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This work presents a theoretical demonstration of the Aharonov-Bohm (AB) effect in monolayer phosphorene
nanorings (PNRs). Atomistic quantum transport simulations of PNRs are employed to investigate the impact
of multiple modulation sources on the sample conductance. In the presence of a perpendicular magnetic field,
we find that the conductance of both armchair and zigzag PNRs oscillate periodically in a low-energy window
as a manifestation of the AB effect. Our numerical results reveal a giant magnetoresistance (MR) in zigzag
PNRs (with a maximum magnitude approaching 2000%). It is attributed to the AB-effect-induced destructive
interference phase over a wide energy range below the bottom of the second subband. We also demonstrate that
PNR conductance is highly anisotropic, offering an additional way to modulate MR. The giant MR in PNRs is
maintained at room temperature in the presence of the thermal broadening effect.
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I. INTRODUCTION

Phosphorene, the single- and few-layer form of black phos-
phorus (BP), has been successfully fabricated by researchers
very recently [1–3]. It holds great promise for applications
in electronics and optoelectronics because of its excellent
mechanical, optical, thermoelectric, and electronic properties
[1–15]. BP is the most stable allotrope among the phosphorus
group, which also includes white, red, and violet phosphorus
[16,17]. It consists of phosphorus atom layers coupled by
weak van der Waals interlayer interactions. Bulk BP possesses
a direct band gap; this direct gap increases when the film
thickness decreases from bulk to a few layers and, eventually,
to a monolayer via mechanical exfoliation. Due to its unique
structure in two-dimensional (2D) materials family, the band
structure, electrical conductivity, thermal conductivity, and
optical responses of phosphorene are highly anisotropic
[2,7,15,18,19], which is different from other widely studied 2D
materials such as graphene, monolayer boron nitride, silicene,
and transition metal dichalcongenide.

As a newly emerged member of the 2D crystal family,
phosphorene ignited a surge of research activities in the
physics, chemistry, and materials communities because of its
interesting unique physical properties and its potential applica-
tion in the future. Various properties of phosphorene have been
investigated theoretically and experimentally, e.g., the field
transistor effect [1,3,4,20], strain modification [7,13,19,21],
optoelectronics and electronics [22–31], transport properties
[2,32,33], excitons [18,34], and heterostructures and PN
junctions [35–37], and a recent experiment demonstrated
crystalline anisotropy impacted phase-coherent transport prop-
erties in BP field-effect transistors [38]. Another experiment,
carried out by Masih Das et al. [39] indicates that it is possible
to sculpture phosphorus nanoribbons experimentally, which
provides the possibility of making a phosphorene nanoring
(PNR) as proposed in this paper.
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The Aharonov-Bohm (AB) effect [40] is an important
phenomenon in quantum physics which has garnered great
attentions in past decades. The AB effect in graphene nanos-
tructures including graphene nanoribbons [41], nanotube [42],
and graphene nanorings [43–46] has been investigated.

However, the AB effect in PNRs remains unexplored, so in
this work we theoretically investigate the transport properties
of monolayer PNRs utilizing the tight-binding (TB) method
and recursive Green’s function method. Transport properties of
nanorings with different crystalline orientations, temperatures,
incident energies, and magnetic felds are calculated. We
find that the crystalline orientation of a nanoring greatly
affects the quantum tunneling behavior and the value of
magnetoresistance (MR), i.e., the MR is highly anisotropic
in PNRs. Resonant tunneling can be obtained in both armchair
and zigzag PNRs.

The paper is organized as follows. In Sec. II, we present
the TB model and the algorithm with which we calculate the
transport properties of the system. In Sec. III, we briefly discuss
the physics of the AB effect and investigate the AB effect in
PNRs. The MR of PNRs is demonstrated in Sec. IV. Finally,
we summarize our results in Sec. V.

