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quantum-well exciton polaritons
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In this paper we introduce and analyze a system design for quantum-dot-based qubits that simultaneously
supports scalable one-qubit and two-qubit gates, and single-shot qubit measurement. All three key processes
(one-qubit gates, two-qubit gates, and qubit measurement) rely on the interaction between the electron in each
quantum dot and exciton polaritons formed in a quantum well situated near the quantum dots. A key feature
of our proposed system is the use of polariton traps, which we show enhances the quantum-dot–quantum-well
interaction by a factor of 10 and consequently results in 100× faster two-qubit gates. We also introduce a
one-qubit gate that is based on a combination of optical and microwave control, which is supported in the same
device and system configuration as the other operations, in contrast to the conventional one-qubit gate that is
based on all-optical control.
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I. INTRODUCTION

The construction of a large-scale quantum computer re-
quires the identification of scalable qubits with long coherence
times and support for universal quantum gates, initialization,
and readout (the DiVincenzo criteria [1]). Many choices of
gate sets are universal, but they share in common the feature
that both single-qubit and multiqubit gates are needed, and the
simplest choices typically involve a finite set of single-qubit
gates and one two-qubit entangling gate (for example [2],
{X,Y,Z,H,S,T,CNOT}). When considering the implementation
of a fault-tolerant error correction scheme, such as the surface
code [3], smaller (nonuniversal) gate sets at the physical
layer can be sufficient [4], but still a set of one-qubit gates
and an entangling two-qubit gate are required (for example
[4], {X,Y,Z,H,CNOT}). The net implication for designing and
evaluating physical systems for use as qubits is that it is
necessary to produce a design that simultaneously allows
both single-qubit gates and an entangling two-qubit gate to
be performed. The design should also allow for readout and
initialization of each qubit, which can respectively be realized
by quantum nondemolition (QND) measurement, and QND
measurement followed by a conditional X operation. The
measurement operation should be single shot [5–10].

Any successful candidate platform for large-scale quantum
computation using surface code error correction must meet the
threshold requirements for fault-tolerant operation, and must
be sufficiently scalable. One scenario, worked out in detail, for
the construction of a computer capable of factoring a 1024-bit
integer calls for the following [4]: (i) a two-dimensional (2D)
array of 108 physical qubits, (ii) error probability after each
gate operation <1%, and (iii) gate time and measurement time
about tens of nanoseconds. Self-assembled semiconductor
quantum dots are one candidate platform that can offer the
prospect of scaling to such large numbers of physical qubits,
and it is possible to grow large arrays of site-controlled
quantum dots (QDs) [11]. Spins in optically active quantum
dots have been extensively studied as potential qubits both
theoretically and experimentally over the past two decades.
However, it has proven extremely challenging to find a system

design in which all the criteria for fault-tolerant, universal
operation can be satisfied simultaneously. Single-qubit gates
for quantum-dot qubits implemented via picosecond optical
pulses are well established theoretically and experimentally
[12,13]. Unfortunately most recent theoretical proposals for
scalable two-qubit gates and for single-shot QND measure-
ment make assumptions about the system design that are
incompatible with the established one-qubit gates, which we
will elaborate on shortly.

Furthermore, a scalable two-qubit gate, which requires an
interaction between neighboring quantum-dot electron spins,
is yet to be demonstrated. One approach to constructing a
two-qubit gate is based on the dispersive interaction of cavity
photons with two electron spins [14,15]. The performance of
this gate is characterized by the cooperativity factor C of the
cavity, which is proportional to the ratio of its quality factor
Q and mode volume V . It is possible to reach error rates
below the fault-tolerance threshold using cavities with large
cooperativity factor, C > 103. Although a planar microcavity
has a large extent (the size of the chip), the cavity modes have
a much smaller transverse extent [16,17]. The inherent mode
radius in a planar microcavity is R = √

λLc/2π (1 − r1r2),
where λ is the optical wavelength, Lc is the effective cavity
length, and r1 (r2) is the reflectivity of the top (bottom)
mirror [18]. If the mirror reflectivities are increased to
increase the quality factor, the mode radius (equivalently the
mode volume) also increases. As a result it is difficult to
achieve a high cooperativity factor in planar microcavities.
In summary, despite the passage of more than 15 years since
the first dispersive two-qubit gate proposal [14], not even an
unscalable proof-of-principle demonstration (for example, in
a micropillar or microdisk cavity) has been performed, and it
seems unlikely that a two-qubit gate will be realized with this
technique when a planar cavity is used, which is necessary for
the system to be scalable.

Fast, high-fidelity, single-shot measurement of the qubit
state is also yet to be realized in a scalable single-QD
system. One prominent measurement scheme is based on the
qubit-spin-dependent Faraday rotation of the cavity output
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field [19]. This technique suffers from excess measurement
backaction: achieving a regime in which the probe pulse is
strong enough to yield single-shot operation, but weak enough
to avoid causing spin-flip Raman transitions (with probability
∝1/C) [5] appears to be difficult.

