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Quantum-size effects are essential for understanding the terahertz conductivity of semiconductor nanocrystals,
particularly at low temperatures. We derived a quantum mechanical expression for the linear terahertz response of
nanocrystals; its introduction into an appropriate effective medium model provides a comprehensive microscopic
approach for the analysis of terahertz conductivity spectra as a function of frequency, temperature, and excitation
fluence. We performed optical pump–terahertz probe experiments in multilayer Si quantum dot networks with
various degrees of percolation at 300 and 20 K and with variable pump fluence (initial carrier density) over
nearly three orders of magnitude. Our theoretical approach was successfully applied to quantitatively interpret
all the measured data within a single model. A careful data analysis made it possible to assess the distribution
of sizes of nanocrystals participating to the photoconduction. We show and justify that such conductivity-
weighted distribution may differ from the size distribution obtained by standard analysis of transmission electron
microscopy images.
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I. INTRODUCTION

Optoelectronic properties of semiconductor nanostructures
can be tuned and optimized by their composition, size, and
surface properties, which are fundamentally influenced by
fabrication methods and by postgrowth treatment such as pas-
sivation of interfaces. Silicon nanocrystals (NCs) [1] possess
properties that find applications in various fields, including
photovoltaics [2], optoelectronics [3], and biosensing [4].
Confinement of the charge carriers inside nanostructures, their
transport among individual nano-elements, and the interface-
related electronic processes carry growing importance for
these applications. Deep understanding of the band structure,
luminescent properties, and charge carrier transport in NCs
and NC networks, namely in correlation with technological
steps during the material preparation, can further increase their
application potential. The terahertz (THz) spectral range has
great potential to address fundamental questions relevant to
these fields as well as the related applications: THz probing
provides access to the pertinent length scales, allowing the
description of the charge carrier transport in nanostructures;
it also greatly helps to target material properties important for
the nanoelectronics and provides feedback for the fabrication
technologies.

Time-resolved THz spectroscopy provides a useful mean
to assess the motion of optically injected carriers inside NCs
as well as the charge transport among NCs on an ultrafast
time scale, i.e., it provides information about the conductive
quality of individual NCs and about their size, connectivity,
and morphology, including, namely, the percolation degree.
The Si NCs prepared by thermal decomposition of SiOx layers
have been extensively studied in the past by THz spectroscopic
techniques. First, the THz conductivity spectra of thick layers
(∼0.2–1 μm; 0.2 � x � 1.4) containing randomly distributed
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Si NCs were interpreted within the framework of phenomeno-
logical Drude-Smith model [5–7]. Note that these samples
are characterized by a broad size distribution and complex
NCs networking in all three dimensions. A better control over
the NC size and filling fraction is obtained in multilayers
composed of ultrathin SiOx/SiO2 bilayers [8,9]; nevertheless,
it has been shown by THz conductivity measurements [10]
that even in this case the NCs form a non-negligible amount of
larger clusters and aggregates with more or less mutually inter-
connected NCs. The broad distribution of NC sizes and namely
the complex morphological structures of these materials make
the quantitative microscopic interpretation of the measured
transient THz spectra quite challenging. The transmission
electron microscopy (TEM) images enable detection of NCs
with the most frequently represented sizes in the sample; these
NCs are typically nanometer sized in thermally decomposed
SiOx layers. The THz photoconductivity spectra are more
sensitive to larger nano-objects [10]: They then provide a
complementary picture of the distribution of larger NCs and
of more complex NC networks that are hardly resolved in the
TEM pictures.

In this paper, we study the THz conductivity of Si NCs
prepared by thermal decomposition of SiOx/SiO2 bilayers.
It turns out that the THz conductivity behavior at low
temperatures (LTs) can be explained only by assuming the
quantum behavior of electrons inside NCs. Our advanced
analysis then allows us to determine microscopic parameters
of the samples, namely the distribution of sizes of NCs that
participate to the conductive response of SiOx layers. This is
put into relation with the size distribution determined by TEM.

Indeed, quantum effects such as discretization of energy
levels and the corresponding appearance of resonances in the
far infrared spectra are expected in nanometer-sized NCs. For
this reason, interpretation of the experimental data within the
framework of classical theories without direct incorporation of
quantum effects may be questionable. We therefore develop a
quantum model of NC conductivity in the THz spectral range,
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TABLE I. Summary of sample properties from the literature and from optical and THz measurements presented in this paper.

