applications.
However, theoretical treatment of disorder effects requires
statistically averaging the physical properties, namely disorder
configurational average which is very difficult. Besides, for
nanoscale devices, due to the strong coupling of device
properties to the material details and the nonequilibrium
characteristics of electron transport, the nanoelectronic device
simulations require the accuracy at the atomistic level and
the nonequilibrium quantum statistics. Therefore, the effective
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method to handle disorder average from first principles at
nonequilibrium is desirable for quantum transport simulation
of the disordered nanoelectronic device.

For first-principles simulation of a quantum transport
problem, the widely used method is to combine density
functional theory (DFT) [3] with nonequilibrium Green’s
function (NEGF) theory [4,5], called the NEGF-DFT method
[6]. In this method, the electron Hamiltonian is described at
the level of DFT, while NEGF formalism is used to populate
the electronic structure, accounting for the nonequilibrium
quantum statistics. However, presently available NEGF-DFT-
based quantum transport tools [6–8] are largely limited to
the nanoelectronics with perfect periodicity, because of the
prohibitively large cost for the disorder average. Therefore, the
analytical method for treating disorder average is required for
quantum transport simulations. Presently, the most effective
method dealing with disorder is coherent potential approxima-
tion (CPA). However, CPA has only been made practical for
treating chemical or substitutional disorders under equilibrium
condition, but not for the structural disorder (amorphous
structure) and systems at nonequilibrium. As an important
progress for simulating disordered nanoelectronics, one of
the authors, Y. Ke, and his collaborators recently developed
a CPA-based nonequilibrium vertex correction (NVC) method
in combination with NEGF-DFT to calculate the averaged
NEGF, such as Ḡ< = ḠR[�<

ld + �NVC]ḠA, where �<
ld and
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�NVC denote the electrode self-energy and the NVC. In
this method, the effects of multiple impurity scattering are
taken into account by the NVC at the nonequilibrium density
matrix level. The first-principles CPA-NVC method has seen
considerable success in applications [9]. However, this method
is only limited to compute the averaged I-V characteristics
of the device, because the CPA-NVC method only allows
one to calculate the average of single G< which determines
the transmission coefficient. However, many other important
transport properties of the disordered device require the
average of G<CG<, such as the shot noise, and disorder-
induced conductance/current fluctuation. (We also notice that
G>CG<,G<CG> are required for the light absorption and
emission in the LED or solar cell devices [10].) As we know,
the property fluctuation directly measures the device-to-device
variability induced by disorders. At nanoscale, due to the
limited number of atoms in the device, the change of atoms
can induce large changes in the device properties, giving
rise to large property fluctuation for disordered devices.
Besides, shot noise appears as the current fluctuation in
the time domain due to the quantized charge. As known,
shot noise contains important information that cannot be
obtained from the current/conductance. For example, shot
noise can provide the information about unit of transferred
effective charge [11], reflects the electron-electron correlation
during transport, detects the open channels in a disordered
conductors [12], and even distinguishes particles from waves
[13]. However, due to the lack of an effective method to
do disorder average, the device-to-device variability and shot
noise from first-principles simulations are rarely reported in
the literature for disordered nanoelectronics [14–17]. To solve
the problem, the authors J. Yan and Y. Ke recently reported
a generalized CPA-NVC formalism to compute the average
of various two-GF correlators in a unified way, and tested the
method with a simple tight-binding Hamiltonian [18].

In this paper, we report the first-principles implementation
of the generalized CPA-NVC method, to extend the capability
of quantum transport simulations of disordered nanoelectron-
ics. We reformulate the generalized CPA-NVC formalism
within the well-established first-principles framework of the
tight-binding linear muffin tin orbital method (TB-LMTO).
The generalized nonequilibrium vertex correction (GNVC)
equations are solved from first principles to obtain various
disorder averaged two-GF correlators. As important results,
various transport properties of disordered nanoelectronics can
be obtained without using any phenomenological parame-
ters. As applications, we investigated the shot noise in the
disordered copper metal conductor and the spin-dependent
device-to-device variability in the transport through the dis-
ordered Cu/Co interface. Our results agree well with the
experiments and other theories, providing strong tests to the
effectiveness of the generalized CPA-NVC formalism and its
first-principles implementation. We have shown the inclusion
of GNVCs is essential for transport simulation of disordered
nanoelectronics.

The rest of the paper is organized as follows. In Sec. II, we
introduce the NEGF-based quantum transport formalism in
the TB-LMTO method, and write various quantum transport
properties as well as the nonequilibrium density matrix in
terms of an auxiliary Green’s function. In Sec. III, we apply

the generalized CPA-NVC formalism to formulate the average
of the single auxiliary GF and various two-auxiliary-GF
correlators. In Sec. IV, we present the computation of the
disordered averaged transport quantities, including transmis-
sion coefficients, shot noise, and the transmission fluctuation,
to realize the first-principles simulation of disordered nano-
electronics. In Sec. V, we apply the present implementation to
investigate the shot noise for the disordered copper conductor
and disorder-induced device-to-device variability for the spin-
dependent transport through the disordered Cu/Co interface,
and compare our results with experimental measurements and
other theories. Finally, we conclude in Sec. VI and provide
additional information in Appendixes A–E.

II. NEGF FORMALISM IN TB-LMTO
FOR QUANTUM TRANSPORT

The method of tight-binding (TB) linearized muffin-tin
orbital (LMTO) in combination with atomic sphere approx-
imation (ASA) [19–21] has been well established for first-
principles simulation of electronic structure of condensed
matters. This method separates the atomic potential aspects of
a material from the structural aspects, and can be easily incor-
porated with the Green’s function formalism. In the following,
we introduce the TB-LMTO method and its implementation
for nonequilibrium quantum transport simulation.