II. QW-POLARITON-BASED APPROACH

There has been a series of proposals to introduce a
quantum well (strongly coupled to a surrounding microcavity)
beneath the quantum dots and use the spin-dependent exchange
interaction between the quantum-well exciton polaritons and
the quantum-dot electrons to realize two-qubit gates and QND
measurement [5,20,21]. A convenient feature of this approach
is that both two-qubit gates and measurement are supported
in the same device and experimental setup. However, these
proposals all assume that the magnetic field (used to split the
ground spin states in energy) is applied in the Faraday geom-
etry (magnetic field parallel to the sample growth direction)
[22], whereas the conventional one-qubit gate assumes the
Voigt geometry (magnetic field perpendicular to the sample
growth direction) [22]. Consequently although two-qubit gate
operations and measurement are supported concurrently in
these coupled quantum-well–quantum-dot devices, one-qubit
optical gates in the vein of Ref. [13] appear to be disallowed
so long as Faraday geometry is assumed.

We note that in the two previous proposals of polariton-
mediated interaction between spin qubits [20,21], the analyses
were performed for systems other than self-assembled quan-
tum dots: in the former case, donor spins were explored, and
in the latter case, electrostatically defined quantum dots were
the system under study. These settings are indeed similar to
the case of self-assembled quantum dots, but several important
system parameters are different. In this paper we analyze in
detail the case of self-assembled quantum dots, and extend the
analysis of Ref. [21] to this system, using realistic device and
experimental parameters to obtain estimates of fidelities and
gate times.

In this paper we introduce two aspects to the system design
of a qubit platform based on quantum dots with quantum-well
polaritons: polariton traps, and a one-qubit gate based on
a combination of direct radio-frequency manipulation and
polariton-based resonance tuning. In so doing we find we
are able to improve the previous polariton-based two-qubit
and measurement operations, and also design a platform
that simultaneously supports all the operations to satisfy the
DiVincenzo criteria.

Throughout this paper we propose using a control mech-
anism based on the Coulomb exchange interaction between
a QD electron spin and optically excited, 2D microcavity
exciton polaritons that are laterally confined in a micron-
sized quantum well trap (QWT). Polariton-based schemes
for quantum-dot qubit control [5,20,21] generally offer two
advantages: firstly, it is possible to design the QW and QDs
such that the optical fields applied to implement operations
are far-detuned from the direct QD optical transitions, thus
preventing any unwanted backaction. Secondly, the bosonic
nature of polaritons and their weak interaction with the solid-
state environment allows the injection of numerous polaritons
coherently in a single mode, increasing the nonlinearity in the

qubit-polariton coupling, crucial for two-qubit operation. In
this paper we find that the lateral confinement of the polaritons
in the “traps” increases the Coulomb exchange energy and
eliminates the dependence between Q and R. Unfortunately
the extension of the previous two-qubit gate proposals [20,21]
in this new device design is not entirely straightforward, but
we nevertheless are able to present a pulse protocol that can
realize a two-qubit gate using trapped polaritons. We also
analyze the previous polariton-mediated QND measurement
scheme [5] in this trapped-polariton setting, and introduce a
polariton-controlled one-qubit gate.

III. SETUP

As illustrated in Fig. 1, the setup consists of a 2D
array of self-assembled InxGa1−xAs QDs grown on top of
a InyGa1−yAs QW, with a few-monolayer-thick GaAs barrier
in between them. The QW can be grown 4–8 nm thick, which is
of the order of an exciton Bohr radius. The QDs are pyramidal
or lenslike three-dimensional islands with a typical height in
the range ∼1–4 nm and base width in the range ∼20–50 nm. A
single electron is trapped in each of the QDs. The QD electron
spin is quantized along the growth (z) axis by an external
magnetic field B0ẑ, a configuration which is known as the
Faraday geometry. The QDs and QW are embedded in a GaAs
λ cavity formed by AlGaAs/AlAs distributed Bragg mirrors
(DBRs).

In order to laterally confine the polaritons, the GaAs spacer
region is etched before the growth of the top DBR, creating
a locally (�λc ∼ 5 nm) thicker cavity [23]. The length of
the cavity in the etched region is λc and that in the spacer is
λc − �λc. This local modulation of cavity length introduces
a microscale trap potential h̄ωt = 2πh̄c�λc/nλcLc ∼ 7 meV
for cavity photons [24]. Here Lc is the cavity thickness
including the penetration depth in the DBR. The photons
outside the trap region are nonresonant with the cavity and
have an extremely short lifetime. In the etched region, the
QW exciton is resonant with the lowest cavity photon mode
(k|| = 0) and in the strong-coupling regime, the resulting
eigenmodes of the system are upper polaritons (UPs) and
lower polaritons (LPs) [23–26]. The splitting between the
UP-LP mode (2�R) depends on the strength of the dipole
coupling between the QW excitons and cavity photons and
typically, in a single QW, 2�R ∼ 3–4 meV. Furthermore, the

FIG. 1. Illustration of the proposed setup: 2D array of QDs
coupled to QW in patterned DBR microcavity. The cavity length
is locally modulated to create potential traps for photons.
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lateral confinement of the polaritons, defined by electron-beam
lithography [23,25], results in the discretization of the energy-
momentum dispersion so that the LP mode with zero in-plane
momentum, k‖ = 0, is the ground state. The splitting between
the ground state and first excited state of the LP in a trap of
radius R ∼ 1 μm is ∼1 meV, making it possible to selectively
excite only the ground-state polaritons with k‖ = 0.