Sample x = 0.0 x = 0.3 x = 0.5 x = 0.7 Comment

Si areal fill fraction sA (%) ∼100 ∼100 63 38 From EF-TEM (Ref. [12])
Si volumetric fill fraction s (%) 99 84 From measured optical absorptiona

42 25 s = 2/3 sA

n of NC layers at 400 nm 5.4 4.1 2.4 2.0 From effective medium calculationsb

α at 400 nm (cm−1) 8.6×104 3.7×104 0.72×104 0.35×104 From effective medium calculationsb

α at 400 nm (cm−1) 12×104 5.5×104 1.7×104 0.30×104 From optical absorbance measurements (Fig. 1)
scoh(%) 54 22 14 1.2 Fit of THz data
sinc(%) 44 29 3 <0.1 Fit of THz data
Kinc �20 2 2 Fit of THz data
μRT (cm2 V−1 s−1) 30 18 15 Fit of THz data
μLT (cm2 V−1 s−1) 10 10 6 Fit of THz data
Conductive NCs (%) ∼100 60 40 <5 = (scoh + sinc)/s

aThe volumetric filling fraction s was calculated from the areal filling fraction (s = 2/3 sA) for samples with x = 0.5, 0.7. For sample SiO0.3,
the value was chosen in order to match the experimental and theoretical optical absorbance in Fig. 1. For SiO0.0, the value should be close to
100%: For s = 99%, we obtain again a good match between the experimental and theoretical optical absorbance.
bThe procedure of calculation of effective refractive index and absorption coefficient in the optical range was described in Ref. [10]; the complex
refractive index of pure Si was taken from Ref. [14]: (αSi = 9.5 × 104 cm−1, nSi = 5.55).

and we use it to interpret the experimental data. The agreement
between the theory and experiment at both room temperature
(RT) and LTs underlines the high relevance of the model.

The paper is organized as follows. In Sec. II, we provide
information regarding sample preparation and regarding the
experimental techniques used. In Sec. III, we set up the
theoretical model. We develop the quantum mechanical cal-
culations of the THz mobility of carriers (Sec. III A), and we
introduce the calculated mobility into an appropriate effective
medium theory reflecting the inhomogeneous nature of the
samples (Sec. III B). Based on this formalism, a global model
of transient THz transmittance spectra is developed, and we
illustrate how the size of NCs influences various THz spectra
(Sec. III C). In Sec. IV, we describe the fitting procedure,
and we compare the fits to the experimental data. Finally, in
Sec. V, we conclude, emphasizing important implications for
interpretation of THz spectra of semiconductor nanostructures.

II. EXPERIMENTAL DETAILS

A. Samples: preparation and preliminary characterization

The studied nanocrystalline Si superlattice samples are
similar to those reported in Ref. [10] but prepared using
improved technological steps [nitrogen-free SiOx plasma
enhanced chemical vapor deposition (PECVD) process].
The samples are composed of 100 bilayers consisting of a
4.5-nm-thick layer, which contains Si NCs in SiO2 envi-
ronment, and of a 4-nm-thick isolating layer of SiO2. The
sample preparation is described in detail in Ref. [11]. Basically,
a periodic SiOx/SiO2 structure was prepared by means of
the SiH4 + O2 + Ar PECVD process. Subsequently, these
structures underwent a thermal annealing at 1100 °C for
1 hour in pure N2, which induced phase separation between
silicon and silicon dioxide in the silicon-rich layers and the
crystallization of Si NCs. The samples were finally at 500 °C
annealed in a pure H2 atmosphere to passivate the dangling
bond defects at the Si/SiO2 interfaces.

Adjustment of the precursor gas flow ratio in PECVD al-
lowed reaching a wide variety of the silicon oxide composition
(we focused on samples with x = 0.7, 0.5, 0.3, and 0.0): The
amount of Si excess in the initial SiOx layers controls the
size of Si NCs as well as their volumetric filling factor s

within each layer. The sample with x = 0.0 corresponds to a
polycrystalline silicon layer.

Selected properties of the samples published previously or
measured in this paper are summarized in Table I. The size
distribution of NCs and the filling factor in our samples were
determined by plane-view energy-filtered TEM (EF-TEM)
[12]. The average size of NCs in sample SiO0.7, as determined
by EF-TEM, is 5.0 ± 1.5 nm in relation with the nominal
thickness of SiOx layers. The EF-TEM images indicate that
silicon in the samples SiO0.5, SiO0.3, and SiO0.0 is percolated
and that the average size of Si NCs is thus an undefined quantity
from this point of view. On the other hand, we show in Sec. IV
that the THz photoconductivity spectra strikingly depend on
the pump fluence (i.e., on the photocarrier concentration).
It has been shown and extensively discussed that such a
finding is a fundamental signature of a significant contribution
to the conductivity of inclusions that are not electrically
percolated [10,19,20,23]. This apparent discrepancy between
TEM and THz measurements will be thoroughly discussed at
the end of this paper. At this point, we stress the reason why
we systematically develop here a description in terms of the
quantum confinement of photocarriers in isolated NCs.