A. Tight-binding linearized MTO method

For a material system, the space can be partitioned into
atomic spheres and an interstitial region. In such a muffin-tin
(MT) geometry, the system potential can be represented in the
MT approximation,

VMT = VMTZ +
∑

R

VMT,R(rR), (1)

on which the TB-LMTO is based. In the above equation, VMTZ

is a constant potential in the interstitial region and VMT,R
is a spherically symmetric potential inside the MT sphere
centered on the site R [19]. The TB-LMTO is constructed
to provide a very efficient approach to solve the Schrödinger
equation containing the MT potential in Eq. (1). Since the
construction details of the TB-LMTO have been well included
in the literature [19–21], we here only provide the major results
and approximations of this method. TB-LMTOs have a general
form given as

|χα〉∞ = |φ > (1 + oαhα) + |φ̇〉hα + |Kα〉i/Nα, (2)

where hα ≡ −
√

Ṗ α(P α − Sα)
√

Ṗ α . In the above equation, α

denotes the screening constant; φRL = φRl(rR)YL(r̂R) is the
partial wave inside the MT sphere at R; |Kα〉i is the screened
envelop function inside the interstitial region; P α and Nα are
the potential and normalization functions introduced to ensure
the continuity of basis functions at the sphere boundaries; the
quantity oα is chosen to satisfy the linearization condition; and
Sα is the screened structure constant. To avoid the integration
in the interstitial region, atomic sphere approximation (ASA)
[21] is applied to fill the entire space with overlapping atomic
spheres. As an important result, the interstitial contribution
to the TB-LMTO can be neglected, thus the TB-LMTO
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changes to |χα
ASA >∞= |φ > (1 + oαhα) + |φ̇ > hα in ASA.

By transforming to the nearly orthogonal representation, one
can obtain the final nearly orthogonal TB-LMTO in ASA as
follows: ∣∣χorth

ASA

〉∞ = |φ〉 + |φ̇〉hα(1 + oαhα)−1. (3)

With the above basis functions, the Hamiltonian matrix of the
material system can be expressed as

H orth
ASA = ∞〈

χorth
ASA

∣∣ − 1
2∇2 + VMT

∣∣χorth
ASA

〉∞
= εv + hα(1 + oαhα)−1, (4)

where εv is the linear expansion energy center at which
the partial wave φRl is solved. It should be noted that the
Hamiltonian matrix in Eq. (4) can be easily constructed
by solving the local Schrödinger equation for the partial
waves within each atomic sphere. The simple and analytical
form of the Hamiltonian matrix in TB-LMTO-ASA provides
great convenience for further analytical derivation of NEGF
formalism for quantum transport.

B. Quantum transport in TB-LMTO

Here, we consider an operating two-probe electronic device
as shown in Fig. 1 with current flow from one side to the other
induced by the applied bias. (We assume μL > μR , where
μL/R denotes the chemical potential of the left/right electrode.)

To deal with such a nonequilibrium quantum transport
problem, the most general and rigorous theoretical framework
is provided by the nonequilbrium Green’s function (NEGF)
theory [5,22–24]. The NEGF theory provides a unified way
to treat quantum transport problem with various interactions
contained in self-energies, such as interactions with electrodes,
phonon/photon, random impurities, etc.. The key idea of the
NEGF theory is the closed time contour and the associated
contour order. The contour-ordered quantities, such as Green’s
function, self-energies, can be usually expressed with the
Keldysh’s rotation, thus can be represented by the Keldysh’s
2-by-2 matrix [5,25,26],

Q =
(

QR QK

0 QA

)
. (5)

Here, QR,QA, and QK are the retarded, advanced, and
Keldysh’s components of the contour-ordered quantity Q, and
they satisfy QR = [QA]† and QK = −[QK ]† and are linearly
independent. The linear combination of QR,QA, and QK can
directly give other real-time quantities, such as Q<,Q>,Qt ,

FIG. 1. Schematic illustration of a two-probe device. The central
scattering region containing atomic disorders (white spheres) is
sandwiched by the left and right semi-infinite electrodes. Applying
an external bias drives the central device out of equilibrium.

and Qt̄ [18]. For example, the important quantities “Lesser”
Green’s function G< = 1

2 (GK − GR + GA).
In the TB-LMTO method, the contour-ordered physical

Green’s function of the interested central device region
(usually G is called physical Green’s function to distinguish
from the auxiliary Green’s function g in the following) can be
written as

G(z) = −1

2

P̈ α(z)

Ṗ α(z)
+

√
Ṗ α(z)gα(z)

√
Ṗ α(z), (6)

with the auxiliary Green’s function defined as [19]

gα(z) = [
P α(z) − Sα − �α

ld

]−1
. (7)

Here, the potential function P α (site-diagonal) specifies the
atomic species on the lattice site, the screened structure
constant Sα contains the geometric information of the device,
and �α

ld is the auxiliary self-energy describing the coupling to
the electrodes, such as �α

ld = �α
L + �α

R for a two-probe device.
Ṗ α(z) and P̈ α(z) refer to the first- and second-order energy
derivatives of P α(z). Superscript α denotes the screened
representation. All the quantities in Eqs. (6) and (7) are
defined in the Keldysh’s matrix representation in Eq. (5) for
treating the nonequilibrium quantum transport problem. Since
Eq. (6) provides a simple connection between the physical and
auxiliary Green’s functions, we will focus on the computation
of gα(z) in the following.

To evaluate gα , we can define the unperturbed Green’s
function gα,0 for the central region without coupling to the
left and right electrodes. Then, gα in Eq. (7) can be rewritten
as the Dyson equation,

gα = gα,0 + gα,0�α
ldgα. (8)

Replacing gα and �α in Eq. (8) with the Keldysh’s matrices
leads to

gα,R = (
P α,R − Sα,R − �

α,R
ld

)−1
, (9)

gα,K = gα,R�
α,K
ld gα,A, (10)

where Eq. (10) is obtained by dropping the boundary term
(I + gα,R�α,R)gα,0,K (I + �α,Agα,A) because it is zero for
the device in the steady state considered here [1]. Since
the electrodes are in the equilibrium state, according to
the fluctuation-dissipation theorem, we have �α,K = i(2fL −
1)�α

L + i(2fR − 1)�α
R , where �α

L/R = i(�α,R
L/R − �

α,A
L/R), and

fL/R are the Fermi-Dirac distribution functions of the left/right
electrodes, respectively. The “lesser” GF in TB-LMTO can
be obtained as G< =

√
Ṗ αgα,<

√
Ṗ α , where gα,< = (−gα,R +

gα,A + gα,K )/2 = gα,R�α,<gα,A [8,18,27,28], providing the
nonequilibrium density matrix of the device as iG<. Conse-
quently, in combination with density functional theory, the
nonequilibrium electronic structure can be calculated self-
consistently with the NEGF theory.