In the trap, the polarization of the LPs is quantized along
the growth direction. The LPs with angular momentum Jz = 1
or −1 comprise an electron with sze = − 1

2 or + 1
2 and a heavy

hole with (lzhh,szhh) = (1, 1
2 ) or (−1,− 1

2 ), where s and l refer
to spin and orbital angular momentum [27,28]. Because of the
QW exciton selection rules, a left (σ+) or right (σ−) circularly
polarized laser pulse selectively excites LPs with Jz = +1 or
−1, respectively [29]. Next we describe how these LPs can
tunnel between neighboring traps.

IV. TUNNEL COUPLING BETWEEN
NEIGHBORING TRAPS

Our aim is to use the optically excited QW LP mode
to control and manipulate the QD electron-spin qubits. For
controlling a single electron spin trapped in a QD, LPs must
be excited in the trap under that QD. However, a two-qubit
operation requires two coupled k‖ = 0 LP modes in the traps
under two adjacent QDs. The Hamiltonian for this linear tunnel
coupling between the LP modes in two neighboring traps is
given by

Ĥt.c. = h̄ω1a
†
1a1 + h̄ω2a

†
2a2 + U (a†

1a2 + a
†
2a1),

where h̄ω1 and h̄ω2 is the energy of the LP mode in trap 1
and trap 2, respectively; a

†
i and ai (i = 1,2) are the creation

and annihilation operators for the LP mode in trap i; and U is
the coupling strength. It is possible to estimate U by solving
the time-independent Schrödinger’s equation for a particle of
effective mass of the LP mLP in a double potential well of
depth given by the trap potential h̄ωt separated by a distance D

[30] (Appendix A). Since the in-plane effective mass of LPs
is ∼103 smaller than that of excitons [31], it is possible to
achieve a strong tunnel coupling between the two LP modes
even when the distance between them is D ∼ 1–2 μm. For
example, the coupling strength between two traps of half-width
R = 1 μm that are separated by D = 0.5 μm (or 2.5 μm center
to center) is U = 0.5 meV. A strong coupling between traps
is essential for a two-qubit operation, but it can also lead to
crosstalk (Fig. 2). Next, we examine a protocol to eliminate
this crosstalk.

Consider a target trap T , which is directly under the QD that
hosts the spin qubit we intend to manipulate. In a 2D lattice,
this trap has four nearest neighbors to which it can be coupled.
An input pump of flux FT and F excites the LPs in the target
trap and its nearest neighbors, respectively. Both the pumps
are red-detuned from the k‖ = 0 LP mode in the traps by δ.
There are two possible injection paths in the neighboring trap:

(1) direct excitation by the pump at rate F , and
(2) indirect injection from trap T via tunnel coupling at a

rate = U× amplitude of coherent field inside the target trap
= UFT/(δ − iγ /2).

FIG. 2. Illustration of the setup for a two-qubit operation. The
pump pulse excites LPs in the trap regions directly below the QDs.

As a result, if F = UFT/(δ − iγ /2), these two paths
interfere destructively and the neighboring traps are left empty.
A more rigorous derivation has been provided in Appendix B.
In this way it is possible to minimize unwanted LP tunneling
between the traps and eliminate crosstalk.

V. CONTROL MECHANISM

A. Coulomb exchange interaction

Careful design of the GaAs barrier thickness and In
concentrations of the QD and QW (x and y), results in a
band structure such that the electron is primarily confined in
the QD but has a nonzero wave function in the QW. The finite
overlap of the localized QD electron and the LPs in the trap
directly below the QD, results in a spin-dependent Coulomb
exchange interaction between them [20,32]. It has been shown
that in the low density limit this interaction is represented by
the Hamiltonian [21],

HI = Vex(a†
−1a−1 − a

†
1a1)σz, (1)

Vex = |r0|2
∫

dredr2dr1
ψ(re,r2)φ(r1)e2ψ(r1,r2)φ(re)

4πε(|re − r1|) ,

(2)

where a
†
1,−1 (a1,−1) are the creation (annihilation) operators

for the LP mode with k‖ = 0 and Jz = ±1, ε is the dielectric
constant of the InyGa1−yAs QW, r1,r2 are the position vectors
of the electron and hole in the excitonic part of the LP, re is that
of the QD electron, ψ and φ represent the wave functions of the
excitonic component of the LP and of the localized electron,
and σz is the Pauli spin operator of the QD electron. r0 is
the excitonic Hopfield coefficient of k‖ = 0 LPs [33]. When
the cavity photons and QW excitons are resonant at k‖ = 0,
r0 = 1/

√
2. From Eq. (1) we see that the exchange interaction

induces a spin-dependent shift in the LP resonance. If the QD
spin state is |sz〉 = |1/2〉, then the resonance energy of a Jz =
−1 (+1) LP will decrease (increase) by an amount Vex, making
the Jz = 1 and Jz = −1 LP nondegenerate. This effect is re-
versed if |sz〉 = |−1/2〉. These spin-dependent shifts of the LP
resonance can be employed to achieve qubit operations. It has
been shown that Vex ∝ 1/A, where A is the area of the region in
which the LPs are excited [5] and is independent of the polari-
ton lifetime. As a result, we can obtain a large exchange energy
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by exciting LPs in a small area without decreasing their lifetime
[25]. For a typical trap of radius R = 1 μm, A = 2.2 μm2 and
if x = 30%, y = 15%, the size of the QD is 20 nm × 20 nm ×
1.5 nm, the QW thickness is 6 nm, and the barrier layer is 1
nm thick, then we estimate that Vex ≈ 2 μeV [5].