Optical absorbance at the pump wavelength is a crucial
parameter for the analysis of transient THz spectra. In Fig. 1,
we show the absorbance of our samples at 400 nm, and
we compare it with effective absorbance of the Si/SiO2

mixture calculated using a Maxwell-Garnett effective medium
approximation [10] and the transfer-matrix formalism for
layered structures [13]. To this aim, we used the intrinsic
optical properties of silicon (absorption coefficient αSi =
9.5 × 104 cm−1, refractive index n = 5.55) [14]. There is
a reasonable agreement between these data sets, which
corroborates the view that the samples are composed mainly
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FIG. 1. Calculated and measured optical absorbance of various
Si NC samples at 400 nm defined as −ln(Is/Isub), where Is is the
transmitted light intensity through the sample (including all internal
reflections in the layered structure) and Isub is the transmitted intensity
through the bare substrate. Black symbols: samples investigated in
this paper; red symbols: similar samples with extrinsic absorption on
incorporated nitrogen investigated previously in Ref. [10].

of Si and SiO2 and that they are free of extrinsic absorption.
From this analysis, we also conclude that the quantum yield
ξ of the photogeneration of mobile carriers is close to one in
these samples. This is in contrast with the former samples
from [10]: Those samples exhibited a considerably higher
absorbance, which was ascribed to extrinsic absorption due
to a high amount of incorporated nitrogen from using N2O gas
instead of O2 in the PECVD [8,10].

B. The THz photoconductivity measurements

Measurements of the transient THz photoconductivity spec-
tra (optical pump–THz probe experiments) were performed
using a conventional setup for time-resolved THz spec-
troscopy [15] driven by Ti:sapphire ultrafast regenerative laser
amplifier (Spitfire ACE, central wavelength 800 nm, 1 mJ pulse
energy, 5 kHz repetition rate). A part of the output laser beam
was frequency doubled to 400 nm (3.1 eV) and subsequently
used for the sample photoexcitation. Homogeneous excitation
across the sample was achieved by defocusing of the beam to an
area significantly larger than the diameter of the aperture of the
metallic sample holder; the pump beam fluence was controlled
over nearly three orders of magnitude using a combination of
neutral density filters and a variable attenuator based on a thin
film polarizer. Another part of the laser beam was used for
the THz pulse generation, detection via optical rectification,
and electro-optic sampling in 1-mm-thick ZnTe crystals. The
THz pulses impinged on the sample under normal incidence,
thus probing the charge transport in the plane of the sample.
The experiments were performed at RT and at 20 K in a liquid
helium continuous flow cryostat (Optistat CF).

The photoconductivity spectra were measured at a pump-
probe delay of 10 ps, i.e., at a significantly shorter delay than
the exciton formation time [16]. For this reason, we do not
consider the electron-hole interaction, and we interpret our
results in the frame of conduction band carrier motion.

III. THz SPECTRAL RESPONSE

Two effects play an important role in the THz photocon-
ductivity spectra of semiconductor nanostructures: charge con-
finement inside nanostructures and depolarization fields [17].
In our past publications, we used semiclassical Monte-Carlo
simulations [18] to assess the former effect and effective
medium theory based on the Bergman approach [19,20] to
take into account properly the latter one. This was also the
case in similar Si NC multilayers [10], where we studied
entirely nonpercolated samples, and the model provided very
nice quantitative agreement with the experiment at RT by using
nominal sample parameters (i.e., without fitting).

This approach fails in a comparison of the
photoconductivity spectra of our currently studied Si
NCs at RT and LTs. On one hand, the morphology of the
sample does not change with temperature; therefore, the
effective medium model should be temperature independent.
On the other hand, the semiclassical Monte-Carlo simulations
predict quite dramatic changes in the microscopic conductivity
and consequently in the THz transmission spectra, e.g., higher
values of the microscopic mobility and a significant redshift
of the conductivity peak of confined carriers have been
previously predicted for bandlike transport in microcrystalline
silicon upon cooling [15]. However, such effects are not
confirmed experimentally in the current paper. In fact, the
spectra measured at 20 and 300 K do not differ much.

For this reason, we develop quantum mechanical calcu-
lations of the THz conductivity. At RT, the quantum model
provides the same spectra as the semiclassical approach, but
the results significantly differ at LTs. Namely, the quantum
calculations are able to reproduce the experimental photocon-
ductivity spectra.

In Sec. III A, we develop a model of quantum mechanical
THz conductivity of a single isolated NC, and in Sec. III B we
introduce it into the context of effective medium response of
nonpercolated and percolated structures. Finally, in Sec. III C
we consider the THz response of an ensemble of NCs with a
broad distribution of sizes.

