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2ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluı́s Companys 23, 08010 Barcelona, Spain

(Received 9 May 2016; revised manuscript received 13 January 2017; published 6 March 2017)

Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the
generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly
low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology.
Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical
nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the
two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch
equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband
contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless
of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-
mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-
band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted
saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we
find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an
externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic
devices, as well as for applications in mode-locking and random lasers.
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I. INTRODUCTION

Saturable absorption (SA) is an extreme nonlinear phe-
nomenon that consists of the quenching of optical absorption
under high-intensity illumination. This effect, which is an
inherent property of photonic materials, constitutes a key
element for passive mode-locking (PML) in laser cavities
[1,2], where continuous waves are broken into a train of
ultrashort optical pulses. Most materials undergo saturable
absorption at very high optical intensities, in close proximity
to their optical damage threshold. Currently, state-of-the-art
semiconductor-based SA mirrors are routinely employed for
PML lasers [3–5]. However, these mirrors operate in a narrow
spectral range, are poorly tunable, and require advanced
fabrication techniques.

Recently, carbon nanomaterials have emerged as an attrac-
tive, viable, and cost-effective alternative for the development
of next-generation PML lasers. For example, carbon nanotubes
(CNTs) undergo SA at rather modest light intensities, while
their operation wavelength (determined by the energy band
gap) can be manipulated by tuning their diameter [6–10].
Broadband operation has been demonstrated by using an
ensemble of CNTs with a wide distribution in diameter, at
the expense of higher linear loss from off-resonance tubes
[8]. Graphene overcomes this limitation thanks to its peculiar
conical band structure, which gives rise to broadband resonant
SA at remarkably low light intensity [10–18] that can further
be tuned by means of an externally applied gate voltage
[19]. Graphene-based SA components have been used to
achieve PML ultrafast laser operation [20,21], broadband
tunability [22], and quality-factor switching [23]. Graphene
multilayers have also been employed to generate large energy
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pulses [24] and to achieve PML in fiber lasers with normal
dispersion [25]. In addition, recent theoretical investigations
predict single-mode operation of random lasers by embedding
graphene flakes in a gain medium [26].

Stimulated by the rising interest in SA of graphene for
developing the above mentioned applications, several theoret-
ical approaches have been proposed over the last few years to
describe and understand this phenomenon. Pioneering efforts
[27–29] accounting only for intraband electronic transitions in
graphene predict high nonlinearities associated with harmonic
generation, but graphene SA necessitates a more rigorous
theoretical treatment, as it mainly arises from the interplay of
intraband and interband dynamics: While the purely-intraband
nonlinear response of graphene can be described semianalyt-
ically [27–29], interband processes are more complex. Sub-
sequent semianalytical approaches accounting for combined
interband and intraband processes have relied on perturbative
expansions, which yield nonlinear conductivities for graphene
[30–36] that accurately predict the SA threshold only when
graphene is doped. In fact, such nonlinear conductivities
are ill-defined for undoped graphene and diverge due to the
Dirac point singularity, emphasizing the highly nonperturba-
tive behavior of electrons in the carbon monolayer. Further
investigations have resorted to computationally-demanding
numerical time-domain integration of the graphene Bloch
equations [17,37,38], which unfortunately provides little
physical insight into electron dynamics. Despite the rapidly-
growing body of research on graphene nonlinear optics, an
accurate and transparent nonperturbative and semianalytical
theory accounting for both intraband and interband dynamics
is still missing. The single-particle massless Dirac fermion
(MDF) picture [39] appears to be an appropriate theoretical
framework for achieving this objective.

In this paper, we calculate intraband and interband con-
tributions to SA of extended graphene by nonperturbatively
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and semianalytically solving the single-particle Dirac equa-
tion for MDFs in the presence of an external electromag-
netic field retaining only one-photon processes. We further
investigate the dependence of the intensity-saturated graphene
conductivity on doping, temperature, and optical frequency.
Interestingly, we find a remarkably low intensity threshold for
SA, which is consistent with available experimental reports
[10–18]. Our calculations indicate a strong quenching of
absorption depth produced by electrical doping (which can
be controlled through gating), as well as a weak dependence
on electron temperature. Additionally, through time-domain
simulations based on an atomistic tight-binding/single-particle
density-matrix formalism [40], we study SA in graphene
nanoribbons, including finite-size effects and electron-electron
interactions that play a significant role in the optical response
of nanostructured graphene. Surprisingly, we find that while
the linear absorption predicted in atomistic simulations is
reduced compared to that of extended graphene, its nonlinear
saturation intensity threshold is in good quantitative agreement
with predictions based on the MDF model. Deviations from
the semianalytical treatment occur only at high doping,
where SA is quenched and multiphoton processes lead to
an intensity-dependent increase of absorption. We anticipate
that the present findings will impact the future development
of graphene-based PML fibre lasers and single-mode random
lasers.