II. MODEL AND FORMULATION

In monolayer phosphorene each phosphorus atom is cova-
lently bonded with three adjacent phosphorus atoms to form
a low-puckered honeycomb structure. Phosphorene has an ir-
regular honeycomb structure with lattice constants a = 4.38 Å
and b = 3.31 Å. There are four phosphorus atoms in a unit cell.
The TB Hamiltonian for the PNRs can be written as [23]

HC =
∑
i �=j

ti,j c
†
i cj , (1)

where the summation runs over all the lattice sites of PNRs,
c
†
i (cj ) is the creation (annihilation) operator of the electron at

site i (j ), and ti,j are the hopping energies. Five hopping links
must be taken into consideration [23]. The related hopping
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integrals are t1 = −1.220 eV, t2 = 3.655 eV, t3 = −0.205 eV,
t4 = −0.105 eV, and t5 = −0.055 eV. The band gap of the
monolayer phosphorene given by this TB model is 1.52 eV,
with the valence-band maximum and conduction-band
minimum located at −1.18 and 0.34 eV, respectively [31].
When we consider a magnetic field B applied perpendicularly
to the plane of a PNR, the transfer integral becomes t̃i,j =
ti,j e

iφi,j , where φi,j = e
h̄

∫ rj

ri
dl · A is the Peierls phase. As we

use the Peierls substitution, which means that the magnetic
field is applied not only to the hole in the nanoring but also to
the lattice in the nanoring; this means that the electrons in the
nanoring feel a field as �B �=0, �A�=0, the nonlocal part of the AB
effect mentioned in Ref. [40], is still reserved because of the
magnetic flux across the big hole in the nanoring, which can
be felt by the electron in the nanoring too. In our calculation,
the magnetic field �B is homogeneous, we take the Landau
gauge, and the vector potential �A = (0,Bx,0). The magnetic
flux φ = Bab

2 through a plaquette is in units of φ0 = h̄
e
.

The system is composed of a central mesoscopic conductor,
i.e., the PNR and two semi-infinite leads. For a large PNR,
the dimension of the Hamiltonian matrix HC is huge, and
the recursive Green’s function algorithm is adapted in this
work. We start by dividing the system into vertical principal
slices. The interaction only exists in/between adjacent slices.
The Hamiltonian matrix block of the first slice, containing the
self-energy of the left lead, is inverted and added to the block
of the next slice to its right. This procedure is repeated until we
add the block of the last slice, which contains the self-energy of
the right lead. The conductance is associated with the scattering
properties of the electron through the conductor region and is
determined by the transmission probability via the Landauer
Büttiker formula [47,48]

G = 2e2

h
T , (2)

where the conductance G and transmission probability T

both depend on the incident energy Ef . In the following we
adopt G0 = 2e2

h
as the unit of conductance. The transmission

probability T can be expressed in terms of the Green functions
of the conductor and the coupling of the conductor to the leads,

T = T r
(
�LGr

C�RGa
C

)
, (3)

where the advanced Green function Ga
C is the Hermitian

conjugate of the retarded Green function Gr
C of the conductor,

and �L,R describe the coupling between the conductor and the
leads. To compute the Green function of the conductor, we
can write the expression for the retarded Green function of a
system:

Gr
C = [(E + iη) − HC − �L − �R]−1, (4)

where E is the quasiparticle energy measured with respect to
the Fermi level Ef , and η is a positive infinitesimal number
defining the “retarded” character of the Green function. HC

is the Hamiltonian matrix of the finite isolated conductor, and
�L,R are the retarded self-energy terms due to the conductor
coupling with the semi-infinite leads. The self-energy terms
are defined as

�L = H+
LCgLHLC,�R = H+

RCgRHRC, (5)

where HLC and HCR represent the coupling matrices with
nonzero elements only for adjacent lattices in the conductor
and leads accounting for the nearest-neighbor TB approxima-
tion. gL and gR are the surface Green functions of the left and
right semi-infinite leads. The self-energy term can be regarded
as an effective Hamiltonian that arises from the coupling of
the conductor with leads. The key to the problem is how to
obtain the surface Green functions of the semi-infinite leads.
Once the surface Green functions of the leads are known, the
matrices �L,R can be easily obtained as

�L,R = i
[
�r

L,R − �a
L,R

]
, (6)

with the advanced self-energy �r
L,R .