A. Quantum mechanical model of the THz conductivity

We describe the system of a confined electron probed
by external electric field E(ω) within the density matrix
formalism, which permits us to account for its incoherent
evolution. The total density matrix is defined as ρ = ρ0 + ρ(1),
where ρ0 describes the thermal equilibrium state of the system
(unperturbed by external fields) and ρ(1) is the first-order
perturbation caused by the field E(ω). The Liouville equation
within the first-order perturbation theory,

ih̄ρ̇(1) = [H0,ρ
(1)] + [H ′,ρ0] − ih̄γ ρ(1), (1)

phenomenologically introduces a decoherence due to the
inelastic scattering of electrons through the dephasing rate
γ (note that γ formally describes both the pure dephasing
and the carrier population decay). The total Hamiltonian H
was decomposed to its unperturbed part H0 and the linear
perturbation H ′ by the electromagnetic field H = H0 + H ′.
For simplicity, we consider the NCs as infinitely deep three-
dimensional (3D) rectangular potential wells. The unperturbed
Hamiltonian satisfies the stationary Schrödinger equation
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H0|k〉 = h̄ωk|k〉, where the multi-index k denotes a bound state
in the potential well. Since the NCs are much smaller than the
wavelength of THz radiation, we use the dipole approximation
to describe the interaction of electrons with the external electric
field: H ′ = −er · E(ω). The frequency-dependent electron
mobility is defined as

μ(ω) = j (ω)/eNE(ω), (2)

where e is the electron charge, N is the electron density, and
j (ω) denotes the electric current density as a linear response to
E(ω). In the first-order perturbation theory, the current density
reads

j (ω) = e

V0

∂

∂t
〈x〉 = e

V0

∂

∂t
Tr[ρ(1)r], (3)

where V0 is the system volume, m is the electron effective mass,
and r is the quantum-mechanical operator of position. We set
(∂/∂t) = −iω in order to evaluate the stationary solution of
Eq. (1) at a given frequency ω,

〈k|ρ(1)|l〉 = eE(ω) xkl

h̄

fk − fl

ω − ωk + ωl + iγ
, (4)

where the mean population of the level k is given by the Fermi-
Dirac distribution fk = 〈k|ρ0|k〉 and where xkl = 〈k|x|l〉 is
the dipole matrix element (assuming that the field is polarized
along the x direction). The resulting formula for the mobility
then stems from Eqs. (2) and (3):

μ(ω) = − iωe

n

∑

kl

fk − fl

h̄

|xkl|2
ω − ωk + ωl + iγ

. (5)

Here n = ∑
k fk is the mean number of electrons per NC (in

our calculations, we typically choose n � 1).
Note that Eq. (5) significantly differs from the expression

derived from the Kubo formula (see, e.g., Ref. [21] or Eq. (25)
in Ref. [22]), which is widely used for electronic systems
excited at optical frequencies. Indeed, the Kubo formula and
Eq. (5) provide the same spectra in the optical, near-, and
mid-infrared regimes (provided that ω � γ ); however, the
mobility given by Eq. (25) in Ref. [22] does not vanish for
ω = 0. This is because it does not account for all electric
currents in confined systems and its application should
be limited to frequencies ω > γ . In contrast, the mobility
calculated with the help of Eq. (5) drops to zero in the DC
regime (i.e., electrons localized in a NC cannot drift away)
and can be used to interpret the THz conductivity spectra in
semiconductor NCs where usually ω � γ .

In the calculations of quantum mechanical conductivity
spectra, we considered NCs in the form of rectangular
boxes with dimensions ax × ay × az and an infinite confining
potential. Assumption of the infinite depth of the potential well
is best justified by comparing the electron band offset between
Si and SiO2 (∼3.1 eV) and the energy of electron states that
contribute to the THz response (well below 0.5 eV). The choice
of the particular shape of the confining potential allowed us to
perform complex numerical calculations within a reasonable
time: Indeed, the shape of real NCs in the sample is irregular,
and we expect that the differences in the response of NCs of
different shapes do not exceed the experimental error as long
as their characteristic dimensions and symmetries are similar.
We checked this assumption numerically by comparing the

rectangular and spherical potentials. The dimension az is
perpendicular to the layers, and it is constrained by the
sample geometry to values smaller than the nominal layer
thickness of 4.5 nm. Consequently, to calculate spectra of NCs
larger than 4 nm, we assume that ax and ay can take any
required values, while az is fixed to 4 nm. The calculations of
eigenstates of unperturbed Hamiltonian take into account the
anisotropy of the conduction band minima in the L valley of
silicon (effective masses: m1 = m2 = 0.19,m3 = 0.97). The
position of the strongest resonance in the microscopic mobility
spectra depends on the temperature and electron density in
the NC since they determine which dipole transition between
the energy levels becomes the most pronounced. At low
electron density (less than one electron per NC), the largest
contribution comes from the transition from the ground to the
first excited state, thus resulting in a resonance at frequency
3h̄2π2/2m0m1a

2
x ≈ 240 meV (57 THz) for NC size ax =

5 nm, 27 meV (6.6 THz) for ax = 15 nm, and 9 meV (2.4 THz)
for ax = 25 nm. Here m0 denotes the free electron mass.