II. THEORETICAL MODEL

We consider a monochromatic optical field E(t) =
E0e−iωt + c.c. of angular frequency ω and complex ampli-
tude E0 impinging at normal incidence on a self-standing
extended graphene sheet [see Fig. 1(a)]. At visible and lower
frequencies, electrons in this material behave as MDFs, with
their temporal evolution governed by the single-particle Dirac
equation [41]

ih̄∂tψk(t) = vFπ · σψk(t), (1)

where h̄k is the electron momentum, ∂t is the time derivative,
vF � c/300 is the Fermi velocity, c is the speed of light in
vacuum, h̄ is the reduced Planck constant, σ = (σx,σy) is the
two-dimensional (2D) Pauli-matrix vector, and ψk(t) is the k-
and time-dependent two-component spinor accounting for the
quantum states in the upper and lower Dirac-cone bands. The
graphene band structure thus consists of two infinite cones,
neglecting higher-band effects that are only relevant at high
photon energies, above ∼2 eV. We introduce an electron quasi-
momentum π that coincides with the unperturbed momentum
(i.e., π = h̄k) in the absence of external illumination. In this
case, Eq. (1) admits spinor eigenvectors

ψ±
k,0(t) = 1√

2

(
e−iφ/2

±eiφ/2

)
e−iε±t ,

where ε± = ±vFk is the unperturbed conical dispersion of
upper (+) and lower (−) energy bands [see Fig. 1(b)],
while φ identifies the momentum direction, such that k =
k(cos φ, sin φ), and a spatial dependence eik·r/

√
A (normal-

ized to the sheet area A) is understood in the spinor.
In the presence of the impinging optical field, we use

the customary minimal electron-light coupling prescription to
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FIG. 1. (a) Schematic representation of a light wave (angular
frequency ω, amplitude E0, and intensity I0) normally impinging
on a self-standing graphene sheet. (b) Illustration of the temporal
displacement of the Dirac cone along the kx direction due to the
oscillatory optical field. The central cone represents the unperturbed
conical dispersion of graphene (ε±), while left and right cones indicate
the maximum achievable displacement.

write the electron quasimomentum as π (t) = h̄k + (e/c)A(t),
where −e is the electron charge and A(t) = −c

∫
E(t)dt

is the potential vector in the Coulomb gauge (∇ · A = 0).
Without loss of generality, we assume the external light to be
linearly polarized along the in-plane x direction, so that E(t) =
E0e−iωt x̂ + c.c. and A(t) = (cE0/iω)e−iωt x̂ + c.c. Therefore,
the incident field induces an oscillatory shift of the unperturbed
bands ε± along kx around k = 0 [see Fig. 1(b)]. Following
the nonperturbative approach developed by Ishikawa [42,43],
which we review in this section for the sake of completeness,
we write the time-dependent spinor as a linear combination of
the instantaneous upper- and lower-cone states

ψk(t) = c+
k (t)ψ+

k (t) + c−
k (t)ψ−

k (t), (2)

where

ψ±
k (t) = 1√

2

(
e−iθk(t)/2

±eiθk(t)/2

)
e∓i	k(t), (3)

	k(t) = vF
∫ |k + (e/h̄c)A(t)|dt is a global dynamical phase,

and θk(t) = atan{ky/[kx + (e/h̄c)A(t)]} is the time-dependent
direction angle of the electron quasimomentum π . We now
insert the ansatz provided by Eq. (2) into Eq. (1) and define the
interband coherence ρk = c+

k c−∗
k and the population difference

nk = |c+
k |2 − |c−

k |2. Without making any approximations, we
can then rewrite the two-dimensional Dirac equation for MDFs
in the form of generalized Bloch equations (GBEs) [42,43],

ρ̇k(t) = − i

2
θ̇k(t)nk(t)e2i	k(t), (4a)

ṅk(t) = 2θ̇k(t)Im
{
ρk(t)e−2i	k(t)

}
. (4b)
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Then, the temporal evolution of graphene electrons can be
evaluated by solving the above equations in the time domain
and setting the initial conditions ρk(−∞) = 0 and nk(−∞) =
N (k) = F(k) − F(−k), where F(k) = 1/{1 + exp[(vF h̄k −
μ)/kBT ]} is the Fermi-Dirac occupation number, μ is the
chemical potential, kB is the Boltzmann constant, and T is the
electron temperature. Although we base our analysis on CW
illumination conditions, we argue that these results are also
applicable to commonly-used optical pulses that have a large
duration compared with the optical period. Consequently, the
derivations provided below, which are obtained for constant
light intensity I0, are equally valid for a situation in which the
externally applied intensity I0(t) varies slowly over time, in the
so-called slowly-varying-envelope approximation (SVEA).
In other words, we assume that electron motion occurring
over the fast temporal scale of the optical period adiabat-
ically follows the slowly-varying temporal intensity profile
in a quasi-steady-state. The single-electron current is thus
obtained as

jk(t) = (−e/h̄)〈ψk(t)|∇k[vFπ · σ ]|ψk(t)〉
= −evF

[
nk cos θk − 2 sin θkIm

{
ρke−2i	k

}]
x̂

−evF
[
nk sin θk + 2 cos θkIm

{
ρke−2i	k

}]
ŷ. (5)

