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Many-body effects of Coulomb interaction on Landau levels in graphene

A. A. Sokolik,1,2 A. D. Zabolotskiy,3 and Yu. E. Lozovik1,2,3,*

1Institute for Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow, Russia
2National Research University Higher School of Economics, 109028 Moscow, Russia

3Dukhov Research Institute of Automatics (VNIIA), 127055 Moscow, Russia
(Received 20 December 2016; revised manuscript received 5 February 2017; published 1 March 2017)

In strong magnetic fields, massless electrons in graphene populate relativistic Landau levels with the square-
root dependence of each level energy on its number and magnetic field. Interaction-induced deviations from
this single-particle picture were observed in recent experiments on cyclotron resonance and magneto-Raman
scattering. Previous attempts to calculate such deviations theoretically using the unscreened Coulomb interaction
resulted in overestimated many-body effects. This work presents many-body calculations of cyclotron and
magneto-Raman transitions in single-layer graphene in the presence of Coulomb interaction, which is statically
screened in the random-phase approximation. We take into account self-energy and excitonic effects as well as
Landau level mixing, and achieve good agreement of our results with the experimental data for graphene on
different substrates. The important role of a self-consistent treatment of the screening is found.
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I. INTRODUCTION

Graphene, the monolayer two-dimensional carbon crystal,
grants a possibility to study how a many-body system of
massless Dirac electrons behave in electric and magnetic
fields [1–6]. One of the most striking manifestations of
the “relativistic” nature of graphene is the unconventional
half-integer quantum Hall effect in strong magnetic field [2].
The role of Coulomb interaction in graphene in the quantum
Hall regime is still a debatable and controversial topic [3–26].

Landau levels of electrons in graphene have the nonequidis-
tant energies [3]

E(0)
n = sgn(n)

vF

lH

√
2|n|, n = 0, ± 1, ± 2, . . . , (1)

where vF ≈ 106 m/s is the Fermi velocity and lH = √
c/|e|B

is the magnetic length (hereafter we set h̄ ≡ 1). Contrary
to the case of a nonrelativistic electron gas, the energies
of cyclotron transitions between Landau levels in graphene
are not protected by Kohn’s theorem [27] against interaction
induced corrections, as both predicted theoretically [7–15] and
reported in experimental works [17–26].

The following major signatures of Coulomb many-body
effects are observed: (a) the energy of 0 → 1 or −1 → 0
(referred to as T1) cyclotron inter-Landau level transitions
and that of −1 → 2 or −2 → 1 transitions (T2) have the
ratio deviating from the single-particle prediction 1/(1 + √

2)
[20–22]; (b) the renormalized Fermi velocities v∗

F which
characterize the energies of symmetric interband −n → n

transitions (referred to as Ln) measured in magneto-Raman
scattering [25,26] demonstrate significant dependence on
magnetic field and on a substrate dielectric constant.

The existing theoretical calculations [7–13,26] of inter-
Landau level transitions in graphene were carried out in
the first order in Coulomb interaction, which implies use of
the unscreened Coulomb interaction in all matrix elements
[28]. This results in the overestimation of many-body ef-
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fects in comparison with the experimental data, as noted in
Refs. [11,12,18,20,21,26].

In this paper, we calculate the energies of the cyclotron
and magneto-Raman transitions between Landau levels in
graphene using the Coulomb interaction which is screened
in the random-phase approximation in the static limit. We
include exchange self-energy and excitonic contributions to the
transition energies, as well as the Landau level mixing in the
excitonic channel, and fit the experimental data [20,21,25,26]
with our calculations. Using the bare Fermi velocity vF =
0.85 × 106 m/s and realistic dielectric constants, we have
achieved much better agreement with both the magneto-
Raman [25,26] and cyclotron resonance [20,21] experiments
than in previous attempts of other authors, which had dealt
with the unscreened interaction [11,12,20,26]. Moreover, we
find the important role of a self-consistent suppression of
the screening due to an upward renormalization of transition
energies.

The paper is organized as follows. Our theoretical model is
introduced in Sec. II. The results of calculations are presented
and the experimental data are fitted in Sec. III. Finally, the
conclusions are made in Sec. IV.

II. THEORETICAL MODEL

A. Exchange self-energies

Most theoretical models of Coulomb many-body effects in
graphene [7–15,26] take into account three major contributions
to the inter-Landau level transition energies: single-particle
exchange self-energies of electron and hole, an excitonic shift
due to electron-hole Coulomb attraction (also referred to as
a vertex correction), and an electron-hole exchange energy.
The latter contribution is principal in calculating dispersions
of collective magnetoplasmon excitations [3,7–9,29–34], but
vanishes for optically excited nearly zero-momentum electron-
hole pairs, therefore we will not include it in our calculations.