The mean carrier concentration used in the calculations
corresponds to less than one photoelectron per NC. In this
case, the vast majority of NCs is either unexcited or occupied
by a single electron; therefore, the Pauli exclusion principle has
a negligible influence and the thermal Fermi-Dirac distribution
of electrons can be approximated by the Maxwell-Boltzmann
distribution function, as we verified for our particular system.
In this regime, the mobility is independent of the carrier
concentration.

In Fig. 2, we present examples of calculated microscopic
mobility spectra in the THz and multi-THz range. Clearly, we
observe a dependence of the spectrum on the NC size. The
main part of the signal (peaks corresponding to transitions
between quantum energy levels) occurs in the multi-THz range
for the NC sizes considered; the THz range contains essentially
tails of these signals. Figure 3(a) shows the dependence of the
real part of the calculated mobility on the NC size for three
particular frequencies in the THz range, which is accessible
by our experiment. From these plots, we can conclude that
the mobility values start to decrease significantly for NC sizes
below 20 nm.

B. Effective conductivity

Effective (measurable) conductivity 	σ of most structures
can be calculated from the microscopic photoconductivity
	σmic inside NCs (obtained from a suitable microscopic
model) using a simple expression [19,20,10],

	σ = V 	σmic + B	σmic

1 + iD	σmic/ωε0
. (6)

Here, V is the percolation strength of the photoconductive
component. For small percolation strengths, we can define the
coefficients B and D, which characterize the morphology of
the nonpercolated parts of the sample, using the Maxwell-
Garnett parameters K (shape factor) and s (filling fraction) as
follows [10]:

B = εm(1 + sK) − ε(1 − s)

εm(s + K) + εb(1 − s)
(7)

D = (1 − s)

εm(s + K) + εb(1 − s)
, (8)
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FIG. 2. Examples of THz and multi-THz mobility spectra cal-
culated by the quantum mechanical approach for Si NC sizes
ax × ay of 5×5, 10×10, and 20×20 nm2 (az = 4 nm); dephasing time
1/γ = 60 fs. Top: T = 300 K; bottom: T = 20 K; full lines: real part;
dashed lines: imaginary part.

where εm is the permittivity of the SiO2 matrix, εb is the
background (ground-state) permittivity of the photoconductive
Si NCs, and ε is the effective permittivity of the sample in the
ground state. In this way, the conductivity mixing rules of our
nanostructured composite are defined using well-established
parameters.

The local microscopic conductivity is related to the mobility
spectrum μ(ω) derived on a quantum basis in the previous
paragraph:

	σmic = eNμ, (9)

where e is the elementary charge and N is the local photocarrier
density, which is proportional to the pump fluence. As shown
in Fig. 3(a), μ a priori depends on the NC size d, and we keep
this implicit dependence in mind. In our previous papers, we
found it convenient to introduce the microscopic conductivity
normalized by the photon pump fluence φ (see Ref. [20]),

	σnorm = 	σmic

eφα
= αSi

α
ξμ , (10)

where ξ is the quantum yield of the optical generation of
mobile carriers, αSi is the absorption coefficient of Si NCs,
and α describes the mean absorption in the composite sample
consisting of photoexcited and nonphotoexcited parts (it is the
coefficient that enters the Lambert-Beer absorption law in the
composite). The product Nexc = φα has the meaning of an
average concentration of carriers in the composite.

(a
rb

. u
ni

ts
)

FIG. 3. (a) Real part of quantum mechanical mobility of Si NCs as
a function of the NC in-plane size d (ax = ay = d,az = 4 nm) at three
different frequencies and at 20 K. (b) Real part of normalized transient
transmission 	Tnorm calculated from the data of the plot (a) with the
help of Eq. (12) using typical parameters of our samples at two
excitation fluences. (c) Weighted transient transmission d2×	Tnorm

in arbitrary units (the same units for all the curves), which represents
the real part of the THz signal per single nanocrystal with the given
size.