We emphasize that this expression for the microscopic current
is obtained without making any approximation beyond the
MDF picture. The nk terms account for the intraband current,
while the remaining terms, which depend on the coherence
ρk, arise from interband dynamics [42,43]. One should note
that the intraband current of the valence band nk cos θk should
vanish when it is fully filled (nk = −1) in virtue of a well-
known sum rule (see Ref. [44]). The macroscopic induced
surface current J(t) is finally obtained by integrating over all
electron momenta,

J(t) = gsgv

(2π )2

∫
jk(t)d2k, (6)

where gs = gv = 2 accounts for spin and valley degeneracies,
and the integral extends over the entire 2D k plane. It is
important to note that this integral is ill behaved due to
the unphysical assumption of an infinitely extended valence
band (i.e., for arbitrarily large k’s). The noted sum rule
explains that this divergence must disappear in real systems
due to the periodicity of the band in k space. We present an
alternative regularization procedure to tackle this problem in
the Supplemental Material (SI) [45], from which we conclude
that the nk factors in Eq. (5) must be replaced by nk + 1
when calculating the integral of Eq. (6), and this prevents the
divergence since nk → −1 for large k’s. We also remark that,
although the carrier current jk has both x̂ and ŷ components,
the integrated macroscopic current remains polarized along
x̂ and thus parallel to the external field. This theoretical
framework describes the optical response of graphene in a
single-electron picture, but it still neglects inelastic electron
transitions that are produced for example by impurity scat-
tering and coupling to phonons. In the following sections,
these interactions are introduced phenomenologically through
an effective electron lifetime. Additionally, we argue that
the response of graphene, quantified as a 2.3% absorption
at low intensities, is sufficiently weak as to ignore Coulomb

self-interaction among induced charges [46,47]. As shown in
the following sections, the theoretical framework provided
here, and first developed by Ishikawa [42,43], reproduces
the seminal predictions by Mikhailov [27–29] based on a
nonperturbative description of intraband electron dynamics
and those based on the well-established semiconductor Bloch
equations (SBEs) [48]. Indeed, graphene SBEs constitute a
particular limit that is valid when the temporally oscillating
displacement of Dirac cones due to the sinusoidal optical
momentum (pictorially illustrated in Fig. 1) is neglected (see
below).

III. INTRABAND SATURABLE ABSORPTION

We focus first on the purely intraband contribution to
saturable absorption, i.e., neglecting interband dynamics. This
contribution to SA, dependent only on the thermal distribution
of conduction electrons, dominates in doped graphene for
photon energies smaller than twice the Fermi level (i.e.,
h̄ω < 2EF), for which one-photon interband transitions are
prohibited by the Pauli exclusion principle; however, in this
regime, two-photon absorption can overpower the SA effect,
as we show later in Sec. V.

To describe the purely intraband response, one need not
solve explicitly the GBEs, as it is sufficient to set ρk = 0 and
nk = N (k) + 1, resulting in the macroscopic current

Jintra(t) = −evF

π2
x̂

∫
[N (k) + 1] cos θk(t)d2k. (7)

We remark that, without a subtle but relevant modification
of the potential vector, absorption is not described by this
nonperturbative expression, which leads to the well-known
lossless intraband current obtained by means of the Boltzmann
transport equation [27–29]. We note that the mathematical
procedure developed here is inspired by such seminal works,
with the further inclusion of inelastic electron collisions in
a nonperturbative manner. A phenomenological treatment of
this effect requires a modification of the minimal coupling
substitution, which ensues from the assumption that electrons
are freely driven by the external electric field. Thus, we
modify heuristically the definition of the direction angle θk(t),
assuming that the electron quasimomentum satisfies

π̇ + τ−1(π − h̄k) = −eE(t), (8)

where τ is the characteristic inelastic collision time. We
assume a value τ = 22 fs throughout this work, which is
consistent with recent experiments [49–52]. We find Eq. (8)
to admit the straightforward analytical solution π(t) = h̄k +
(e/c)a(t), where

a(t) = −ce−t/τ

∫ t

−∞
E(t ′)et ′/τ dt ′ = cE0e−iωt

iω − 1/τ
x̂ + c.c.. (9)

This modified expression effectively accounts for intraband
electron collisions, and in particular, the direction angle of the
electron momentum now becomes θk(t) = arctan{ky/[kx +
(e/h̄c)a(t)]}. Incidentally, the τ → ∞ limit of π (t) reduces
to the expression h̄k + (e/c)A(t) that was used in Sec. II.