B. Dipole coupling

In addition to the above Coulomb exchange coupling, the
photonic part of the LP couples to the QD singleelectron-trion
transition via dipole coupling. LPs with Jz = 1 couple the
single electron with spin sz = 1/2 to the trion with total angular
momentum Jz = 3/2. Similarly, LPs with Jz = −1 couple the
single electron with spin sz = −1/2 to the trion with total
angular momentum Jz = −3/2 [13]. The band structure of the
proposed sample is designed such that this coupling is off-
resonant resulting in the Stark shift of the QD resonance [34],

Hd = −χ (a†
1a1 − a

†
−1a−1)σz, χ = t2

0 g2

2�
, (3)

where t0 is the fraction of photonic component in the LP,
g is the dipole coupling constant, and � is the detuning
between the LP resonance and the QD single electron-trion
transition. In our system we estimate the Stark shift
χ ∼ 0.1 μeV = Vex/20 (Appendix C).

VI. TWO-QUBIT CONTROLLED-PHASE GATE

Figure 2 shows a schematic diagram for implementing two-
qubit controlled-z operation between neighboring QD spins. A
σ+ polarized laser pulse is incident normally on two adjacent
QDs. The pulse is red-detuned by δ from the LP ground state
at k‖ = 0. Furthermore, we assume a Gaussian profile for the
pulse P (t) = P0 exp(−t2/τ 2) applied between −Tg/2 < t <

Tg/2. If the tunneling rate of polaritons between the traps is
U , then the Hamiltonian for the LPs in the two neighboring
traps is

H = δ
∑
k=�,r

a
†
1,ka1,k − (Vex + χ )

∑
k=�,r

a
†
1,ka1,kσz,k

+ i
√

γtP (t)(a†
1,� − a1,� + a

†
1,r − a1,r )

+U (a†
1,�a1,r + a

†
1,ra1,�), (4)

where a
†
1,�(r) and a1,�(r) are the creation and annihilation

operators for LPs with Jz = 1 in the left-� (right-r) trap.
For simplicity the two traps and QDs are assumed to be
identical, but they need not be so. The detuning δ is large
so that the LPs are only virtually excited in the trap; that is,
the population of the LPs in the trap returns to zero at the end
of the pulse at t = Tg/2. By eliminating the LP modes, the
effective Hamiltonian for the QD electron spins can be written
as

H = −2|α(t)|2
δ + U

(Vex + χ )2σz,�σz,r , (5)

where

α(t) = i

√
γt

2

∫ t

−Tg/2
P (t) exp[−i(δ + U )(T − s)]ds. (6)

It is possible to choose the pump strength, duration, and
detuning, such that unitary corresponding to the Hamiltonian
evolution in Eq. (5) is given by U = (1,1,1,−1). Thus if γ = 0,
then it is possible to exactly implement a controlled-phase
gate between the two QD spins. For example, we find that
with δ = 5 meV, χ = 0.1 μeV, Vex = 2 μeV, U = 0.5 meV,
τ = 9.3 ns, and peak pump power h̄ωP 2

0 = 0.47 W, it is
possible to implement the gate in Tg = 38 ns. The number of
LPs inside the resonators at the peak power is ∼400. If γ �= 0,
then as seen by Eq. (4) the fluctuations in the LP population
leads to qubit dephasing at a rate given by

γφ(t) ∼ γ
2|α(t)|2
(δ + U )2

(Vex + χ )2. (7)

Assuming a cavity of quality factor Q = 76 000, we find that
the photon decay rate γp = 0.02 meV. The relaxation rate of
a QW exciton is γx ∼ 4 μeV, so that the polariton decay rate
γ = |t2

0 |γp + |r|20γx = γp

2 + γx

2 = 0.012 meV. In this case, we
find that the worst case fidelity of the C-phase gate to take
an initial product state | 1

2 , 1
2 〉 + | 1

2 , 1
2 〉 + |− 1

2 , 1
2 〉 + |− 1

2 ,− 1
2 〉to

the maximally entangled state | 1
2 , 1

2 〉 + | 1
2 ,− 1

2 〉 + |− 1
2 , 1

2 〉 −
|− 1

2 ,− 1
2 〉 is 99.4%.