C. Transient THz transmittance

Our experiment yields the spectra of transient transmittance
	E/E, where 	E is the photoinduced (transient) part of the
transmitted THz field and E is a reference field transmitted
through the unexcited sample. We introduced the so-called
normalized transmission function 	Tnorm, which has the
dimension of the mobility and, in homogeneous samples, it
has directly the meaning of the microscopic mobility [20],

	Tnorm = − (n1 + n2)

z0

1

eφ

	E

E
, (11)

where n1 = 1 and n2 = 1.97 are refractive indices of the media
surrounding the sample (air and fused silica) and z0 = 377 
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is the vacuum wave impedance. For a thin film sample (with
thickness L), containing both percolated and nonpercolated
photoconducting parts, where the optical pump is only partially
absorbed, 	Tnorm is related to the photoconductivity as
follows [20]:

	T (d)
norm = V [1 − exp(−αL)]	σnorm

+B
ln(1 + Y0) − ln(Y0 exp(−αL))

Y0
	σnorm, (12)

where

Y0 = iD

ε0ω
eφα 	σnorm. (13)

The superscript (d) in Eq. (12) reminds us of the fact that
this theoretical quantity depends on the dominant size of NCs
through the confinement effects encoded into 	σnorm. Finally,
in order to take into account the distribution of NC sizes in a
sample, we define the weighting of the transient THz signals
coming from various NCs by their volume [10,23],

	Tnorm =
∫ d2
d1 	T (d)

norm w(d) d d
∫ d2
d1 w(d) d d

, (14)

where w(d) is the volumic density of NCs with the size d.
Equations (11) and (14) constitute the primary link between
the measured and calculated quantities.

Equation (14) is quite complex, and it is expected that the
distribution of NC sizes may influence significantly the shape
of the measured THz spectra. We provide the following discus-
sion and show the curves in Fig. 3 in order to clarify the main
trends in the variation of several important quantities with the
NC size. In Figs. 3(b) and 3(c), we demonstrate the sensitivity
of the standard THz spectroscopy to the conductivity processes
in variously sized Si NCs. Figure 3(b) shows the normalized
transmission Re(	T (d)

norm) calculated for the case when NCs
with the given dimensions (ax = ay = d,az = 4 nm) have
the same total volume in the sample independently of their
size d. At low pump fluences (i.e., under conditions for
which the depolarization fields are negligible), this quantity
follows the behavior of the microscopic mobility μ plotted in
Fig. 3(a). At high pump fluences [dashed lines in Fig. 3(b)],
owing to the depolarization field effects, the drop in the
normalized transmission observed for small NC dimensions
(d < 20 nm) is less pronounced. It means that the range of a
good experimental sensitivity is broadened and its lower end
is shifted down to about a 10 nm size (note that 	Tnorm is a
quantity normalized by the pump fluence; the raw measured
signal 	E/E will be appropriately upscaled by the value of
φ for high fluences). The imaginary parts (not shown in the
figures) are negative but exhibit analogous decrease of the
absolute value for decreasing nanoparticle size. In Fig. 3(c),
we plot the calculated product d2 × 	T (d)

norm as a function of
NC size d normalized with respect to 50-nm-sized NCs. This
weighted transient transmission function provides information
about the signal coming from samples where NCs with the
given size have the same number. In fact, the plot represents
(in relative units) the THz photoconductivity signal per single
NC. A dramatic decrease of the signal with the NC size in our
quasi-two-dimensional (2D) system (which is enhanced due
to the proportionality to d2) is clearly observed. In standard

disordered 3D nanostructures, the signal of individual NCs is
proportional to d3 × 	T (d)

norm, i.e., its decrease towards small
NCs will be even faster.

IV. RESULTS AND DISCUSSIONS

A. Fitting model

The multilayer samples, where the NC size is imposed by
the layer thickness to some extent, offer a priori a better control
over the NC size than in other 3D samples. However, it has
been shown previously that the photoconductivity experiments
can clearly detect larger Si clusters in this kind of sample and,
consequently, that a significant distribution of sizes clearly
does exist [10]. For this reason, in this paper we assume a
continuous distribution of NC sizes following the log-normal
law:

fLN(d) = 1

d δ
√

2π
exp[−(ln d/d0)2/2δ2], w(d) = d2fLN(d),

(15)

where d is the in-plane diameter of the NCs, δ and d0

define the width and the peak position of the distribution,
respectively, and w is the volumic density of NCs entering
Eq. (14). The mobility spectra of electrons moving in NCs
described by the size distribution [Eq. (15)] are calculated by
means of the quantum mechanical approach described above.
Spectra for NC sizes between d1 = 4 nm and d2 = 100 nm
were calculated with a 1 nm step in order to create a
database of spectra densely covering the investigated range;
subsequently, interpolation of the data was applied in order
to operate with quasi-continuous series of data, as required
by a fitting with Eq. (15). The spectra were calculated for 300
K and 20 K and for several dephasing times 1/γ in the range
30–120 fs. Based on the calculated μ(ω), 	T (d)

norm is evaluated
using Eq. (12) with the values of absorption coefficient α

obtained from absorbance measurements, which are provided
in Table I. We considered the percolation coefficient V = 0;
indeed, we think that the dielectric percolation condition
cannot be compatible with the quantum confinement model
describing NCs with a defined relatively small size. The
parameters B and D of the effective medium model are
related to the sample morphology, and they are defined by
Eqs. (7) and (8) with the shape factor Kcoh = 2 and a filling
fraction denoted scoh. This term describes mostly coherent
motion of electrons in NCs that dominantly contribute to the
conductivity.