In the limit of vanishing temperature (T → 0) the chemical
potential coincides with the Fermi energy μ = EF, the pop-
ulation inversion distribution becomes N (k) → −(k − kF),
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FIG. 2. Intraband surface current density Jintra(t) (lower panel)
induced in extended graphene by a harmonic external electric field
(upper panel) with maximum amplitude 2E0 = √

8πI0/c and optical
frequency ω = 2πc/λ, where λ = 1550 nm is the optical excitation
wavelength. In the lower panel we provide results for incident
intensities I0 = 10, 100, and 1000GW/cm2, compared with the
maximum achievable current density Jmax(t) in the I0 → ∞ limit
(dashed curve). We assume a high Fermi energy EF = 1 eV and zero
temperature in order to illustrate the intraband contribution to the
current when it is dominant over the interband one (2EF/h̄ω = 2.5).

where  is the Heaviside step function, and the integral in
Eq. (7) can be solved analytically:

Jintra(t)= x̂
−2eE2

F

π2h̄2vF

√
1 + [(e/h̄c)a(t)/kF]2

×
∫ π/2

0
cos φ[

√
1+f (t) cos φ−

√
1−f (t) cos φ]dφ,

(10)

where kF = EF/h̄vF is the Fermi wave number, f (t) =
2(e/h̄c)a(t)kF/{k2

F + [ea(t)/h̄c]2}, and the integral over φ

can be expressed in terms of generalized Jacobi elliptic
functions (see Refs. [53,54] and SI [45]). We emphasize
that the intraband surface current density in Eq. (10) is
highly nonlinear when |E0| > ES, where ES = h̄ωkF/e is the
intraband saturation field. Additionally, the series expansion
of Eq. (10) in powers of the electric field amplitude E0,

Jintra(t) � e2

πh̄2 Re

{
2iEFE0e−iωt

ω + iτ−1
+ ie2v2

FE
3
0e−3iωt

4EF(ω + iτ−1)3

− 3ie2v2
F|E0|2E0e−iωt

4EF(ω − iτ−1)(ω + iτ−1)2

}
x̂ + O

(
E5

0

)
, (11)

fully reproduces the result obtained by means of the Boltzmann
transport equation in the relaxation-free limit τ → ∞ [27–29].
In order to illustrate intraband saturable absorption of extended
graphene, we plot in Fig. 2 the intraband current density

calculated from Eq. (10) for several values of the incident
light intensity I0 = (c/2π )|E0|2. Note that, although the Fermi
level EF = 1 eV used in the plot is high, comparable values
have been achieved experimentally through top gating [55]
and chemical doping [56]. Notice also that, when I0 ∼ I intra

S ,
where I intra

S = (c/8π )|ES|2 is the saturation intensity (e.g.,
I intra

S � 196 GW/cm2 at λ = 1550 nm), the current density
also saturates, acquiring a square-like-wave temporal profile,
as originally demonstrated by Mikhailov [27–29]. This can be
verified analytically upon examination of the E0 → ∞ limit
of Eq. (10), which yields the maximum achievable surface
current density in doped graphene,

Jmax(t) = −eNvFsign[a(t)]x̂, (12)

where N = k2
F/π is the density of doping electrons. Then, as

a consequence of current saturation, intraband absorption also
saturates. We describe this effect quantitatively by defining an
intraband absorption coefficient as the ratio of the time average
of the absorbed power, which is simply evaluated over a single
optical cycle, to the incident-light intensity,

αintra ≡
∫ +π/ω

−π/ω
Jintra(t) · E(t)dt

(2π/ω)I0
. (13)

This quantity reaches its maximum value αmax =
4EF/[137h̄τ (ω2 + τ−2)] at low intensities and zero temper-
ature. In contrast, it vanishes as αintra � 1/

√
I0 in the limit

of large incident intensity I0. We further examine the I0

dependence of αintra(I0) for several Fermi energies [Fig. 3(a)]
and electron temperatures [Fig. 3(b)] by numerically solving
Eqs. (7) and (13). A strong dependence on Fermi energy is
observed, as well as large thermal modulation at high electron
temperatures exceeding T ∼ 5000 K. We find that the depth
of thermal modulation in the intraband absorption is roughly
proportional to the Fermi energy and vanishes in undoped
graphene. Typical intensities at which the intraband absorption
saturates are of the order of 100–1000GW/cm2, depending on
the doping level. Note that the intraband saturation intensity
I intra

S scales as the inverse square of the optical wavelength
(I intra

S ∝ λ−2), thus changing by a few orders of magnitude
within the optical and near-infrared spectrum.

IV. INTERBAND SATURABLE ABSORPTION

We now turn our attention to the effect of interband tran-
sitions on saturable absorption, neglecting purely intraband
dynamics of thermalized electrons in the conduction band.
This contribution becomes dominant for photon energiesh̄ω >

2EF (see below) and includes effects due to direct interband
excitation as well as from intraband transitions enabled by the
nonthermal electrons driven out-of-equilibrium. Interestingly,
while the optical momentum eA(t) was found in Sec. III
to produce sizable corrections to the intraband dynamics of
thermal electrons in the conduction band, it does not affect
interband dynamics significantly near its resonant contribution
at k = ω/(2vF), where the optical momentum is negligible
[i.e., h̄k � (e/c)A(t)]. Such an approximation is valid in the
regime where the optical intensity remains low enough not
to temporally displace the Dirac cone (see Fig. 1) up to the
resonant electron wave number k = ω/(2vF), leading to the
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FIG. 3. Intraband absorption coefficient αintra as a function of incident light intensity I0 for (a) several Fermi energies (EF/h̄ω =
0.25,0.5,0.75,1) at zero temperature and (b) several electron temperatures (kBT/μ = 0.22,0.43,0.65,0.86,1.08) and fixed chemical potential
μ = 0.4 eV. The light wavelength is 1550 nm.