From Green’s function, the local density of states (LDOS)
at site i can be found,

ρi = − 1

�
Im[Gi,i], (7)

where Gi,i is the matrix element of Green’s function at site i.
To obtain the electron transport properties at finite tem-

perature (T ), we use the nonzero temperature linear response
formula,

G(EF ) = e2

πh̄

∫
T (E)FT (E − EF )dE, (8)

where FT (E − EF ) = −df (E)/dE is the thermal broadening
function and f (E) is the Fermi-Dirac distribution function.

The magnetoresistance is defined as

RM (EF ,B) ≡ [G(EF ,0) − G(EF ,B)]/G(EF ,B). (9)

Here G(EF ,B) is the conductance of the system in a perpen-
dicular magnetic field B with incident energy EF .

III. AHARONOV-BOHM EFFECT

When we investigate the AB effect in a nanoring, there is
gauge freedom in the choice of vector potential for a given
magnetic field. The Hamiltonian is gauge invariant, which
means that adding the gradient of a scalar field to �A changes the
overall phase of the wave function by an amount corresponding
to the scalar field; physical properties are not influenced by the
specific choice of gauge. As we choose the Landau gauge in
our calculations, we have �B = � × �A, which is simply the
definition of the vector potential, and∮

C

�A·d�r =
∫

S

(� × �A)·d �S =
∫

S

�B · �dS = φm, (10)

which is a consequence of the Stokes theorem. φm is the total
magnetic flux through encircled by path I and path II shown in
Fig. 1. When electrons are transmitted through paths I and II
(Fig. 1) in the presence of a magnetic field and finally combine
in the right lead, the magnetic interference phase is ei	φ ,

	φ = e

h̄

[∫
CI

�A(�r) · d�r −
∫

CII

�A(�r) · d�r
]

= e

h̄

∮
C

�A(�r) · d�r

= e

h̄

∫
S

�B · �dS.
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FIG. 1. Schematic of a rectangular PNR subjected to a magnetic
flux threading the PNR. (a) The parameters are in units of the lattice
constants a and b. In this example, a zigzag-edged nanoring, NL = 4,
NM = 4, NC = 4, NT = 12, NH = 16. The parameters are in units of
the lattice constants a and b. (b) A uniform magnetic field is applied
perpendicular to the PNR. We use the Landau gauge �A = (0,Bx,0).
Electrons are transported through the central PNR via both path I and
path II and then recombine in the right lead.

Here we do not discuss the normal interference phase when
electrons are transmitted through paths I and II in the absence
of a magnetic field.

The interference phase 	φ = e
h̄
B(Sh + Sl), Sh + Sl is the

total area encircled by paths I and II, Sh is the area of the
hole in the nanoring, and Sl is the remaining part encircled by
the path on the phosphorene lattice. Sl is determined by the
incident energy, as for different incident energies the paths are
different. e

h̄
BSh is the nonlocal part of the Aharonov-Bohm

effect.
The size of the rectangular PNRs are characterized by the

parameters shown in Fig. 1; the parameters are in units of
phosphorene lattice constant a or b. Normally, people can
simulate relatively small systems with the recursive Green’s
function method, due to the cubic scaling of the computational
burden associated with matrix inversion. In this work, we use
the recursive Green’s function method, which cuts the whole
system into many slices and in which the matrix inversion
is calculated for each slice instead of the whole system. So
this method enables the simulation of very long systems and
is preferred to the study of quasi-one-dimensional systems,
such as nanotubes and nanoribbons. Therefore, in this paper
we consider PNRs which are narrow but relatively long. Two
sets of structure parameters are taken; the first set is NL = 13,
NM = 11, NC = 11, NT = 120, NH = 7, and the second set
is NL = 13, NM = 22, NC = 22, NT = 240, NH = 14. The
average area of the nanoring is given by S̄ = (Sinn + Sout)/2,
which is the average area of the inner (Sinn) and outer (Sout)
rings. Then the average area of the first kind of PNR is S̄ ≈
359.4 nm2; the average area of another kind of PNR is four
times that of the first kind. In the remainder, the calculations
are based on the first kind of PNR without specification, as only
one simulation result is based on the second kind of PNR.