For the quantum transport, the I-V curve of the device can
be given by the Landauer-Büttiker formula [1],

I = e

h

∫
Tr[T̂ (E)](fL − fR)dE. (11)

Here, e is the elementary charge, h is the Planck constant,
and T̂ (E) is the transmission operator at energy E, which in
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TB-LMTO is given by T̂ = gα,R�α
Lgα,A�α

R . For simplicity, we
consider fL = 1 and fR = 0 at zero temperature, and then T̂

can be rewritten as T̂ = −igα,<�α
R [8,27]. Shot noise can also

be expressed in terms of T̂ (E) [29],

S = 2e2

h

∫ μL

μR

Tr[T̂ (E) − T̂ 2(E)]dE. (12)

A very useful quantity related to shot noise is Fano factor
F = S/2eI describing the noise deviating from a Poisson
noise SPoisson = 2eI [30,31].

The formulation above is for a system with specific atomic
configuration. However, for disordered electronic device,
transport properties are random quantities and thus must be
averaged over all the possible disorder configurations to be
physically meaningful, such as the averaged nonequilibrium
density matrix, the averaged 〈T̂ 〉 and 〈T̂ 2〉 that give the
averaged current and shot noise. To do these, it is required
to do the disorder average to gα,< which is the product
of gα,R and gα,A, and the product of two gα,<s. Further-
more, for disordered nanodevices, it is important to measure
the disorder-induced device-to-device variability. Hence, we
need to calculate the transmission fluctuation, defined as
δT =

√
〈T 2〉 − 〈T 〉2, where T = Tr[T̂ ] is the transmission

coefficient. To calculate 〈T 2〉, we are required to average
the product of two gα,<s. Therefore, for quantum transport
simulation of disordered nanoelectronics, the central task is to
compute the disorder-averaged two-GF correlators mentioned
above. In the following, we will formulate the generalized
CPA-NVC method in TB-LMTO to provide an effective
method to compute the average of various two-GF correlators
from first principles.

III. GENERALIZED CPA-NVC FORMALISM IN TB-LMTO

In this section, we formulate the generalized CPA-NVC
method in TB-LMTO to compute the disorder-averaged two-
GF correlators, such as 〈gα,Rcgα,A〉 and 〈gα,<cgα,<〉, in which
c is a constant matrix independent of disorder configurations.
The central idea of CPA is to construct an effective coherent
medium, by making sure the configurationally averaged GF of
the disordered system 〈gα〉 equals to the Green’s function of
the effective medium ḡα [32,33]. To quantitatively describe this
approximation, we can introduce a coherent potential function
Pα to characterize effective atom in the coherent medium, and
then the corresponding auxiliary GF is given by

ḡα = (
Pα − Sα − �α

ld

)−1
. (13)

For a specific disordered system, gα in Eq. (7) can be expressed
in terms of ḡα by using

gα = ḡα + ḡαT α ḡα, (14)

where T α ≡ [1 − (Pα − P α)ḡα]−1(Pα − P α) containing all
the scattering information. We can rewrite T α = ∑

R Qα
R

and Qα
R = tαR(1 + ḡα

∑
R′ 	=R Qα

R′ ) where tαR ≡ [1 − (Pα
R −

P α
R )ḡα]−1(Pα

R − P α
R ) represents a single-site scatter, and Qα

R
denotes the strength of a scatter at site R. By applying the
relation 〈gα〉 = ḡα to Eq. (14), we can obtain the CPA condition

that

〈T α〉 = 0. (15)

Usually, to make the CPA practical, an additional single-site
approximation (SSA) [34] is applied, namely 〈Qα

R〉 = 〈tαR〉(1 −
ḡα

∑
R′ 	=R〈Qα

R′ 〉) which neglects the correlations between the
successive scattering events. After SSA, the single-site CPA
condition can be written as〈

tαR
〉 = 0. (16)

Combining Eq. (13) with Eq. (16), Pα can be solved self-
consistently to obtain 〈gα〉.

For the product of two GFs, the generalized NVC provides
a way to average such quantity like 〈gαCgα〉, where C is a
disorder-independent constant 2-by-2 matrix containing the
constant c as the matrix element [18,35]. Substituting Eq. (14)
into 〈gαCgα〉 and applying CPA condition Eq. (15) leads to

〈gαCgα〉 = ḡαCḡα + ḡα�α ḡα, (17)

where �α ≡ 〈T α ḡαCḡαT α〉 is called the generalized NVC,
containing not only effects of multiple impurity scattering,
but also the nonequilibrium quantum statistics. SSA is applied
again, and then one can obtain �α = ∑

R �α
R, where �α

R =
〈Qα

RḡαCḡαQα
R〉 are determined by a linear equation,

�α
R = 〈

tαR[ḡαCḡα]RRtαR
〉 + ∑

R′ 	=R

〈
tαRḡα

RR′�
α
R′ ḡα

R′RtαR
〉
. (18)

Note that the quantities in the above equation are all in
the 2-by-2 matrix representation, such as gα and tα is in
the form of Keldysh’s representation of Eq. (5). With the
four different choices of the capitalized C matrix [18], we
can obtain nine different GNVCs �α,XY (X,Y = R,A,K) and
associated nine equations to compute the configurational
average of the pairwise combination of gXcgY , such as
Eqs. (A1)–(A9). (Appendix A lists the major results of the
generalized CPA-NVC formalism in the TB-LMTO method.)
As an important result, the average of any two-GF correlators
can be easily obtained as a linear combination of 〈gXcgY 〉,
such as 〈g<cg<〉 given in Eq. (A19). Here, we want to mention
that, before solving the nine vertex corrections, the averaged
Keldysh’s GF, ḡK = 〈gR�KgA〉, is calculated by including
the vertex correction which satisfies Eq. (A11). It should be
also mentioned that each 〈gXcgY 〉 contains a coherent part
and vertex correction part(s), and the vertex correction part(s)
accounts for the effects of multiple impurity scattering. Given
the quantity c, the nine GNVCs can be, in general, obtained by
solving linear equations Eqs. (A10)–(A18) in the order from
top to down. However, the different content of the c matrix can
give different complexity in calculating the related physical
quantity, such as the computation of the averaged shot noise
and transmission fluctuation introduced in the following.