(safely met) condition I0 � 137h̄π3c4/2v2
Fλ

4 ≈ 0.1 TW/cm2

at λ = 1.55 μm.
We consequently neglect A(t), so that Eqs. (4) reduce to

�̇k = −
(

1

τ
+ 2iω0

)
�k − ie

h̄k
Re

{
E0e−iωt

}
sin φ nk, (14a)

ṅk = − 1

τ
[nk − N ] + 4e

h̄k
Re

{
E0e−iωt

}
sin φ Im{�k}, (14b)

where �k(t) = ρk(t)e−2iω0t , ω0 = vFk, and we have intro-
duced a phenomenological relaxation time τ that encompasses
the effect of numerous ultrafast decay channels for out-of-
equilibrium electrons into hot carriers and phonons [49–52].
We assume for simplicity a single effective relaxation time
τ , even though polarization dephasing and electron-hole
recombination can take place over different timescales and
their actual temporal dependences remain uncertain. Addi-
tionally, we use the same symbol τ for this quantity as in
the intraband contribution (Sec. III), although we remark
that the relative importance of different channels can differ
substantially in both cases. Incidentally, Eqs. (14) coincide
with the traditional Bloch equations for graphene and other
two-band systems [48,57], which are routinely used to describe
saturable absorption and other two-band effects, such as
for example self-induced transparency [58–60]. To describe
interband saturable absorption, we adopt the steady-state
ansatz

�k(t) = �+
k eiωt + �−

k e−iωt ,

nk(t) = n
(0)
k + Re

{
n

(2)
k e−2iωt

}
.

Using these expressions and neglecting higher-harmonic
terms, Eqs. (14) lead to

n
(0)
k = N + 4ξ Im

{
1 − iωτ

1 − iω+τ
�−

k

}
, (15a)

n
(2)
k = −4iξ (1 − iωτ )�−

k

(1 − 2iωτ )(1 − iω+τ )
, (15b)

�+
k = −1 + iω−τ

1 + iω+τ
�−

k
∗
, (15c)

�−
k = (−iξ/2)

1 − iω−τ

(
n

(0)
k + 1

2
n

(2)
k

)
, (15d)

where ξ = (eτE0/h̄k) sin φ and ω± = ω ± 2ω0. While an
analytical solution to Eqs. (15) is readily obtained, we omit
the resulting expressions here, which are rather involved and
do not provide much physical insight (these expressions are
provided in the SI [45]). We emphasize that, by neglecting
higher-harmonic terms in the solution of the Bloch equations,
we are disregarding multiphoton absorption, which has been
experimentally confirmed to be negligibly small in undoped
graphene [61]. However, as we show in the next section,
multiphoton absorption comes into play when one-photon
processes are inhibited by the Pauli exclusion principle for
h̄ω/2EF < 1. The above analytical solutions nonperturbatively
account for all single-photon processes, thus avoiding unphys-
ical divergences associated with the Dirac point singularity. In
addition, we remark that the solution above is found without
assuming the so-called rotating-wave approximation, where
the antiresonant terms �+

k and n
(2)
k are neglected: Actually,

such an approximation also leads to unphysical inconsistencies
and divergences arising from the infinitely-extended Dirac
cone assumption. The interband current density Jinter(t) is then
obtained from this solution and Eq. (6) through the expression

Jinter(t) = −2evF

π2
Re

{
ie−iωt

∫
sin φ

[
�−

k − �+∗
k

]
d2k

}
x̂.

(16)

We finally solve the 2D integral in k space numerically.
Because we neglect third-harmonic terms, �k oscillates in time
around zero with the same angular frequency ω as the external
field, while nk oscillates with angular frequency 2ω around
the steady-state out-of-equilibrium population difference n

(0)
k .

Consequently, our approach enables the explicit calculation
of the out-of-equilibrium occupation distribution of optically
induced free carriers fc(k) = [F(k) + F(−k) + n

(0)
k ]/2 [see

Figs. 4(a) and 4(b), where we plot fc(k) for several chemical
potentials μ at fixed incident light intensity I0 = 10 GW/cm2

125408-5
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FIG. 4. (a) Out-of-equilibrium carrier occupation distribution
fc(k) in 2D k space at T = 300 K for a chemical potential μ =
0.2 eV (μ/h̄ω = 0.25). The electron wave number components kx

and ky are normalized to kF = μ/h̄vF. (b) Cut along the ky axis
of (a) for several chemical potentials μ = 0.1–0.4 eV (μ/h̄ω =
0.125,0.250,0.375,0.500), with ky scaled to kS = ω/2vF. The light
intensity and wavelength are I0 = 10 GW/cm2 and λ = 1550 nm in
both plots. We assume a phenomenological relaxation time τ = 22 fs.