VII. QUANTUM NONDEMOLITION MEASUREMENT

Next we will describe a scheme to achieve a fast, high-
fidelity, single-shot, QND measurement of the spin state of the
QD electron. We discussed the importance of eliminating any
backaction during the readout process. The inherent spectral
separation between the QD and QW excitations ensures that a
probe pulse close to the QW LP resonance does not excite the
QD single-electron to trion or p-shell states. This eliminates
the readout backaction in the form of a spin-flip transition via
excited states. We propose to use the QND readout mechanism
introduced in Ref. [16]. We will briefly describe the principle
of the readout scheme. A horizontally (H) polarized probe
laser, slightly detuned from the LP resonance (δ), is incident
normally over the QD whose electron spin is to be measured.
It excites both Jz = 1 and Jz = −1 LPs in the target trap. As
described by Eq. (1), the degeneracy between the Jz = 1 and
Jz = −1 LPs is lifted due to Coulomb exchange interaction
with the QD electron-spin qubit. Consequently, the Jz = 1
and Jz = −1 LPs evolve with different phases and amplitudes
which are manifested by the introduction of a small vertically
(V) polarized component in the light reflected from the cavity.
The reflected light is elliptically polarized with its axis tilted
by an angle ∝±Vex (depending on whether |sz〉 = |± 1

2 〉).
The major difference between the setup in Ref. [16] and
our scheme in the current work is that we now suggest
the use of etched polariton traps to increase the exchange
interaction between a QD electron and a polariton. Whereas
in a planar cavity with no traps we estimated Vex ∼ 0.2 μeV,
with traps of radius 1 μm, we estimate Vex ∼ 2 μeV. With
this improvement, we find that the measurement can now
be performed an order of magnitude faster. Reference [16]
also describes various possible sources of readout errors,
namely, shot-noise error, phonon-assisted spin-flip scattering,
and radiative recombination of QD electrons with QW holes.
However, in the setup proposed here, there is an additional
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source of crosstalk error due to polariton tunneling between
neighboring traps, which is estimated in the Appendices.
For example, we find that in a single-sided cavity with
γ = 0.027 meV, it is possible to make a measurement in
time 660 ps with a total error of ∼0.1% and peak number of
photons ∼525.

VIII. SINGLE-QUBIT GATES

Finally, in order to achieve universal quantum computation,
we must be able to implement rotations of a single spin
qubit on the Bloch sphere. However, the quantum confinement
effect restricts the polarization of the 2D polaritons along
the growth (z) axis [35]. Thus, in order to achieve arbitrary
qubit rotations we propose to use an external in-plane rf
magnetic field (of magnitude Bx and frequency ωrf) as shown
in Fig. 3. The vertical magnetic field B0 leads to a Zeeman
splitting of Ez = geμBB0, where ge is the electron g factor
in the QD and μB is the Bohr magneton. The amplitude
of the in-plane magnetic field Bx is such that Ez > ωrf and
geμBBx 	 Ez − ωrf . This ensures that, in the absence of an
optical pump the in-plane magnetic field does not rotate the
spin qubits. We propose to use an optical pump pulse to bring
the qubit on resonance with the always-on rf magnetic field.
The rf. field performs the spin rotation [36,37] and the optical
pulse performs the qubit addressing, which is an arrangement
that has an analog in atomic physics with neutral-atom qubits
[38]. A similar approach has been used for single-qubit rotation
of nuclear spins in silicon [39], in which an externally applied
voltage brings the nuclear spin in resonance with an in-plane ac
magnetic field. In contrast, here, a σ− pump pulse (red-detuned
from the LP resonance by δ) is applied over the QD to excite
Jz = −1 LPs in the trap directly below it. The exchange
interaction between the QD electron and Jz = −1 LPs is
represented by the Hamiltonian H = −Vexa

†
−1a−1σz. The key

idea is to realize that this interaction leads to the modulation
of the Zeeman energy of the QD electron spin by an amount
∝−Vexa

†
−1a−1. Thus when Ez − Vex〈a†

1a1〉 = ωrf , the in-plane
magnetic field rotates the spin along the x axis. The angle
by which the spin rotates is determined by the length of the
pump pulse and the rotation axis is determined by its phase.
If the pump pulse is in phase (out of phase) with the in-plane
magnetic field, then the qubit rotates about the x(y) axis. To
illustrate, consider a rotation pulse FT, red-detuned from the

FIG. 3. The figure shows an in-plane rf magnetic field of small
strength. In the absence of any optical pulse, the in-plane field is far-
red-detuned from the Zeeman splitting of the QD electron-spin state.
When an optical pulse is applied to excite LPs with 〈a†

−1a−1〉 = N

such that Ez − VexN , the spin qubit rotates about the x (or y) axis.
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FIG. 4. Plot of probabilities 〈 1
2 |ρ| 1

2 〉|2 and 〈− 1
2 |ρ| − 1

2 〉|2 as a
function of time during the application of a π -rotation pulse.