IV. APPLICATION TO DISORDERED
NANOELECTRONICS

As mentioned in Sec. III, for disordered nanoelectronics, it
is required to compute the disorder-averaged quantities, such
as transmission coefficient, shot noise or even the transmission
fluctuation, for which we need to compute the averaged
Tr[〈T̂ 〉], Tr[〈T̂ 2〉], and 〈(Tr[T̂ ])2〉. In this section, we present
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the implementation of the generalized CPA-NVC method to
calculate these important transport quantities. For the ease of
reading, we will omit the superscript α in the rest of this paper.

A. Averaged transmission

From Sec. II, we know the averaged transmission coefficient
〈T 〉 = Tr[〈gR�LgA〉�R] contains the average over the product
of two GFs gR and gA. From Eq. (A2), we can see that the
computation of 〈T 〉 involves a coherent part and a vertex
correction part, namely

〈T 〉 = Tr[ḡR�LḡA�R] + Tr[ḡR�RAḡA�R], (19)

where the vertex correction �RA can be solved from the linear
equation Eq. (A11) which is one of the simplest compared
to other GNVC equations. Since the translational invariance is
restored after the average, we do lattice Fourier transformation
and Eq. (19) can be rewritten as,

〈T 〉 =
∑

T

∫



Tr[ḡR(k)�L(k)ḡA(k)�R(k)]

+
∑

T

∫



Tr[ḡR(k)�RAḡA(k)�R(k)], (20)

where T and k are the translational vector and the k point in the
first Brillouin zone (BZ), denoted as 
. It should be mentioned
that, in the coherent part (the first term in the above equation),
electron transports through the device by conserving the k, the
same as the perfect device. The presence of disorders gives rise
to the nonzero �, thus the vertex correction part in Eq. (20)
to account for the effects of interchannel scattering in which k
is not conserved (this is prohibited in the perfect device). The
mathematical structure of �RA in the above equation is very
similar to that of the GNVCs involved in 〈T̂ 2〉 that we will
discuss in the next subsection.

B. Averaged shot noise

After obtaining the averaged transmission 〈T 〉, calculating
the averaged shot noise still requires the average of Tr[〈T̂ 2〉].
From Sec. II, we can rewrite 〈T̂ 2〉 = −〈g<�Rg<〉�R which
contains the average over the product of two g<s. From
Eq. (A19), we can see the averaged 〈g<�Rg<〉 can be calcu-
lated by the linear combination of the averaged nine two-GF
correlators, namely 〈gX�RgY 〉,(X,Y = R,A,K). According
to Eqs. (A1)–(A9), each 〈gX�RgY 〉 takes a similar form,
containing a coherent part plus vertex correction terms. Here
we take the RR part of Tr[〈T̂ 2〉] as an example. According to
Eq. (A1), we obtain

Tr[〈T̂ 2〉](RR) = Tr[ḡR�R ḡR�R] + Tr[ḡR�RR ḡR�R]. (21)

With lattice Fourier transform, we obtain

Tr[〈T̂ 2〉](RR) =
∑

T

∫



Tr[ḡR(k)�R(k)ḡR(k)�R(k)]

+
∑

T

∫



Tr[ḡR(k)�RR ḡR(k)�R(k)], (22)

by using the relations �RR
BT = �RR

B and �RR = ∑
BT �RR

BT
in SSA (B is the basis in a unit cell). Here �RR

B is given
by Eq. (A10). After lattice Fourier transform, we obtain the
equation for �RR

B in the following form:

�RR
B =

〈
tB

∫



[ḡR(k)�R(k)ḡR(k)]BBtB

〉

− 〈
tBḡR

BB�RR
B ḡR

BBtB
〉

+
〈
tB

∑
B′

∫



ḡR
BB′ (k)�RR

B′ ḡR
B′B(k)tB

〉
, (23)

which can be solved by the standard linear algebra. It should
be emphasized that one has to solve the GNVC equations in
the order from Eq. (A10) to Eq. (A18), so that one solves
for only one unknown �XY each time. Appendix B provides
some more details about Eqs. (22) and (23). After obtaining
all the required GNVCs, the Tr[〈T̂ 2〉] can be computed from
first principles to obtain the averaged shot noise for disordered
nanoelectronics.

C. Transmission fluctuation

The transmission fluctuation induced by disorder is defined
as δT =

√
〈T 2〉 − 〈T 〉2. According to Sec. II, we have

〈T 2〉 = −〈Tr[g<�R] · Tr[g<�R]〉. (24)

To compute 〈T 2〉, we write

�B1T1,B2T2 =
∫




�B1,B2 (k)e−ik·(T2−T1), (25)

where the subscript R has been omitted. By introducing the
spectral decomposition �(k) = ∑N

i=1 |vi(k)〉〈vi(k)|, [N is the
dimension size of the matrix �(k)], Eq. (25) can be rewritten
as

�B1T1,B2T2 =
N∑

i=1

∫



[|ui(k)〉〈ui(k)|]B1T1,B2T2 , (26)

where |ui(k)〉BT ≡ |vi(k)〉Beik·T. Equation (26) can be written
in a compact form � = ∑N

i=1

∫



|ui(k)〉〈ui(k)|. Substituting
Eq. (26) into Eq. (24) leads to

〈T 2〉 = −
N∑
i,j

∫

2

Tr[〈g<Uij (k1,k2)g<〉U †
ij (k1,k2)], (27)

where Uij (k1,k2) ≡ |ui(k1)〉〈uj (k2)|. Again, we need to com-
pute the average over the product of two g<s. As we show
in Appendix D, in (δT )2 = 〈T 2〉 − 〈T 〉2, the coherent part of
〈T 2〉 in Eq. (27) is exactly canceled out by the 〈T 〉2. As an
important result, only the GNVC terms in 〈T 2〉 contribute to
the transmission fluctuation. In other words, the fluctuation
is originated from the interchannel disorder scattering. Since
each vertex correction term in Eqs. (A1)–(A9) has a similar
form, in the following, we still study the RR part of 〈T 2〉 as
an example. The corresponding contribution to the fluctuation
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is given by (see Appendix C for details)

〈T 2〉(RR)
(GNVC) =

N∑
ij

∫

2

Tr
[
ḡR�RR

ij (k1,k2)ḡRU
†
ij (k1,k2)

]