First, we calculate the band structure of the lead (semi-
infinite nanoribbons) and the conductance of the nanorings in
the absence of magnetic fields at zero temperature. Figures
2(a) and 2(c) show the band dispersion of the lowest two
conduction subbands of perfect armchair and zigzag ribbons,
respectively. Unlike graphene nanoribbons, both armchair
and zigzag PNRs possess finite band gaps. Accordingly the
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FIG. 2. Band structure of the lead and transport properties (a, b)
for armchair PNRs and (c, d) for zigzag PNRs.

conductance of armchair/zigzag PNRs is fully suppressed
when the electron incident energy EF is below the bottom of
the first subband, i.e., 0.37/0.47 eV, as shown in Figs. 2(b) and
2(d). These low-energy transmission-forbidden regions arise
from the absence of propagating modes in the leads, as we use
a semi-infinite phosphorene nanoribbon as the lead, so when
the incident energy is below the conduction-band minimum
of the lead or the lowest unoccupied molecular orbital of the
nanoring, transmission is forbidden.

As the incident Fermi energy increases, we observe inten-
sive oscillations caused by the Fabry-Perot resonant modes
formed in the PNRs. Many valleys with zero or near-zero
conductance are observed, arising from the absence of bound
states in the central PNRs instead of the lack of propagating
modes in the leads. The conductance also exhibits steplike
behavior in agreement with the opening of new subbands.
Let us take the armchair PNR, for example, as shown in
Fig. 2(b). When 0.37 eV < EF < 0.43 eV, the conductance
of the ring can reach G0, i.e., resonant conductance peaks.
For higher incident energies, in the range of 0.43 eV < EF <

0.6 eV, the conductance oscillations become more complex
and disordered, and the peaks approach 2G0 as the second
subbands start to contribute to the total conductance. Note
that the main purpose of this work is to investigate the phase-
coherent transport of the carriers in PNRs. It is preferable to
examine an energy region in which only one mode is engaged
in electron transport. Hence, we present only the results with
an energy area corresponding to the first conduction subbands
for both armchair and zigzag PNRs when we discuss AB
oscillations and MR in PNRs.

The AB oscillations in mesoscopic rings are of particular
interest and offer an elegant way to study phase-coherent
electron transport properties. In the presence of a perpendicular
magnetic field B, electrons pass through either side of the
PNR (paths I and II shown in Fig. 1) and this difference
produces the phase modulation: 	φ = e

h̄
BS. Therefore, the
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FIG. 3. Conductance of (a) armchair and (b) zigzag PNRs with
structure parameters NL = 13, NM = 22, NC = 22, NT = 240, and
NH = 14 at temperature T = 0.

transmission probability through the PNR exhibits periodic
oscillations when the magnetic field is varied, with a fixed
period of 	B = 2πφ0/S.