LP by δ = 6 meV with pulse shape,

FT = F0e
−|t+τ |2/τ 2

r ∀t < −τ,

= F0∀ − τ � 0 � τ, (8)

= F0e
−|t−τ |2/τ 2

r ∀t > τ,

where F0 = 769.8 (
√

meV)−1, τ = 200 ps, and τr = 5 ps. The
value of F0 is chosen so that in a symmetric two-sided cavity
with γ = 0.027 meV, the average number of LPs at peak
power is 〈a†

−1a−1〉 = N = 500 and thus, VexN = 1 meV (for
Vex = 2 μeV). The in-plane magnetic field is of magnitude
Bx = 0.023 mT and frequency such that Ez − ωrf = 1 meV.
This results in the π rotation of the spin qubit in ∼420 ps.
Figure 4 plots the probability for the spin to be in one of
the two states 〈 1

2 |ρ(t)| 1
2 〉|2 and 〈− 1

2 |ρ(t)| − 1
2 〉|2 during the

application of a π rotation pulse. Like the two-qubit gate
the fidelity of this gate is limited by the dephasing caused
by the photon number fluctuations. These fluctuations induce
uncertainty in the energy of the qubit, leading to decoherence
and we estimate the single-qubit gate error probability in our
scheme to be = 0.2% (Appendix F).

IX. CONCLUSIONS

To summarize, Table I lists the theoretical gate times and
average fidelities that can be achieved in QD spin qubits using
the proposed technique of indirect optical control mediated
by QW LPs in lithographically defined traps. The table
also shows the performance of the best nonpolariton-based
optical schemes. The polariton-based two-qubit gate scheme
requires a cooperativity C that is substantially lower than
that needed by the purely optical schemes (by a factor of
∼100 for F = 99.8%). Furthermore we found that the use of
trapped polaritons increases the exchange interaction between
QD electrons and QW polaritons by a factor of 10 (from
∼0.2 μeV, as calculated in Ref. [5], to ∼2 μeV) under
otherwise identical conditions, and that the two-qubit gate is
consequently 100× faster. We have also shown how it may be
possible to achieve a single-qubit rotation in Faraday geometry
within ∼420 ps and with a fidelity of 99.9%. An improvement
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TABLE I. Comparison of the theoretical gates times and fidelities that can be achieved with QD electron qubits using the proposed technique
of indirect optical control mediated by QW LPs with the existing optical schemes.

Non-QW-LP optical
schemes Proposed scheme with QW-LPs

Gate time Fidelity Gate time Average gate fidelity
Two-qubit gate 100 ns [15] 99.9% [15] 24 ns 99.8%
C 103 20
Single-qubit operation Not possible in Faraday geometry, 420 ps 99.7%

in QDs using optical pulses and no local wiring
(but possible in gate defined QDs)

QND measurement 20 ns [40,41] 95% [40,41] 660 ps 99.97%
Single-sided cavity

in the QND measurement time of a factor of 30 is achieved, but
more importantly, the probability of error is reduced by a factor
of ∼200, versus the nontrap polariton-based scheme analyzed
in Ref. [5]. The principle differences between the scheme
described here and the nontrap polariton scheme have also
been summarized in Table II. In conclusion, we have presented
a substantial modification to previous polariton-mediated
two-qubit gate schemes, namely, the introduction of traps,
and have shown how high-fidelity and fast two-qubit and
one-qubit gates, as well as single-shot QND measurement,
can be performed in this setting. Our results suggest that
polariton-based approaches to controlling quantum-dot spin
qubits may ultimately be able to reach the scalability and
fidelity requirements for constructing fault-tolerant quantum
processors based on the surface code.
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APPENDIX A: POLARITON TUNNEL COUPLING
BETWEEN NEIGHBORING TRAPS

In this section we outline the method used to estimate the
tunnel coupling constant (U ) between neighboring traps. Our

method is motivated from the analysis in Ref. [30]. The main
paper discussed how the local modulation of the cavity length
created traps for polaritons. In order to estimate U , we model
the traps as square potentials of depth ∼7 meV and sides of
length 2R. If the normal mode splitting (2h̄�R) between the
UPs and LPs is larger than the coupling constant U , then the
LPs at k‖ = 0 can be treated as quasiparticles of mass mLP.
Typically, 2h̄�R ∼ 3–4 meV and when the cavity photons are
resonant with the QW excitons at k‖ = 0, then mLP ∼ 4 ×
10−5m0 (m0 is the mass of free electron). We can numerically
evaluate the ground-state (Egs) and first excited-state (Ees)
energies of a LP (of mass mLP) in coupled square potential
wells (each of depth 7 meV) by solving the time-independent
Schrödinger equation:

(
−h̄2∇2

2mLP
+ U (x,y)

)
�(x,y) = 0, (A1)

with the coupled square potential illustrated in Fig. 6(a) and
given by

U (x,y) = 0, 0 < x < 2R and 0 < y < 2R

= 0, 2R + D < x < 4R + D and 0 < y < 2R

= 7 meV everywhere else. (A2)

TABLE II. Principle differences between the proposed technique of QW LPs confined in traps and previous approaches without the trap.

Previous QW-LP approach QW-LP approach with traps

Exchange interaction Vex 0.2 μeV 2 μeV
Universal gate set Not possible Possible

(Two-qubit gate and QND measurement (All operations in Faraday geometry)
in Faraday geometry, while single-qubit

rotation in Voigt geometry)
Other effects Direct optical electron-trion transition Two-qubit gate control pulse takes

not considered into account direct optical
electron-trion transition

Estimate of crosstalk due to
LP tunneling between traps
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FIG. 5. Variation of U with (a) D for 2R = 3 μm and (b) 2R for D = 1 μm (red curve) and D = 0.5 μm (blue curve).