and wavelength λ = 1550 nm]. The k-space steady-state
carrier occupation fc(k) is characterized by two lobes along the
ŷ axis, peaked at (kx,ky) = (0,±ω/2vF) and surrounding the
thermal Fermi-Dirac distribution of electrically doped thermal
electrons [see Fig. 4(a)]. When h̄ω < 2μ, the distribution
fc(k) stays thermalized, as interband absorption is inhibited by
the Pauli exclusion principle. In particular, after irradiation by
an ultrashort optical pulse, fc(k) quickly evolves within a time
of ∼τ = 22 fs to a different thermal distribution corresponding
to an increased electron temperature [57]. Eventually, it relaxes
to the original unperturbed distributionF(k) within a timescale
∼ps due to electron-phonon scattering [49–51].

As a consequence of the optically induced out-of-
equilibrium occupation fc(k) in the upper band, interband ab-
sorption also saturates. In simple terms, at high intensities the
electron-hole recombinations produced by inelastic collisions
balance the light-driven interband transitions, thus leading to
absorption quenching. Similar to Sec. III, we attempt to quanti-
tatively describe this effect by defining an interband absorption
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FIG. 5. Interband absorption coefficient αinter as a function
of incident light intensity I0 for a wavelength of 1550 nm for
(a) several Fermi energies (EF/h̄ω = 0,0.250,0.375,0.500,0.625) at
zero temperature and (b) several electron temperatures (kBT/μ =
0.13,0.43,0.86,1.29,1.72,2.15) and fixed chemical potential μ =
0.2 eV. The inelastic relaxation time is set to τ = 22 fs in all plots.

coefficient as the ratio of the time-averaged absorbed power
over an optical cycle to the impinging intensity,

αinter ≡
∫ +π/ω

−π/ω
Jinter(t) · E(t)dt

(2π/ω)I0
. (17)

We calculate the intensity-dependent interband absorption
coefficient αinter(I0) for several Fermi energies [Fig. 5(a)]
and electron temperatures [Fig. 5(b)] by numerically solving
Eqs. (16) and (17). For low intensities and zero temperature, we
reproduce the universal absorption law of undoped graphene,
αinter ≈ πα [46,47], where α ≈ 1/137 is the fine-structure
constant. This result reflects a dispersionless linear conductiv-
ity σ0 = e2/4h̄. In contrast, the interband absorption vanishes
as αinter � 1/

√
I0 in the limit of large incident intensities I0.

This high-intensity behavior is similar to intraband absorption
(see Sec. III). We also observe a strong dependence of αinter(I0)
on the Fermi energy, as well as a large thermal modulation at
high electron temperatures T � 2000 K. It should be noted
that the modulation depth is much higher for interband than
for intraband absorption, and additionally, it can be efficiently
controlled by changing the Fermi energy.
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S (τ ) for which αinter(I inter
S ) =

αinter(0)/2. The light wavelength is 1550 nm.

The light intensity required to achieve saturated absorption
can be affected by the actual value of the inelastic collision
time. For large τ , optically pumped electrons are expected
to produce Pauli blocking during a longer time, therefore
reducing the interband saturation intensity I inter

S . A plot of
αinter as a function of I0 and τ [Fig. 6(a), calculated for λ =
1550 nm] confirms this intuition and further reveals that I inter

S
varies over a wide range (1–100 MW/cm2) when τ evolves
within a range compatible with reported measurements of the
electron inelastic lifetime in graphene samples of different
qualities. But more importantly, the actual values of I inter

S
are much smaller than the characteristic intraband saturation
intensities I intra

S derived in Sec. III. The interband saturation
intensity I inter

S heavily depends on the optical wavelength λ [see
Fig. 7, where we plot I inter

S (λ) for several relaxation times τ ],
varying by several orders of magnitude within the optical and
near-infrared spectrum.
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as a function of optical wavelength λ (horizontal axis) and relaxation
time τ (color scale) at zero temperature and vanishing Fermi energy
EF = 0. Available experimental results for the saturation intensity are
indicated by symbols [10–18] (see legend).

We emphasize that the semianalytical framework developed
above is highly accurate and computationally efficient, as the
only numerical effort to be taken lies in the integration of the
analytical expression for the microscopic current density over
the reciprocal space [see Eq. (16)]. In this respect, we remark
that the φ dependence of the integrand of Eq. (16) enters
only through sin2 φ-like terms, and thus the integration over
reciprocal space can be limited to the first quadrant (times
a factor of 4). Consequently, in contrast to fully-numerical
investigations [17,37,38], our method produces highly ac-
curate results with only a few seconds of CPU. Further,
our nonperturbative semianalytical treatment facilitates the
exploration of graphene electron dynamics and their out-
of-equilibrium distribution. In principle, previously reported
perturbative treatments [30–36] can also provide some limited
insight into the order of magnitude of the saturable absorption
threshold for finite doping (see SI [45], where we compare
perturbative and nonperturbative results). In contrast, they
become highly inaccurate at low doping as a result of the
inherent singularity at the Dirac point. Once more, this
confirms the highly nonperturbative character of graphene at
relatively moderate illumination intensities.