=
N∑

T,ij

∫

2

Tr
[
ḡR(k1)�

RR
ij (k1,k2)ḡ

R(k2)V
†
ij (k1,k2)

]
,

(28)

by using �RR
ij,BT(k1,k2)=�RR

ij,B(k1,k2)e−i(k1−k2)T and

�RR
ij (k1,k2)=

∑
BT �RR

ij,BT(k1,k2) in SSA. Here V
†
ij (k1,k2) ≡

|vj (k2)〉〈vi(k1)|. From the single summation over T in the
above equation, we can see the δT scales as

√
M with

respect to the number of unit cells M , while the transmission
coefficient and shot noise scale linearly [see Eqs. (20) and
(21)]. This

√
M scaling relation reflects the self-averaging

effect of disorder. We obtain �RR
ij,B(k1,k2) by solving the

linear equation,

�RR
ij,B(k1,k2) = 〈tB[ḡR(k1)Vij (k1,k2)ḡR(k2)]BBtB〉

− 〈
tBḡR

BB�RR
ij,B(k1,k2)ḡR

BBtB
〉

+
〈
tB

∑
B′

∫



ḡR
BB′(k)�RR

ij,B′(k1,k2)

× ḡR
B′B(k + k2 − k1)tB

〉
, (29)

which is also obtained by the lattice Fourier transform of
Eq. (A10). The solution process for �XY

ij (k1,k2) is similar
to what we have described in the last subsection. After solving
all the nine �XY

ij (k1,k2), the transmission fluctuation can be
obtained to tell the device-to-device variability from first
principles.

V. NUMERICAL RESULTS AND DISCUSSIONS

Within the framework of TB-LMTO, we have implemented
the generalized CPA-NVC in combination with NEGF-DFT
to realize first-principles quantum transport simulation of
nanoelectronics. As a numerical test, we have checked the
formulation and implementation with the fluctuation dissipa-
tion theorem at the equilibrium limit by calculations with and
without the GNVCs (for details, see Appendix E.) In this
section, to demonstrate the effectiveness of the generalized
CPA-NVC and its first-principles implementation, we calcu-
late shot noise in a copper conductor with disordered vacancies
and the fluctuation of the spin-dependent conductance through
the disordered Cu/Co interface, and compare our results with
other theories and experiments.

In all our electronic structure self-consistent calculations,
we use the von Barth-Hedin LSDA exchange-correlation
functional [36]. In shot noise simulation, we take the device
model Cu/Cu1−xVax/Cu where the central region contains
a different number of disordered layers with the vacancy
concentration of x. In the transmission fluctuation calculation,
we investigate the structure Cu/Cu1−xCox/Co where the
central device region contains different disordered layers

with the Co concentration of x. For both systems, we
investigate the electron transport along the (111) direction
in an fcc lattice structure. We use the experimental lattice
constant a = 3.615 Å for both structures, neglecting the
small lattice distortion and mismatch. For the vacancy, we
represent it by a vacuum sphere without nuclear charge.
For both systems, we use 50×50 k points in the whole BZ
for electronic structure calculation and 60×60 k points for
quantum transport simulation to obtain very well convergence.
For simplicity, all our calculations are performed at zero bias,
and all the transport properties are computed at the Fermi
energy.

A. Shot noise for disordered Cu conductor

Theory has predicted that the Fano factor for the disordered
conductor approaches a universal value 1/3 in the diffusive
transport regime [37,38], and this prediction has been con-
firmed by experiments [12,39]. The universal 1/3 Fano factor
is explained by the presence of the open transmission channels
in the diffusive conductor [30]. In this subsection, we carry out
the first-principles study of the transmission, shot noise, and
the Fano factor in the phase-coherent copper conductors with
disordered vacancies.

Figure 2 presents the averaged transmission and shot
noise results for conductors with different vacancy concen-
trations x = 0.025, x = 0.05, and x = 0.1. Figures 2(a), 2(c),
and 2(e) plot the transmission coefficients for the coherent part,
vertex correction part, and the total. We can see for the three
different vacancy concentrations, the total transmissions (in
black square) all decrease with the increase of length, and we
have checked that, after a certain length, the resistance R that is
proportional to 1/T becomes linearly dependent on the length
L, obeying the Ohms law. It should be noted that this correct
behavior can only be obtained by including the contribution
of the vertex correction, which accounts for the interchannel
scattering. From Figs. 2(a), 2(c), and 2(e), it is clearly seen
that, as the length increases, the interchannel scattering,
accounted for by the vertex correction part, becomes more and
more important, and finally dominate the total transmission
for all the three concentrations investigated here, while
the coherent parts all behave oppositely, quickly decaying
to very small value. For example, at the length L = 50
layers, vertex correction is 0.346 for x = 0.025, 0.311 for
x = 0.05 and 0.206 for x = 0.1 while the corresponding total
transmission is 0.459, 0.331, 0.207 for the respective three
concentrations.

Figures 2(b), 2(d), and 2(f) present the shot noise results:
The GNVCs (absolute value) are shown in the purple triangle,
without GNVCs shown in the red circle, and the total in the
black square. Here, “without GNVCs” means we include the
vertex correction in the transmission coefficient and only use
the coherent part of Tr[〈T̂ 2〉] for the shot noise calculation.
For the three concentrations, all the total shot noises quickly
increase from zero to a maximum when the transmission is
close to 0.5 and then start to decrease as the number of
disordered layers further increases. For the perfect copper
conductor, shot noise equals zero because of the zero reflection
without scattering. The presence of disorder scattering gives
rise to the back scattering, thus giving the reflection and the
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FIG. 2. Transmission and shot noise versus the length of disordered layers L (atomic layer) for Cu/Cu1−xVax/Cu. (Left column) The
averaged transmission Tr[〈T̂ 〉]. (a), (c), and (e) are for x = 0.025, x = 0.05, and x = 0.1, respectively. (Right column) The averaged shot noise
2Tr[〈T̂ 〉 − 〈T̂ 2〉]. (b), (d), and (f) are for x = 0.025, x = 0.05, and x = 0.1, respectively. (Note that the GNVC contribution is negative and its
absolute value is plotted.)

shot noise. In the short conductor, the shot noise increases with
the increase of reflection. However as the number of disorder
layers further increases, the transmission decreases to a point
that the shot noise starts to decrease. Similar to the transmission
coefficients, we can see the GNVCs play important roles in
the calculation of the shot noise. For example, the GNVC
results are −0.197 for x = 0.025, − 0.210 for x = 0.05, and
−0.178 for x = 0.1 while the corresponding total shot noises
are 0.183, 0.169, 0.123 for the three concentrations.