Next, we address that the conductance of a PNR not only
exhibits resonant behavior with incident Fermi energy due to
the formation of Fabry-Perot modes but also oscillates with
a perpendicular magnetic field arising from the formation of
Landau levels and AB interference. Figures 3(a) and 3(b) show
contour plots of the conductance as a function of the incident
Fermi energy and the magnetic field in armchair and zigzag
PNRs, respectively, with structure parameters NL = 13, NM =
22, NC = 22, NT = 240, NH = 14. The effect area of these
two nanorings are relatively large, therefore the AB oscillation
period 	B will be relatively small, which can be realized
experimentally. From the contour plot we can see that the
conductance of the PNRs oscillates both with the incident
energy and with the magnetic field. The conductance oscillates
with the incident energy because of resonant tunneling and
oscillates with the magnetic field because of the AB effect.
We find that the AB oscillation periods at different incident
energies are slightly different. The reason for this difference is
that for different incident energies the charge distributions in
the arms of the central PNR are different and thus the effective
areas encircled by path I and path II (Fig. 1) are different.
In Fig. 3, the incident energy is in the interval where only
the first conduction subband of the bulk states takes place. In
this case, the PNR area can be approximated by S̄ defined
before, which is about 1437.6 nm2, then the oscillation period
should be 	B ≈ 2.88 T. The numerical results for 	B shown
in both Fig. 3(a) and Fig. 3(b) are about 3 T, which matches the
theoretical prediction well. In the following part, we illustrate
this effect in more detail.

In Fig. 4(a), we plot the conductance of an armchair PNR
as a function of the magnetic field strength B and the Fermi
energy EF with structure parameters NL = 13, NM = 11,
NC = 11, NT = 120, NH = 7 at zero temperature T = 0.
The conductance of the armchair PNR oscillates periodically
in magnetic field B. The period of 12 T is consistent with
the expectation (	B = 2πφ0/S̄), accounting for the area of
our PNR as a manifestation of the AB effect. Importantly,
the conductance peaks or valleys appear synchronously in
magnetic fields with varied EF , since the phase modulation
depends on the magnetic flux through the PNR area rather
than the incident energy. In such a small energy interval
the effective PNR areas encircled by path I and path II
all approximate to S̄. Due to the contribution from both

FIG. 4. Contour plot of the conductance as a function of the
magnetic field and Fermi energy at temperature T = 0 for (a)
armchair and (b) zigzag nanorings. The conductance with different
incident energies at T = 0 for (c) armchair and (d) zigzag nanorings.

Fabry-Perot resonant and AB oscillations, the contour plot
of the conductance exhibits beautiful fish scales. Figure 4(b)
is similar to Fig. 4(a) except for the PNR orientation, i.e., a
zigzag PNR. In Figs. 4(c) and 4(d), we extract the conductance
of armchair and zigzag PNRs in varied magnetic fields at three
incident Fermi energies. The oscillation periods are slightly
related to the Fermi energies; in Figs. 4(c) and 4(d) we can
see that the conductances for different incident energies are
not exactly aligned due to the same reason discussed for
Fig. 3. We stress in advance that this small variation can
hardly suppress the AB-effect-induced giant MR, especially
for the first MR peak, as we discuss in the next section. The
Fermi energy can also affect the conductance maxima via
the density modulation. In addition, at certain Fermi energies,
double peaks in the conductance–versus–magnetic-field plot
are observed. These double peaks occur when AB destructive
interference regions cross resonant peaks with a high density of
bound states. The differences between Figs. 4(a) and 4(c) and
Figs. 4(b) and 4(d) originate from the anisotropic resonant
tunneling behaviors in armchair and zigzag PNRs, shown
in Fig. 2.

To clarify the origin of the resonant maxima and different
types of minima, we plot the LDOS of armchair PNRs in
Figs. 5(a), 5(b), and 5(c), corresponding to points A, B, and
C in Fig. 4(a), respectively. It is helpful to distinguish the
Fabry-Perot interferences and AB interference effects in the
PNRs. We must point out that the LDOSs shown in Fig. 5
are smeared by the Gauss function. In the upper and lower
bridges of the armchair PNR ring, Fabry-Perot modes can
be formed as a result of the quantum interferences between
electron waves moving forward and electron waves moving
backward. The presence or absence of these quasibound
states is determined by the Fermi energy and ring size LT .
Heuristically, the quantization conditions for bound states are
typically given by n · λ = LT , where n is an integer and λ is the
electron wavelength satisfying the relationship EF = hvF /λ.
The density of states develops peaks at E = nhvF /LT . In
Fig. 5(a), the Fermi energy is set to 0.394 eV and the magnetic
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FIG. 5. LDOS of the armchair nanoring. (a), (b), and (c) corre-
spond to points A, B, and C in Fig. 4(a). Here we use a Gauss function
to smear the contour plot.