Renormalization of single-particle energy levels is conven-
tionally treated using the Hartree-Fock approximation and the
unscreened Coulomb interaction. Omitting the Hartree term,
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which affects only electrostatics of a graphene layer, we get
the single-particle energy levels

E(HF)
n = E(0)

n + �(exch)
n (2)

shifted due to the Fock exchange self-energies (see Refs. [7–
9,26] for the details of calculations)

�(exch)
n = −

∑
n′k′

fn′ 〈ψnk,ψn′k′ |v|ψnk,ψn′k′ 〉. (3)

Here fn′ is the occupation number of the n′th Landau level
(0 � fn′ � 1), 〈ψnk,ψn′k′ |v|ψnk,ψn′k′ 〉 is the exchange matrix
element of the Coulomb interaction v; the latter has the form
v(r) = e2/ε|r| in a surrounding medium with the dielectric
constant ε. Each single-particle state ψnk is specified by
a Landau level number n and a guiding center index k =
0,1,2, . . ., when we work in the symmetric gauge.

As known [7–12,14], the self-energies (3) diverge logarith-
mically when calculating the sum over the filled Landau levels
of negative energies, so the cutoff n′ � −nc is required in
order to obtain finite results. The value of nc can be estimated
by equating the concentration gnc/2πl2

H of electrons on nc

Landau levels (with taking into account the fourfold spin and
valley degeneracy g = 4) to that in the filled valence band of
intrinsic graphene, 2/S0:

nc = πl2
H

S0
≈ 39 600

B [T]
. (4)

Here S0 = a2
√

3/2 is the area of graphene elementary cell,
a ≈ 2.46 Å. Separating the part of (3) which diverges in the
nc → ∞ limit, we get

�(exch)
n = e2

εlH

{
−

√
nc

2
+ sgn(n)

√|n|
4
√

2
ln

nc

|n|
}

+ O(1). (5)

In the weak magnetic field limit B → 0, (5) can be
tracked to the well-known form of electron self-energy in
graphene in the absence of magnetic field. The first term of (5)
equals to the large negative constant part of the Hartree-Fock
self-energy −e2pc/2ε [9,35,36], where pc = √

2π/S0 is the
cutoff momentum. The second term describes the logarithmic
renormalization of the Fermi velocity [1,37]

v∗
F = vF + e2

4ε
ln

pc

pF
, (6)

where pF is the Fermi momentum. Thus the exchange self-
energies with and without magnetic field have the same cutoff
dependencies up to the linear and logarithmic levels. The same
result was obtained in Ref. [13] by a different method.

B. Excitonic effects

An excitonic energy shift due to Coulomb attraction
between an electron on the n1th Landau level and a hole on
the n2th level is often calculated in the first order in Coulomb
interaction [7,9,11,12,26]:

�E(exc)
n1n2

= −〈�n1n2 |v|�n1n2〉, (7)

where |�n1n2〉 is the noninteracting electron-hole (or magne-
toexcitonic) state at zero momentum.

Equation (7) is the simplification of the more general
picture, where the mixing of different n2 → n1 transitions
should occur in the excitonic ladder [7,8,33]. To take it into
account, one must consider the Hamiltonian in the basis of
noninteracting electron-hole states with the matrix elements
given by

〈�n′
1n

′
2
|H |�n1n2〉 = δn1n

′
1
δn2n

′
2
(En1 − En2 )

−〈�n′
1n

′
2
|v|�n1n2〉, (8)

and find its eigenvalues. Here En are the single-particle ener-
gies which are already renormalized by Coulomb interaction.

Our estimates show that it is sufficient to consider only the
mixing of L1 and L2 magneto-Raman transitions or T1 and T2

cyclotron transitions, and its major effect is a slight increase
of the energy distance between these transition lines due to an
interlevel repulsion. The mixing with higher lying transitions
has an overall weak effect in the presence of the screening
(although it was estimated to be significant in the absence of
the screening at ε ∼ 1 [33]).

C. Screening of Coulomb interaction

Polarization of the electron gas in graphene, which can be
described in terms of virtual electron-hole pairs, leads to the
screening of Coulomb interaction. The screened interaction in
the static limit ω → 0 is

V (q) = v(q)

1 − v(q)
(q,0)
, (9)

where v(q) = 2πe2/εq is the two-dimensional Fourier trans-
form of the unscreened interaction, and 
(q,ω) is the
irreducible polarizability. In the random-phase approximation,


(q,0) = g
∑
nn′

Fnn′(q)
fn − fn′

E
(0)
n − E

(0)
n′

, (10)

where Fnn′(q) are the Landau level form factors (see the details
of polarizability calculations in Refs. [3,32–34,38,39]).