Finally, the linear tunnel coupling strength is estimated as

U = 1
2 (Ees − Egs). (A3)

Figures 5(a) and 5(b) show the dependence of U on D and
R, and the ground-state and excited-state wave functions for
D = 0.5 μm and R = 1 μm are illustrated in Figs. 6(a) and
6(b). For these parameters and using Eq. (A3), we estimate
U ∼ 0.5 meV.

APPENDIX B: SELECTIVE EXCITATION
OF LP IN ONLY ONE TRAP

For clarity in presentation, we will only consider the
nearest-neighbor coupling. Consider a target trap T , which
is directly under the QD that hosts the spin qubit we intend to
manipulate. The neighboring traps are numbered 1–4 and our
aim is to excite a k‖ = 0 LP mode only in trap T [Fig. 7]. In
order to do so we excite LPs in trap T and the four neighboring
traps by a pump FT and F , respectively. Both the pumps are
red-detuned from the k‖ = 0 LP mode in the traps by δ. In
the rotating frame of the pump pulse, the rate equations for

the coherent amplitude (αT(1–4)) of the k‖ = 0 LP mode in trap
T (1–4) are given by

dαT

dt
= √

γtFT −
(

iδ + γ

2

)
αT − iU

4∑
i=1

αi, (B1)

dαi

dt
= √

γtF −
(

iδ + γ

2

)
αi − iUαT, (B2)

where i = 1,2,3,4, γ (γt ) is the decay rate of polaritons from
the cavity (top mirror), and |FT|2 (|F |2) is the photon flux in
the pump incident on trap T (neighboring traps). It will be
instructive to solve the above equations at steady state, under
the assumption that |αT|  |αi |. Under these conditions, the
steady state amplitude of the LP mode in trap T is

αT =
√

γtFT

iδ + γ

2

. (B3)

By substituting Eq. (B3) into Eq. (B2) we see that if F =
iFTU/(iδ + γ /2), then the effective pump term for LPs in the
neighboring traps vanishes.

FIG. 6. (a) Illustration of the coupled LP traps, modeled as two square potential wells of depth 7 meV with sides of length 2R (=2 μm)
and separated by D (=0.5 μm). (b) and (c) Normalized ground-state and excited-state wave functions of the LP in the coupled traps.
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FIG. 7. Top view of the structure showing the LP traps (blue
circles) and pump laser pulses over the target trap, T (FT) and nearest-
neighbor traps 1–4 (F ). As shown in the main text when F = iFTU

iδ+ γ
2

,

LPs are only excited in the target trap.

APPENDIX C: ESTIMATION OF STARK SHIFT

The dipole coupling content is given by [42]

g =
√

e2f

4εm0V
, (C1)

where f is the oscillator strength. For f ∼ 50 [43] and mode
volume V = 0.5 μm3 (for trap radius R = 1 μm), the coupling
constant g ∼ 60 μeV for an. Thus, if a pulse is applied close
to the LP resonance and t0 = 1√

2
, then the Stark shift will be

χ = (60 μeV)2/2 × 20 meV = 0.1 μeV = Vex/20.

APPENDIX D: CAVITY MODE VOLUME

The mode volume of the cavity is calculated by first
decoupling the field along the growth (z axis) and in the
cavity plane. This approximation is valid because of strong
confinement of the photon modes along the growth direction.
The mode volume then becomes V = AL, where A is the
mode area and L is the mode length of the vertical cavity. The
in-plane mode in a single trap can be calculated following
the procedure in Appendix A and is approximated by the
Gaussian ψ‖ = A0e

−r2/a2
, where a = 1.2 μm. The effective

cavity length Lc is a few wavelengths longer than the cavity
length λ, due to the penetration of the cavity field into the DBR:

Lc = λ + LDBR,

LDBR = λ

2

n1n2

nc|n1 − n2| ,

where n1,n2 (nc) are the refractive index for the materials
of the DBR (cavity). For a GaAs/AlGaAs DBR mirror and
GaAs cavity, n1 = 3, n2 = nc = 3.6. The mode profile along
the growth direction will be ψ⊥ = B0 sin( πz

Lc
). Thus, the mode

area and mode length are

A =
∫ ∞

0 |ψ‖|2d2r

|ψ‖|2max

, L =
∫ ∞

0 |ψ⊥|2dz

|ψ⊥|2max

,

⇒ A = πa2

2
, L = Lc

2
. (D1)

Thus, the mode volume in the λ(=910 nm) cavity is
V = 0.5 μm3.