field B = 0, which corresponds to the fully blocked case as
indicated by point A in Fig. 4(a). The LDOSs are mostly
concentrated in the left and right leads, while a few bound
states are formed in the two ring bridges. So electrons can
hardly propagate through the PNR. We also plot the spatial
distribution of LDOSs corresponding to the conduction peak
in Fig. 5(b), with EF = 0.397 eV and B = 0 [see point B
in Fig. 4(a)]. Many more bound states are formed on both
sides of the PNR, which can assist electron transmission
and, finally, give rise to a conductance peak. Interestingly,
with the same EF level of 0.397 eV, but with the magnetic
field increased from 0 to 6.5 T as indicated by point C in
Fig 4(a), electron transmission is fully suppressed, while the
bound states in the bridges are mainly preserved as shown in
Fig. 5(c). This conductance dip is caused by the destructive
interferences at the exit interconnection of two paths, i.e., the
AB effect. Electrons from upper or lower paths gain different
phase shifts arising from the magnetic flux in the PNR. We
therefore confirm the AB effect in this PNR.

IV. MAGNETORESISTANCE OF PHOSPHORENE
NANORINGS

Next we explore how a finite temperature affects the
conductance of PNRs. A thermal broadening function is taken
into consideration in the calculation at nonzero temperature.
At room temperature (298 K), the oscillation behavior is quite
different from that at zero temperature as shown in Fig. 4. The
double peaks of conductance at zero temperature disappear
and the oscillation amplitudes are reduced. The conductance
of the armchair PNR oscillates between 0.2G0 and 0.7G0 [see
Fig. 6(a)]. The oscillation minima of different Fermi energies

FIG. 6. Relation between the conductance and the magnetic field
of (a) armchair and (b) zigzag PNRs with different incident energies
at room temperature.

FIG. 7. Magnetic resistance at room temperature of (a) armchair
and (b) zigzag PNRs with three incident energies.

almost remain steady in the armchair PNR, while in the zigzag
PNR, the minima increase with B [Fig. 6(b)].

Finally, the MR of both armchair and zigzag nanorings
are calculated at room temperature (see Fig. 7). It is shown
that the conductance of the armchair nanoring exhibits clear
AB oscillations [Fig. 7(a)], the period of which also matches
well with the expression 	B = 2πφ0/S̄. There is a close
connection between MR and Fermi energy, i.e., a higher Fermi
energy gives rise to a lower MR. The order of the MR for this
armchair nanoring is about 100%, which is much smaller than
that for an armchair graphene nanoring [43]. While in the
zigzag nanoring [see Fig. 7(b)] we find that the MR can be
as large as 2000%, which is much greater than that in the
armchair nanoring, in agreement with the anisotropy electron
property of phosphorene, the MR decays rapidly with the
magnetic field, and the MR at different Fermi energies is almost
the same.

V. SUMMARY

In this paper, we theoretically demonstrate the AB effect
in monolayer PNRs utilizing the TB method and recursive
Green’s function method. Our numerical results show that the
conductance of PNRs oscillates dramatically with the incident
Fermi energy and the perpendicular magnetic field. The
complex oscillating behavior arises from hybrid effects of the
formation of Fabry-Perot modes, formation of Landau levels,
and AB interference. The AB oscillation period is dominated
by the effect area of the PNR and slightly affected by the inci-
dent Fermi energy. When the incident Fermi energy is limited
to lower than the bottom of the second subband, the AB effect
becomes more pronounced than other effects, leading to a giant
MR in the PNR. The MR is highly anisotropic depending on
the PNR orientation, i.e., the maximum MR of the zigzag PNR
is one order of magnitude larger than that of the counterpart
armchair PNR. This investigation sheds new light on the
construction of phosphorene-based nanoelectronic devices.
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