Introducing the positively valued dimensionless polariz-
ability 
̃(qlH ) = −(2πvFlH /g)
(q,0), we get Eq. (9) in the
form

V (q) = v(q)

1 + grs
̃(qlH )/qlH
, (11)

where

rs = e2

εvF
. (12)

The dimensionless parameter rs is conventionally used to
characterize a relative strength of Coulomb interaction, but
in our approach it appears only as a multiplier of 
̃ in the
denominator of (11) and thus characterizes the relative strength
of the screening. The case of unscreened Coulomb interaction
corresponds to the zeroth order in this parameter, rs = 0.

The numerically calculated polarizabilities are shown in
Fig. 1 at different integer fillings ν of Landau levels (ν = 0
in undoped graphene and ν = 4n + 2 when the nth highest
occupied level is completely filled). The functions 
̃(qlH )
oscillate at qlH ∼ 1 reflecting the nodal structure of Landau
level wave functions and tend to the polarizability [1] of
undoped graphene without magnetic field 
̃ = πqlH /8 at

125402-2



MANY-BODY EFFECTS OF COULOMB INTERACTION ON . . . PHYSICAL REVIEW B 95, 125402 (2017)

FIG. 1. Dimensionless static polarizability of graphene in mag-
netic field 
̃ calculated in the random-phase approximation at zero
temperature as functions of the dimensionless momentum qlH . The
filling factors ν = 2,6,10,14 correspond to complete fillings of, re-
spectively, n = 0,1,2,3 Landau levels. For comparison, polarizability
of undoped graphene without magnetic field 
̃ = πqlH /8 is shown
by the dotted line.

qlH � 1 (see also analysis in [34,39]). Due to the electron-hole
symmetry of the Dirac model, 
̃ does not depend on the sign
of ν. Remarkably, the same symmetry makes the polarizability
independent on the filling of the zeroth Landau level, thus 
̃

is the same for ν = 0 and ν = ±2, if we neglect intralevel
electron transitions.

To improve calculations of the transition energies with
taking into account the screening, we replace v with (11) in
the matrix elements of Coulomb interaction when we calculate
the electron self-energies (3) and treat excitonic effects (8):

〈�n′
1n

′
2
|H |�n1n2〉 = δn1n

′
1
δn2n

′
2
(En1 − En2 )

−〈�n′
1n

′
2
|V |�n1n2〉, (13)

En = E(0)
n −

∑
n′k′

n′ � −nc

fn′ 〈ψnk,ψn′k′ |V |ψnk,ψn′k′ 〉. (14)

Equations (10)–(14) compose the starting point of our numer-
ical calculations.

III. CALCULATION RESULTS AND COMPARISON
WITH EXPERIMENTS

A. Magneto-Raman transitions

The recent experiments [25,26] on magneto-Raman scatter-
ing showing clear signs of Coulomb many-body effects were
carried out with undoped (ν = 0) graphene on three types of
substrate: (1) suspended graphene, (2) graphene encapsulated
in hexagonal boron nitride (hBN), and (3) graphene on
graphite. In each sample, the energies E−1→1 and E−2→2

of two transitions L1 and L2 were measured as functions
of magnetic field in the range 2–25 T and then converted
to the renormalized Fermi velocities v∗

F. The latter describe
fictitious single-particle Landau levels (1) having the same
energy difference: 2

√
2nv∗

F/lH = E−n→n. The experimental
points v∗

F(B) are reproduced in Fig. 2.
Our many-body calculations of v∗

F require the bare Fermi
velocity vF and the dielectric constant ε as input parameters.
Otherwise, these quantities can be obtained by least-square
fitting of experimental points. Generally, the best approxima-
tions to the experimental data can be achieved by independent
adjustment of vF and ε for each of six transition lines in Fig. 2.
We use a more realistic fitting procedure, adjusting separate
values of ε for the pair of transitions L1,2 in each graphene
sample as well as a common vF for all samples.