In Fig. 3, we plot the Fano factor and compare it with
the calculation without the GNVCs. It is clear that, with
the GNVCs, all the three Fano factors are increasing and
approaching but not beyond the universal value 1/3 as the
disorder length L increases, agreeing well with previous theo-
retical prediction [37,38] and the experimental measurements
[12,39]. Without GNVCs, the Fano factor presents a wrong
trend: The value increases quickly beyond 1/3, for example,
for x = 0.1, L = 200, the fano factor reaches 0.913, much

125428-7



JIAWEI YAN, SHIZHUO WANG, KE XIA, AND YOUQI KE PHYSICAL REVIEW B 95, 125428 (2017)

0 40 80 120 160 200
0.0

0.2

0.4

0.6

0.8

1.0

Fa
no

fa
ct

or

L

x=0.025 with GNVC
x=0.025 without GNVC
x=0.05 with GNVC
x=0.05 without GNVC
x=0.10 with GNVC
x=0.10 without GNVC

Theoretical value 1/3

FIG. 3. Fano factor versus the number of disordered layers L

(atomic layer) for Cu/Cu1−xVax/Cu structure. The red, blue, and
green lines are for x = 0.025, x = 0.05, and x = 0.1, respectively.
The horizontal dash line is the theoretical value of 1/3 universal Fano
factor for disordered conductors.

larger than 1/3, while the result with GNVCs is 0.329, close to
1/3. Here we want to emphasize that the inclusion of GNVCs
is essential for correctly calculating the Fano factor in the
disordered conductors. Therefore, it is important to effectively
account for the interchannel scattering in the quantum transport
simulation of the disordered nanostructures.

B. Disorders-induced conductance fluctuation
for Cu/Co interface

In nanoscale devices, the random distribution of disorders
can induce large fluctuation in device properties, giving
rise to the large device-to-device variability. However, the
quantitative study of the disorder effects on the device
variability is very difficult [14]. Here, we apply the generalized
CPA-NVC to study the disorder-induced device-to-device
variability for spin-dependent electron transport through the
Cu/Co interface along the (111) direction. For this structure, it
has been experimentally shown that the variance of device
resistance is very large for the minority spin channel and
negligible for the majority spin channel [40]. Moreover, the
first-principles supercell simulations has also shown the large
variance of conductance in the minority spin channel while
the majority spin almost remains unchanged when changing
disorder configurations [15]. Figure 4 shows our simulation
results for averaged conductance 〈G〉 = e2

h
〈T 〉 (the midpoint

of each vertical line) and its fluctuation δG = e2

h
δT (the

half width of each vertical line) for systems with single
and double disorder layer(s). We can see the conductance
in the minority and majority spins behaves quite differently,
consistent with the experimental measurements and previous
supercell simulations. First of all, it is clear that the majority
spin channel has negligible fluctuation δG and almost invariant
averaged conductance 〈G〉 for all the different concentrations
in both structures, thus presenting small device-to-device vari-
ability. In contrast, the minority spin channel shows very large
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FIG. 4. Conductance and its fluctuation versus disorder concen-
tration x for Cu/Cu1−xCox/Co structure: (a) for single disordered
layer and (b) for double disordered layers. The midpoint of the
vertical line is the averaged transmission coefficient 〈T 〉; the half
of the vertical line equals the transmission fluctuation δT .

conductance fluctuation, even comparable to the averaged
〈G〉, for example, in the double disordered layer structure,
δG = 0.185 e2

h
while 〈G〉 = 0.458 e2

h
at x = 0.4. The fluctuation

in minority spin increases quickly as the number of disorders
increases. In general, the larger difference between electronic
structures of the impurity and host induces the stronger
impurity scattering, the larger difference between different
disorder configurations, and thus gives rise to the larger
resistivity and conductance fluctuation. The big difference in
the transmission of the two spin channels can be attributed to
the fact that the electronic structure of the Co’s minority spin
is very different from that of the Cu (spin unpolarized), while
the majority spin of Co has the electronic structure similar to
Cu, as shown in Ref. [15]. This means electrons experience
much weaker scattering in the majority spin channel than in the
minority spin channel, resulting in very different transmission
fluctuation in the two spin channels. Without direct simulation,
it is difficult to provide the quantitative or even qualitative
estimate of the disorder-induced fluctuation. Here we want to
emphasize again that the fluctuation is completely contributed
by the GNVC terms, namely only by the interchannel disorder
scattering.

VI. CONCLUSIONS

We have implemented the generalized CPA-NVC method in
combination with the NEGF-DFT method within the frame-
work of the TB-LMTO approach to realize first-principles
quantum transport simulation of disordered nanoelectronics.
The generalized CPA-NVC accounts for the disorder effects
and the nonequilibrium statistics in the computation of
electronic structure and electron transport properties. With
this method, electron transport properties, such as disorder-
averaged conductance, shot noise, and disorders-induced
device-to-device variability (or conductance fluctuation), can
all be calculated in an effective and unified way without
using any phenomenological parameters. As applications, we
investigated the shot noise in the disordered phase-coherent
copper conductor and disorder-induced device-to-device vari-
ability in the spin-dependent transport through the Cu/Co
interface. All our results agree very well with the experimental
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measurements and other theories. In both applications, we have
shown the generalized NVCs play a determinant role in com-
puting the quantum transport properties of disordered nano-
electronics. Therefore, we conclude the first-principles gener-
alized CPA-NVC method provides an effective way to treat the
disorder effects on quantum transport in disordered nanoelec-
tronics, extending the capability of first-principles simulation.
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APPENDIX A: FORMULAS OF GENERALIZED
CPA-NVC METHOD

In this section, in order to make this paper self-containing,
we provide the central formulas of the generalized CPA-NVC
method to calculate 〈gXcgY 〉,(X,Y = R,A,K), where c is a
disorder-independent constant. (See more details in Ref. [18].)
Before calculating the nine different 〈gXcgY 〉, we should first
obtain the averaged ḡR/A/K . Here ḡR/A can be obtained by

the CPA and ḡK can be computed by including the NVC,
namely ḡK = ḡR(�K + �RA)ḡA, and �RA is obtained by
solving Eq. (A11).