V. FINITE-SIZE AND ATOMISTIC EFFECTS

Although we have provided a comprehensive theory of
saturable absorption in extended graphene, practical devices
operating on this principle must be finite in size. In narrow
graphene nanoribbons only a few tens of nanometers wide,
discretization of the electronic bands due to lateral confinement
opens energy gaps and substantially modifies the optical re-
sponse [62]. We contrast next the above theoretical description
for extended graphene with results obtained from an atomistic
approach for finite structures. Specifically, following the
methods of Refs. [40,63], we simulate the intensity-dependent
optical response of one-dimensional graphene nanoribbons
by numerically solving the single-particle density matrix
equation of motion in the time domain, using a tight-binding
Hamiltonian for the π -band electronic structure along with a
self-consistent electron-electron (Hartree) interaction potential
(see SI [45] for further details).

Remarkably, for a nanoribbon of only ∼20 nm width,
we find the atomistic simulations of the intensity-dependent
absorbed power under cw illumination to be in excellent
qualitative agreement with that for extended graphene based
on the MDF picture (see Fig. 8, where we compare results
from the two methods for several Fermi energies at an
excitation wavelength of 1550 nm). Quantitative discrepancies
in the predictions are due to electron-electron interactions,
finite-size, and higher-band effects that are relevant in nanos-
tructured graphene but inherently absent in the MDF picture.
However, these phenomena are found to affect mainly the
unsaturated absorption coefficients in the weak intensity limit,
while the nonlinear saturation intensity threshold shows good
quantitative agreement with MDF predictions for extended
graphene for most doping levels considered. Interestingly, for a
Fermi energy of 0.5 eV (h̄ω/2EF < 1), the atomistic approach
predicts an intensity-dependent increase in absorption rather
than saturation (see Fig. 8). This discrepancy originates
in multiphoton absorption processes: Although one-photon
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the semianalytical MDF model for the total absorption coefficient
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intensity I0 for a wavelength of 1550 nm and several Fermi energies
(EF/h̄ω = 0.250,0.375,0.500,0.625) in the vanishing temperature
limit. In the atomistic calculations the incident light is polarized
across the ribbon.

absorption (for which the analytical derivation of the previous
section is valid and accurate) is quenched at λ = 1.55 μm and
EF = 0.5 eV due to Pauli blocking, multiphoton absorption is
not and leads to a small increase of absorption at very high
intensities (as confirmed by perturbation theory estimates, see
SI [45]). These results clearly indicate that the purely intraband
contribution to SA does not play an important role because
in the high doping case (h̄ω/2EF < 1), where its modulation
depth becomes comparable with the interband contribution,
it is fully overpowered by multiphoton processes, leading
to an intensity-dependent increase of absorption rather than
quenching. These findings indicate that SA occurs only in
the h̄ω/2EF > 1 regime and that electrical doping quenches
the modulation depth. A detailed description of multiphoton
absorption goes beyond the scope of the present discussion but
certainly warrants future investigation.

In Figure 9 we present atomistic simulations of the linear
absorption coefficient α in graphene nanoribbons with either
armchair- or zigzag-type edge terminations as a function of
their width W , along with the nanoribbon absorption predicted
by a classical electrodynamic description [full black curve
in Fig. 9(a)]. Both levels of description predict an increase
in absorption with nanoribbon width, eventually converging
with the established 2.3% value of extended graphene. This
result explains the offset in absorption observed in Fig. 8 when
comparing atomistic and MDF results, which is reasonable
given the reduced geometrical cross section in nanoribbons
compared to extended graphene.

VI. COMPARISON WITH EXPERIMENTS

We seek to compare our theoretical results with experimen-
tal data available in the literature. Most experimental studies
exploit graphene as a saturable absorber for PML applications
and thus focus on undoped or poorly doped samples, for

2
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FIG. 9. Results from atomistic simulations of graphene ribbons
depicting the dependence of the absorption coefficient α either (a)
on ribbon width W [for undoped graphene (EF = 0) and both zigzag
and armchair edges] and (b) on impinging light with intensity I0

(polarized across the ribbon) for a fixed Fermi energy EF = 0.2 eV
and several values of W . The dashed line in (a) indicates the universal
absorption limit α ≈ π/137.

which only interband absorption is relevant. Surprisingly, we
find enormous variations in reported measurements, even for
experiments conducted with the same light wavelength, so we
attribute this dispersion in observed results to the different
qualities of the graphene samples and experimental conditions
(substrates, detectors, etc.). This intuition is supported by the
calculations presented in Fig. 7 (see above), in which the
saturation intensity for SA is shown to be highly dependent on
the intrinsic relaxation time τ , which is directly affected by the
graphene sample quality. In contrast, the saturation intensity
is less sensitive to doping (for EF < 2h̄ω), although these
parameters have a considerable effect on the modulation depth.
In most photonic materials, SA is well described by a typical
nonlinear absorption law α(I0) = α0/[1 + I0/IS], for which IS

is the saturation intensity such that α(I0) = α0/2, where α0 is
the linear absorption coefficient. However, we find that the pe-
culiar band structure of graphene produces a qualitatively dif-
ferent intensity dependence of the absorbance, which for both
intraband and interband regimes is analytically found to follow
a large-intensity asymptotic behavior α(I0) � 1/