In addition to the coherent term, we consider that an
additive incoherent contribution may exist. By this second
contribution, we intend to take into account the conductivity
of possibly existing considerably larger Si NCs and/or some
percolated paths, which are predicted by TEM measurement
in samples with x � 0.5. The incoherent character of this
term (limited by a dominant scattering or other mechanism
hindering coherent long-range transport) is inferred from the
shape of experimental spectra [see Fig. 4]: (i) The real part
of the conductivity in Si rich samples does not vanish at
low frequencies, which implies the existence of a long-range
conduction; (ii) for example, in polycrystalline Si layers with
nearly micrometer-sized grains, the character of the coherent
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FIG. 4. (a) Normalized transient transmission spectra for samples 0.0, 0.3, 0.5, and 0.7 at room temperature and 20 K; pump–probe delay:
10 ps. Symbols: experimental data; lines: global fits of the data by Eq. (14); pump fluences are indicated in the legend. (b) Size distributions of
NCs participating to the conductivity as obtained from the fits of experimental spectra.

response would be Drude-like with a higher magnitude and a
significantly decreasing real part with frequency [24], which
is clearly not the case here. As the character of the motion of
these charge carriers is unknown, we assume here the simplest
case of constant value of the real part of the mobility μRT for
the RT and μLT for the LT. These inclusions are characterized
by a filling fraction sinc.

It has been shown that NCs with diameter d ≈ 4 nm and
smaller do not contribute to the response in the THz range.
Hence the filling factor scoh + sinc represents the part of Si
NCs that can be detected by THz conductivity measurements.
This sum can be smaller than the nominal value s presented
in Table I; consequently, scoh and sinc are used as fitting
parameters.
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In total, we have six fitting parameters for each sample:
scoh,sinc, μRT,μLT,δ, and d0, which should describe the com-
plex spectra at both 300 K and 20 K and for a set of pump
fluences spanning over nearly three orders of magnitude. We
also tried to free the shape factor of inclusions participating to
the incoherent contribution Kinc, which, in the case of sample
SiO0.0, significantly improves the fit when the value of Kinc

differs from two. Consequently, we include also this possibility
in our discussion.

B. Discussion

The model [Eq. (14)] was used to fit globally the experimen-
tal spectra, and the comparison can be seen in Fig. 4 for four
samples (SiO0.0, SiO0.3, SiO0.5, and SiO0.7). The measured
signal for sample SiO0.7 was very weak; therefore, we were
able to perform experiments with the highest excitation fluence
only.

If we compare the RT results with those measured at 20 K
for each sample, we find that no dramatic changes in the spectra
are observed. This is explained by the quantum model: We
observe a good match of the experiment with the fits both
in the absolute values of mobilities and in roughly correct
pump fluence dependence. We would like to stress that such an
agreement cannot be achieved within the semiclassical Monte-
Carlo modeling of the data: In this case, when the fits are
approximately matched to the data at 300 K, the calculations
highly overestimate the mobilities observed at 20 K [15].

The real part of the measured spectra is positive and grows
with a frequency increase towards the lowest energy level
of confined electrons. The imaginary part always decreases
and has negative values: This is again a signature of the
charge carrier confinement inside Si NCs and of the effective
capacitive response of the sample. The effect of depolarization
fields is clearly observed through a significant dependence
of the spectra 	Tnorm on the excitation fluence density. An
increase of the signal amplitude with an increase of Si content
(decrease of values x) is due to an improved mobility related
to a better connectivity of NCs leading to a larger average
cluster size, as observed in Fig. 4(b). Indeed, Fig. 4(b) shows
the NCs size distribution defined by Eq. (15), which follows
from the fits. Clearly the distribution of conductive NCs shows
a significant shift of its maximum towards smaller NCs when
the Si content in the layers is decreased. The other parameters
provided by the fitting procedure are summarized in Table I.

The THz spectra below 3 THz do not depend much on the
dephasing factor γ . Note that the dephasing time 1/γ at RT
in high quality Si single crystals reaches about 200 fs [25],
while in polycrystalline Si films it may decrease typically
down to about 60 fs [24] or to ∼35 fs in the case of silicon on
sapphire [5]. We verified that the spectra can be fitted with quite
similar sets of parameters for the scattering times 1/γ ranging
between 50 and 120 fs; however, for the scattering times of
30 fs or shorter, the quality of the fit becomes significantly
worse. This is in agreement with our hypothesis of essentially
coherent contribution of confined charge carriers in Si clusters
described by the quantum model of the mobility.