Our attempts to fit the experimental data in different
approximations (see below) show that the optimal value of
common vF is about 0.85 × 106 m/s. Smaller or larger values
of vF do not allow us to reproduce the slopes of experimental
dependencies of v∗

F on ln
√

B/B0 accurately enough for all
samples simultaneously. Assuming this vF, then we adjust
the effective dielectric constant ε for each graphene sample
in order to achieve the best least-square fit for its pair L1,2 of
transitions. In agreement with the experiment, our calculations
show that v∗

F for L2 is always higher than for L1 in the
same sample, and dependencies of v∗

F on ln
√

B/B0 are
approximately linear.

First, we make the adjustment of ε using the unscreened
interaction, with the results shown in Fig. 2 (solid lines) and
Table I (first column). The obtained ε turned out to be too
large in comparison with the actual dielectric constants of
suspended graphene (ε ≈ 1) and graphene in hBN (ε ≈ 4.5)
because they need to mimic the screening caused by both
surrounding medium and graphene electrons. Additionally, the
distance between the L1 and L2 lines is clearly insufficient
in this approximation. The same conclusions were made in
Ref. [26], where ε was adjusted to approximate the slopes of
experimental dependencies of v∗

F on ln
√

B/B0 and additional

TABLE I. Dielectric constants of surrounding media, obtained by least-square fittings of magneto-Raman experimental data from Ref. [26]
for each graphene sample at vF = 0.85 × 106 m/s. The fittings are carried out in four different theoretical approximations (see the text), and
the corresponding screening parameters rs,n for each transition Ln, which are used in these approximations, are shown.

Unscreened Screened Self-consistent Self-consistent
interaction interaction screening screening

Sample rs,n = 0 rs,n = e2/εvF rs,n = e2/ε〈v∗
F,n〉 rs,n = e2/εv∗

F,n(B)

Suspended graphene 4.88 0.90 2.20 2.22
Graphene in hBN 7.41 3.41 4.47 4.48
Graphene on graphite 11.16 7.14 7.87 7.88
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FIG. 2. Renormalized Fermi velocities v∗
F as functions of mag-

netic field B (the reference field strength is B0 = 1 T). Diamonds and
triangles: experimental points from Ref. [26] for L1 and L2 transitions
in three graphene samples. Solid and dotted lines: calculations with,
respectively, unscreened and screened Coulomb interactions (see their
parameters in Table I) for the same pair of transitions in each sample.

fictitious εδv was needed to reproduce the interline distance in
each sample.

Then we use the statically screened interaction and obtain
the fitting results shown in Fig. 2 (dotted lines) and Table I
(second column). Although we still have insufficient interline
distances, the resulting ε are no longer overestimated with
respect to the actual ones, but are even underestimated (for
example, ε is even unphysically smaller than 1 in the case
of suspended graphene). A possible reason is overestimation
of the screening in the static limit in comparison with a full
dynamical screening.

In order to improve agreement between theory and ex-
periment, we can make the screening approximately “self-
consistent.” Indeed, if the renormalized Fermi velocity v∗

F ≈
(1.05–1.4) × 106 m/s, which describes observable energies
of inter-Landau level transitions, is 25%–65% higher than
the bare velocity vF = 0.85 × 106 m/s, then the polarizability

(q,0) should correspondingly be renormalized to lower val-
ues due to increased energy denominators in (10). Since a full
self-consistent treatment of renormalized transition energies
in the polarizability would be computationally demanding
and beyond the accuracy level of the static random-phase
approximation, we resort to a simplified semiphenomenolog-
ical approach. We still use the same dimensionless 
̃(qlH )
(see Fig. 1), which describes qualitative features of the
screening, but change the value of the parameter rs, which
determines quantitatively the overall screening strength. For
each transition Ln in each sample, we substitute an averaged
(over the magnetic field range) value of experimental v∗

F
instead of the bare vF into the formula (12): rs,n = e2/ε〈v∗

F,n〉.
This replacement reduces the resulting rs,n and effectively
weakens the screening.

FIG. 3. The same as Fig. 2, but solid and dotted lines present
calculations with a “self-consistent” screening using, respectively,
constant and varying rs,n (see the calculation parameters in Table I).

The results of this approach are shown in Fig. 3 (solid
lines) and Table I (third column). Increased interline distances
provide much better agreement with the experimental data,
which indicates the importance of a self-consistent treatment
of the screening.