After obtaining ḡR/A/K , the nine different pairwise combi-
nations 〈gXcgY 〉,(X,Y = R,A,K) read

〈gRcgR〉 = ḡRcḡR + ḡR�RR ḡR, (A1)

〈gRcgA〉 = ḡRcḡA + ḡR�RAḡA, (A2)

〈gAcgR〉 = ḡAcḡR + ḡA�AR ḡR, (A3)

〈gAcgA〉 = ḡAcḡA + ḡA�AAḡA, (A4)

〈gRcgK〉 = ḡRcḡK + ḡR�RK ḡA + ḡR�RR ḡK, (A5)

〈gAcgK〉 = ḡAcḡK + ḡA�AK ḡA + ḡA�AR ḡK, (A6)

〈gKcgR〉 = ḡKcḡR + ḡR�KR ḡR + ḡK�AR ḡR, (A7)

〈gKcgA〉 = ḡKcḡA + ḡR�KAḡA + ḡK�AAḡA, (A8)

〈gKcgK〉 = ḡKcḡK + ḡR�KK ḡA + ḡK�AK ḡA

+ ḡR�KR ḡK + ḡK�AR ḡK. (A9)

For each 〈gXcgY 〉 above, it contains the coherent part (explic-
itly containing c) and the vertex correction part(s) (containing
�). After SSA, � can be written as a site-diagonal quantity
� = ∑

R �R, which can be determined by the following nine
linear equations:

�RR
R = 〈

tRR [ḡRcḡR]RRtRR
〉 + ∑

R′ 	=R

〈
tRR ḡR

RR′�
RR
R′ ḡR

R′RtRR
〉
, (A10)

�RA
R = 〈

tRR [ḡRcḡA]RRtAR
〉 + ∑

R′ 	=R

〈
tRR ḡR

RR′�
RA
R′ ḡA

R′RtAR
〉
, (A11)

�AR
R = 〈

tAR [ḡAcḡR]RRtRR
〉 + ∑

R′ 	=R

〈
tAR ḡA

RR′�
AR
R′ ḡR

R′RtRR
〉
, (A12)

�AA
R = 〈

tAR [ḡAcḡA]RRtAR
〉 + ∑

R′ 	=R

〈
tAR ḡA

RR′�
AA
R′ ḡA

R′RtAR
〉
, (A13)

�RK
R = 〈

tRR [ḡRcḡR]RRtKR
〉 + 〈

tRR [ḡRcḡK ]RRtAR
〉 + ∑

R′ 	=R

[〈
tRR ḡR

RR′�
RK
R′ ḡA

R′RtAR
〉 + 〈

tRR ḡR
RR′�

RR
R′ ḡR

R′RtKR
〉 + 〈

tRR ḡR
RR′�

RR
R′ ḡK

R′RtAR
〉]
,

(A14)

�AK
R = 〈

tAR [ḡAcḡR]RRtKR
〉 + 〈

tAR [ḡAcḡK ]RRtAR
〉 + ∑

R′ 	=R

[〈
tAR ḡA

RR′�
AK
R′ ḡA

R′RtAR
〉 + 〈

tAR ḡA
RR′�

AR
R′ ḡR

R′RtKR
〉 + 〈

tAR ḡA
RR′�

AR
R′ ḡK

R′RtAR
〉]
,

(A15)

�KR
R = 〈

tKR [ḡAcḡR]RRtRR
〉 + 〈

tRR [ḡKcḡR]RRtRR
〉 + ∑

R′ 	=R

[〈
tRR ḡR

RR′�
KR
R′ ḡR

R′RtRR
〉 + 〈

tKR ḡA
RR′�

AR
R′ ḡR

R′RtRR
〉 + 〈

tRR ḡK
RR′�

AR
R′ ḡR

R′RtRR
〉]
,

(A16)

�KA
R = 〈

tKR [ḡAcḡA]RRtAR
〉 + 〈

tRR [ḡKcḡA]RRtAR
〉 + ∑

R′ 	=R

[〈
tRR ḡR

RR′�
KA
R′ ḡA

R′RtAR
〉 + 〈

tKR ḡA
RR′�

AA
R′ ḡA

R′RtAR
〉 + 〈

tRR ḡK
RR′�

AA
R′ ḡA

R′RtAR
〉]
,

(A17)

�KK
R = 〈

tKR [ḡAcḡR]RRtKR
〉 + 〈

tKR [ḡAcḡK ]RRtAR
〉 + 〈

tRR [ḡKcḡR]RRtKR
〉 + 〈

tRR [ḡKcḡK ]RRtAR
〉 + ∑

R′ 	=R

[〈
tRR ḡR

RR′�
KK
R′ ḡA

R′RtAR
〉

+ 〈
tKR ḡA

RR′�
AK
R′ ḡA

R′RtAR
〉 + 〈

tRR ḡK
RR′�

AK
R′ ḡA

R′RtAR
〉 + 〈

tRR ḡR
RR′�

KR
R′ ḡR

R′RtKR
〉 + 〈

tKR ḡA
RR′�

AR
R′ ḡR

R′RtKR
〉

+ 〈
tRR ḡK

RR′�
AR
R′ ḡR

R′RtKR
〉 + 〈

tRR ḡR
RR′�

KR
R′ ḡK

R′RtAR
〉 + 〈

tKR ḡA
RR′�

AR
R′ ḡK

R′RtAR
〉 + 〈

tRR ḡK
RR′�

AR
R′ ḡK

R′RtAR
〉]
. (A18)
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These nine equations are decoupled if we solve them from top to down, because each time we only have one unknown �
to solve. As we know [18], any averaged two-real-time-GF correlators can easily be obtained by the linear combination of
〈gXcgY 〉,(X,Y = R,A,K) in Eqs. (A1)–(A9), for example,

〈g<cg<〉 = 1
4 [〈gRcgR〉 − 〈gRcgA〉 − 〈gRcgK〉 − 〈gAcgR〉 + 〈gAcgA〉 + 〈gAcgK〉 − 〈gKcgR〉 + 〈gKcgA〉 + 〈gKcgK〉]. (A19)

APPENDIX B: DERIVATION OF EQS. (22) AND (23)