At first glance the comparison of EF-TEM images and size
distributions (see Ref. [12]) with the size distributions inferred
from THz spectra may seem problematic. However, we think

that they present both a valuable and complementary tool
of analysis of the behavior of the nanostructures. The TEM
images provide information regarding the shape and size of
inclusions, which are statistically most frequently encountered
in the sample. However, their electrical connectivity cannot
be determined from TEM images, and the percolation or
nonpercolation of the system is only inferred from a geo-
metrical proximity of several inclusions. In contrast, the THz
spectroscopy provides a statistical image of inclusions that
carry the conductivity of the sample. On one hand, very small
inclusions feature a stronger confinement and a small volume
per inclusion, which may lead to a very low contribution to
the conductivity of such NCs; on the other hand, the carrier
transport in the parts, which are considered to be percolated in
TEM images, may be hindered by defects or internal structure
of these parts.

The sample with x = 0.0 was reported to be percolated from
the point of view of TEM [12]. However, at THz frequencies,
it behaves like a polycrystalline Si such that the electrons feel
an average confinement on the order of 25 nm. This can be put
into contrast with our recent measurements of polycrystalline
Si samples with the grain size of about micrometer, where the
Drude-type response is clearly observed without any signif-
icant pump fluence dependence of the carrier mobility [24].
This means that in our current NC sample, quite large energy
barriers separate the crystal grains and that the electrons cannot
move freely among them. Note that in the related TEM image
shown in Ref. [12], many contrasted objects with a typical size
of the order of 25 nm can be really identified. The inclusion
of the incoherent conductivity term systematically leads to
large values of the shape factor (Kinc > 20), which represent
a percolation of the system or sample morphology close to
the percolation. This behavior could have been equivalently
accounted for by a nonzero percolation strength term V.

In samples with x = 0.3 and 0.5, the distribution of
conductive NCs progressively shifts to lower values and also
the volumic filling fraction of the NCs participating to the
THz conductivity drops to about 60–40%. The conductivity
is essentially carried by NCs with the size distribution about
17 nm for x = 0.3 and about 7 nm for x = 0.5. There is still
some non-negligible proportion of large NCs, which may be
close to conductive percolation. Note that the width of the size
distribution of sample SiO0.3 is the largest, which means that in
such a sample (nearly completely percolated from the point of
view of TEM measurements), a rich variety of inclusion sizes
and shapes can really develop. The size distribution becomes
narrower again for x = 0.7, where the THz signal becomes
quite weak as we approach the nominal size of NCs of 4.5 nm
and crystals larger than 10 nm practically do not exist within
the whole volume of the sample.

As to the incoherent contribution to the conduction, which
has been tentatively added to the fitting procedure, very similar
values of the RT and LT mobilities have been found among
the samples. Systematically, μRT > μLT, indicating that this
transport process is thermally activated (limited by some
hopping steps or by energy barriers). In such a case, the real
part of the mobility is typically increasing with increasing
frequency (cf. description of the hopping mechanism in
Ref. [15]). This could explain small discrepancies of the fits
and experimental data in the lowest frequency region where the

125424-8



QUANTUM BEHAVIOR OF TERAHERTZ . . . PHYSICAL REVIEW B 95, 125424 (2017)

fit overestimates the real part of the measured mobility due to
the fact that we assume spectrally independent values of μRT.
However, adding further parameters or particular models, able
to describe this mobility decrease, would not lead to better
understanding of underlying processes; therefore, we did not
attempt this procedure. The most important conclusion here
is that the incoherent part of the conduction is limited by
energy-activated processes.

V. CONCLUSIONS

We developed a quantum approach to the calculation of the
spectra of complex THz conductivity of NCs and showed that
it can be successfully applied to the fitting and interpretation
of temperature and pump fluence dependent photoconductivity
spectra of ensembles of Si NCs. Our analysis was focused on
samples with variable and technologically controlled content
of silicon in quasi-2D layers.

We show that a careful analysis, based on formulas
rigorously derived from the wave equation for THz waves
in inhomogeneous photoexcited media, can provide a com-

plementary picture of the NCs conductivity to TEM images.
In particular, we were able to show that a broad distribution
of NC sizes exists in the sample, and we identified the sizes,
which contribute the most to the dynamical conductivity of the
sample.

Sample SiO0.0 with the largest Si content is close to
the percolation, and the conductivity signal is driven by
electrons in grains with a typical dimension of 25 nm; such
objects are observed in TEM images. With decreasing content
of Si, the size of NCs with the dominant contribution to
the conductivity progressively decreases, and for a clearly
nonpercolated sample SiO0.7 the size of conducting NCs
measured by THz spectroscopy becomes comparable to the
thickness of SiOx layers. This also proves the good control of
the nanocrystalline size for oxygen rich samples.
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