APPENDIX E: CROSSTALK DUE TO TUNNEL COUPLING
WITH NEIGHBORING TRAPS

In Sec. III we outlined a scheme to minimize the coupling
of LPs in neighboring traps. Despite this, some LPs are
injected in the neighboring traps. These LP modes interact with
the neighboring electron-spin qubits, leading to decoherence.
Consider the setup described in Sec. III [Fig. 2(c)]. Suppose,
the spin state of the electrons trapped in the QDs over the target
trap is | 1

2 〉T and the spin state in the neighboring traps is the

maximally entangled state |ψ〉 = | 1
2 1,

1
2 2,

1
2 3...〉+|− 1

2 1,− 1
2 2,− 1

2 3...〉√
2

.
We choose this state for the neighboring qubits as it will
experience maximum decoherence. After the application of
the measurement pulses F and FT, the spin state of the target
qubit will be projected on to the state | 1

2 〉T. But the state of
the neighboring qubits will be a mixed state represented by
the density matrix ρf . The error introduced in the states of
neighboring qubits during a measurement of the target qubit
is P c

e = 1 − F , where F = Tr[
√

ρf|ψ〉〈ψ |√ρf] is the fidelity.
In the example presented in Table II, if a measurement is made
in a single-sided (symmetric two-sided) cavity for τmeas =
660(750) ps with FT = 41.1(70.8) 1/

√
ps at δ = 0.3 meV,

then the probability of error introduced in the neighboring
spin state is P c

e ∼ 0.002(0.004)%.

APPENDIX F: EFFECTIVE HAMILTONIAN
FOR THE TWO-QUBIT GATE OPERATION

Consider the Hamiltonian for the two-qubit gate operation
in Eq. (4),

H = δ
∑
k=�,r

a
†
1,ka1,k −

∑
k=�,r

(Vex,k + χk)a†
1,ka1,kσz,k

+ i
√

γtP (t)(a†
1,� − a1,� + a

†
1,r − a1,r )

+U (a†
1,�a1,r + a

†
1,ra1,�), (F1)

where (Vex,k + χk) is the coupling strength between the k =
�,r QD electron spin with the LPs in the traps below the
respective QDs. U is the tunnel coupling between the traps and
P (t) is the rate at which the LPs are injected in the trap. Making
the transformation a1,� = (a + b)/

√
2 and a1,r = (a − b)/

√
2,

the above Hamiltonian reduces to

H ′ = (δ + U )a†a + (δ + U )b†b + i

√
γt

2
P (t)(a† + a)

− (Vex,� + χ�)(a†a + b†b + a†b + b†a)σz,�

− (Vex,r + χr )(a†a + b†b − a†b − b†a)σz,r . (F2)

Note that in this form, the external field P (t) only drives the
mode a while the mode b remains undriven. As a result,
〈b〉 = 〈b†b〉 = 0 and by eliminating the mode b, the above
Hamiltonian reduces to

H ′ = (δ + U )a†a + i

√
γt

2
P (t)(a† + a)

− a†a[(Vex,� + χ�)σz,� + (Vex,r + χr )σz,r ]. (F3)
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On this Hamiltonian, we now apply a spin-dependent displace-
ment transformation D(α′) = exp(iα′a† − iα′∗a) where α′ =
α − [(Vex,� + χ�)σz,� + (Vex,r + χr )σz,r ]α/(δ + U ) so that the
effective Hamiltonian becomes Heff = D†(α′)H ′D(α′) −
iD†(α′)Ḋ(α′). If we now choose α̇ = −i(δ + U )α +
i[(Vex,� + χ�)σz,� + (Vex,r + χr )σz,r ]α + √

γt/2P (t), then the
effective Hamiltonian for the qubits reduces to

Heff = −2|α(t)|2
δ + U

(Vex,� + χ�)(Vex,r + χr )σz,�σz,r , (F4)

where

α(t) ∼ i

√
γt

2

∫ t

−Tg/2
P (t) exp[−i(δ + U )(T − s)]ds (F5)

and we have simplified the expression for α to zeroth order in
the qubit-polariton interaction energy. Without loss of gener-

ality it is then possible to choose (Vex,� + χ�) = (Vex,r + χr )
to recover Eq. (5).

APPENDIX G: DEPHASING ERROR IN THE TWO- AND
SINGLE-QUBIT GATE SCHEMES

The two- and single-qubit gate schemes rely on the
electron-spin qubit-polariton interaction which leads to a
polariton-number-dependent shift in the energy of the qubit.
As a result the quantum fluctuations in the polariton-number
population or in other words shot-noise, leads to dephasing
of the qubit [44]. In a single-qubit gate the interaction Hamil-
tonian is given by −Vexa

†
−1a−1σz, which leads to dephasing

at rate γφ(t) = 2V 2
ex〈δn(t)δn(t ′)〉dt ′ = 2V 2

exγ |α(t)|2/δ2 where
n = a

†
−1a−1 and δn(t) = n(t) − 〈n(t)〉. In a two-qubit gate the

interaction Hamiltonian between the mode a and the qubits is
given by −(Vex + χ )a†a(σz,� + σz,r ) and the joint dephasing
rate of the qubits because of photon shot noise of mode a is
2(Vex + χ )2γ |α(t)|2/(δ + U )2.
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A. Imamoğlu, Phys. Rev. Lett. 112, 116802 (2014).

[42] L. C. Andreani, G. Panzarini, and J.-M. Gérard, Phys. Rev. B
60, 13276 (1999).

[43] J. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S.
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