√
I0/IS (see

Secs. III and IV). As a result of this difference in asymptotic
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√
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undoped graphene (EF = 0) compared with experiments (symbols)
at two different optical wavelengths: λ = 800 nm (red curves and
symbols, αns = 0.008) and λ = 1550 nm (blue curves and symbols,
αns = 0.004). Experimental results are taken from Refs. [11] (rhom-
bic markers) and [18] (circle markers).

behavior, we argue that experimental data on graphene SA
are much better fitted by the approximate expression α(I0) =
α0/

√
(1 + 3I0/IS). The high-intensity decay of absorption is

thus slower than in common photonic materials, a result that
matches well with available experimental data (see Fig. 10).

In Fig. 7 we compare the calculated saturation intensity
(color plot) to experimental measurements (symbols) for
several optical wavelengths and relaxation times. We find good
agreement with several experimental results by assuming rea-
sonable values for the relaxation times <100 fs reflecting the
different sample qualities, while other experiments can only
be reproduced with high relaxation times >500 fs [11–13,16].
We also note that a nonvanishing background absorption,
which does not saturate within the considered range of illu-
mination intensities, is usually present in the aforementioned
experimental results [see Fig. 10, where we fit experimen-
tal data (symbols) with the predicted analytical expression
for the intensity-dependent absorption coefficient (curves)
α(I0) = αns + α0/

√
(1 + 3I0/IS), including an unsaturated

background absorption term αns]. This effect appears to be
dependent on the number of graphene layers [11] and is found
to vanish for pristine single-layer extended graphene [16].

VII. CONCLUDING REMARKS

In summary, we have developed a nonperturbative and
semianalytical description of both intraband and interband
contributions to saturable absorption in extended graphene by
modeling conduction electrons as 2D massless Dirac fermions
coupled to an external optical field. The Dirac equation
describing the time evolution of these electrons is recast in
the form of generalized Bloch equations, which we solve
semianalytically accounting only for one-photon processes.
Remarkably, the interband contribution presents saturation at
unusually low light intensities when compared with other
materials, or with the intraband saturation. Additionally, we

find a significant dependence of these effects on Fermi energy,
providing an active mechanism of control over saturable
absorption in the carbon layer via electrical doping modu-
lation. Besides, when h̄ω/2EF < 1, we find that multiphoton
processes come into play and extended graphene does not
behave as a saturable absorber. The electron temperature T

does not play a relevant role, unless kBT exceeds the Fermi
energy or the incident photon energy. Nonetheless, T can reach
that regime under intense optical pumping, and therefore, this
is an effect that must be considered when illuminating with
long, intense light pulses.

We attribute the strong saturable absorption in graphene to
its peculiar electronic band structure, and in particular, to the
combination of its linear dispersion relation and the vanishing
of the density of states at the Dirac point. Consequently,
both doping and optical transitions in the presence of strong
optical fields produce large modifications in the populations
of electronic states, thus resulting in substantial variations in
momentum and producing radical changes in the conductivity.
We therefore expect a similarly low threshold for saturable ab-
sorption in other nanoscale materials that present Dirac cones
or other exotic electronic structures characterized by a low
density of electronic states at the Fermi level. Band-structure
engineering is then a direction to explore in nanographenes,
fullerenes, and carbon nanotubes, as well as in other van der
Waals atomic-layer materials and its derivatives.

Interband absorption dominates under the conditions ex-
plored in currently available experiments, which are in good
agreement with our analytical theory. In contrast, intraband
saturation of absorption has not been observed in experiments
due to the competing processes of multiphoton absorption.
In this respect, our nonperturbative semianalytical predictions
and atomistic calculations complement previous perturbative
and fully numerical estimates and constitute a good reference
for future experimental investigations. Indeed, the intraband
saturation intensity scales as the inverse square of the optical
wavelength and thus should become important at terahertz
frequencies, particularly if it is enhanced by localized graphene
plasmons in nanoislands/ribbons [64]. In this respect, while
multiphoton processes can also be enhanced by localized
plasmons [65], we anticipate that in general the nonlinear
resonance shifts and the enhanced near fields in graphene
nanostructures should contribute significantly to reduce the
saturation intensity and enlarge the modulation depth of
SA. A detailed study of plasmon-enhanced SA in graphene
is still needed to explore how far the saturation intensity
can be reduced. Overall, the extraordinarily low intensity
threshold for saturable absorption in graphene, combined with
its electrical tunability, offers great potential for photonic
applications such as mode locking in graphene-clad fibre lasers
and graphene-based random lasers.
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SEV2015-0522) and the European Commission (Graphene
Flagship CNECT-ICT-604391 and FP7-ICT-2013-613024-
GRASP).

125408-9
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