Equation (22) is derived by the lattice Fourier transform of Eq. (21). To do this, we first consider the first term of Eq. (21) and
obtain

Tr[ḡR�R ḡR�R] =
∑
B1T1

∑
B2T2

∑
B3T3

∑
B4T4

ḡR
B1T1,B2T2

�R,B2T2,B3T3 ḡR
B3T3,B4T4

�R,B4T4,B1T1

=
∑
T4

∫

4

Tr[ḡR(k1)�R(k2)ḡR(k3)�R(k4)]
∑
T1

e−i(k4−k1)·T1
∑
T2

e−i(k1−k2)·T2
∑
T3

e−i(k2−k3)·T3e−i(k3−k4)·T4

=
∑

T

∫



Tr[ḡR(k)�R(k)ḡR(k)�R(k)], (B1)

where we have used identity
∑

T e−ik·T = δ(k). The second term of Eq. (21) can be obtained similarly. Note that � is a
site-diagonal quantity � = ∑

BT �BT, and �BT = �B. By using these facts, we can easily obtain Eq. (21). Equation (23) is
derived from the lattice Fourier transform of Eq. (A10) [c in Eq. (A10) is replaced with �R here], we first rewrite

�RR
B = 〈

tRB [ḡR�R ḡR]BBtRB
〉 − 〈

tRB ḡR
BB�RR

B ḡR
BBtRB

〉 + ∑
B′T′

〈
tRB ḡR

B,B′T′�
RR
B′T′ ḡR

B′T′,BtRB
〉
. (B2)

By applying the lattice Fourier transform and using �B′T′ = �B′ , we can obtain Eq. (23) from the above equation.

APPENDIX C: DERIVATION OF EQS. (28) AND (29)

Equation (28) is derived from the vertex correction term in Eq. (A1). To see the details, we have

〈T 2〉(RR)
(GNVC) =

N∑
ij

∫

2

Tr
[
ḡR�RR

ij (k1,k2)ḡRU
†
ij (k1,k2)

]

=
N∑
ij

∫

2

∑
B1T1

∑
B2T2

∑
B3T3

ḡR
B1T1,B2T2

�RR
ij,B2T2

(k1,k2)ḡR
B2T2,B3T3

[U †
ij (k1,k2)]B3T3,B1T1

=
N∑
ij

∫

2

∑
B1T1

∑
B2T2

∑
B3T3

ḡR
B1B2

(k3)�RR
ij,B2

(k1,k2)ḡR
B2B3

(k4)[V †
ij (k1,k2)]B3B1e

−i(k1−k3)·T1e−i(k3−k4+θ)·T2e−i(k4−k2)·T3

=
N∑
ij

∫

2

∑
T2

Tr
[
ḡR(k1)�RR

ij (k1,k2)ḡR(k2)V †
ij (k1,k2)

]
e−i(k1−k2+θ)·T2 , (C1)

where we have supposed �RR
ij,BT(k1,k2) = �RR

ij,B(k1,k2)e−iθ ·T.
Because each unit cell must provide the same contribution to
the fluctuation, θ = k2 − k1 is required, and finally we obtain
Eq. (28).

By replacing c with Uij (k1,k2) in Eq. (A10), Eq. (29)
can be obtained by the lattice Fourier transform with
the relation �RR

ij,BT(k1,k2) = �RR
ij,B(k1,k2)e−i(k2−k1)·T and

[Uij (k1,k2)]BT,B′T′ = [Vij (k1,k2)]B,B′e−i(k2T′−k1T).

APPENDIX D: MORE ABOUT TRANSMISSION
FLUCTUATION

The disorders-induced transmission fluctuation is entirely
contributed by GNVCs. To see this fact more clearly, from the

definition of the transmission coefficient we have

〈T 〉 = −i

N∑
i=1

∫



Tr[ḡ<|ui(k)〉〈ui(k)|], (D1)

and therefore

〈T 〉2 =−
N∑
ij

∫

2

Tr[ḡ<Uij (k1,k2)ḡ<U
†
ij (k1,k2)]. (D2)

Comparing with Eq. (27), we can find 〈T 〉2 is exactly the
coherent part of 〈T 2〉, which is canceled out in the calculation
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of δT . Therefore, in order to obtain δT , we only need to
calculate the GNVC part of 〈T 2〉.

APPENDIX E: TEST THE GENERALIZED NVCS
WITH FLUCTUATION DISSIPATION THEOREM

The fluctuation dissipation theorem says that for a system
at equilibrium, the Green’s functions satisfy

gα,< = gα,A − gα,R, (E1)

which can be used as a strong test to our implementation. For
example, to test the correctness of GNVC terms in the quantity

〈gα,<cgα,<〉, we insert Eq. (E1) into it and get

〈gα,<cgα,<〉 = 〈gα,Acgα,A〉 − 〈gα,Acgα,R〉
− 〈gα,Rcgα,A〉 + 〈gα,Rcgα,R〉. (E2)

The left-hand side of Eq. (E2) can be calculated by including all
the GNVC terms in Eqs. (A1)–(A9), while the right-hand side
terms only require the simplest vertex corrections in Eqs. (A1)–
(A4). In our implementation, we have tested the fluctuation
dissipation theorem in both the disordered copper conductor
investigated in Sec. V A and the disordered Cu/Co interface
discussed in Sec. V B. In both cases, the results on the left-hand
side and right-hand side in Eq. (E2) are essentially the same,
providing a rigorous test to our numerical implementations.

[1] S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, 1997).

[2] A. Asenov, IEEE Trans. Electron Devices 45, 2505 (1998).
[3] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W.

Kohn and L. J. Sham, ibid. 140, A1133 (1965); R. G. Parr and
W. Yang, Density-Functional Theory of Atoms and Molecules
(Oxford University Press, Oxford, 1989), Vol. 16.

[4] H. Haug, A.-P. Jauho, and M. Cardona, Quantum Kinetics
in Transport and Optics of Semiconductors (Springer, Berlin,
2008), Vol. 2.

[5] L. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
[6] J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 121104 (2001);

63, 245407 (2001).
[7] Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys. 281, 151

(2002); W. Lu, V. Meunier, and J. Bernholc, Phys. Rev.
Lett. 95, 206805 (2005); M. Brandbyge, J.-L. Mozos, P.
Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401
(2002).
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