We can improve agreement with the experiment even
further if take into account the significant change of v∗

F,n

in the experimental range of magnetic field, which is most

FIG. 4. Energies of T1 and T2 cyclotron transitions as functions
of the square root of magnetic field (in the units of B0 = 1 T).
Diamonds: the experimental data [20,21]; solid lines: the linear fits to
the experimental points (see Table II, first column); dotted lines: the
best theoretical fit with the self-consistent screening (see Table II, last
column). Dashed line: the T1 linear fit, multiplied by 1 + √

2, which
must pass through the T2 points in the absence of many-body effects.
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TABLE II. First line: optimal dielectric constants ε of surrounding media, obtained by least-square fittings of the cyclotron resonance
experimental data from Refs. [20,21] at vF = 0.85 × 106 m/s in different approximations. Second and third lines: the renormalized Fermi
velocities v∗

F, which are extracted from the experimental data and calculated at optimal ε on average over the experimental magnetic field range.

Unscreened Screened Self-consistent
Experiment interaction interaction screening

[20,21] rs,n = 0 rs,n = e2/εvF rs,n = e2/ε〈v∗
F(Tn)〉

ε 6.84 2.81 3.86
v∗

F(T1), 106 m/s 1.119 1.136 1.134 1.131
v∗

F(T2), 106 m/s 1.186 1.165 1.168 1.171

noticeable in the case of suspended graphene. In this fourth
approximation, we assume rs,n = e2/εv∗

F,n(B), where v∗
F,n(B)

is the linear fit to experimental data for the Ln transition.
The results, shown in Fig. 3 (dotted lines) and Table I (fourth
column), demonstrate the best agreement with the experiment
both in line slopes and interline distances.

B. Cyclotron transitions

Experimental data [20,21] on the energies of cyclotron T1

and T2 transitions in graphene are depicted in Fig. 4 together
with their linear fits E ∝ √

B. In these experiments, graphene
is placed onto a SiO2 substrate and is electrostatically doped
up to a complete filling of the n = 0 (ν = 2) or n = −1
(ν = −2) Landau level. The many-body effects are seen in
deviations of the T2 energies from the T1 ones multiplied by
1 + √

2 (dashed line in Fig. 4).
Our fits of the whole set of experimental points obtained

by adjustment of ε at fixed vF = 0.85 × 106 m/s in different
approximations are described in Table II. In the case of the
unscreened interaction, we get, as before, overestimated ε

and insufficient interline distance (i.e., the difference between
v∗

F for T1 and T2 is smaller than in the experiment). Taking
into account the screening, we obtain much lower ε and
still insufficient interline distance. Finally, self-consistent
treatment of the screening improves agreement with the
experiments, as shown by the dotted lines in Fig. 4.

IV. CONCLUSIONS

We present a theoretical study of many-body effects of
Coulomb interaction in graphene in strong magnetic field.
Calculating the energies of the experimentally observable
inter-Landau level transitions, we consider the single-particle
self-energies, the excitonic effects, and the Landau level
mixing. Moreover, this work presents a systematic calculation
which takes into account the screening of the Coulomb inter-
action and is aimed on detailed comparison with experiments.

The analysis of the experimental data [25,26] on magneto-
Raman L1 and L2 transitions in graphene on three different
substrates has resulted in the following conclusions:

(a) The optimal value of the bare Fermi velocity is
about vF = 0.85 × 106 m/s, in agreement with the estimates
(0.8–0.9) × 106 m/s of this quantity based on analysis of
recent experimental data [19,26,40,41].

(b) Calculations with the unscreened Coulomb interaction
require too large dielectric constants ε to obtain the best
least-square fits of experimental points and cannot accurately
reproduce the distances between L1 and L2 spectral lines.

(c) Static screening of the interaction yields too low values
of ε and also underestimates the interline distances.

(d) Self-consistent treatment of the screening, which ap-
proximately models renormalization of transition energies in
electron polarizability [42], greatly improves agreement of
calculations with the experiment. The best fits are achieved
when ε ≈ 2.2 for suspended graphene, ε ≈ 4.5 for graphene
in hBN, and ε ≈ 8 for graphene on graphite.

The similar conclusions are made from analysis of the
experiments [20,21] on cyclotron T1 and T2 transitions in
graphene on a SiO2 substrate. Our best theoretical fit is
achieved with the self-consistent screening at vF = 0.85 ×
106 m/s and ε ≈ 3.9.

To conclude, we analyze the experimental data on many-
body signatures in inter-Landau level transitions in graphene
in strong magnetic fields. We show that taking into account
the self-consistent screening of Coulomb interaction plays
the key role in achieving agreement between the theory and
experiments.

Our approach will be further developed by considering
dynamical effects in the interaction screening in a subsequent
work. It is also interesting to analyze possible signatures of
Coulomb many-body effects observed in graphene on SiC [16],
hBN [23], GaAs, and glass [24] substrates in strong magnetic
fields.
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