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Quantum properties of the radiation emitted by a conductor in the Coulomb blockade regime
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(Received 17 December 2015; revised manuscript received 23 December 2016; published 17 March 2017)

We present an input-output formalism describing a tunnel junction strongly coupled to its electromagnetic
environment. We exploit it in order to investigate the dynamics of the radiation being emitted and scattered by the
junction. We find that the nonlinearity imprinted in the electronic transport by a properly designed environment
generates strongly squeezed radiation. Our results show that the interaction between a quantum conductor and
electromagnetic fields can be exploited as a resource to design simple sources of nonclassical radiation.
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I. INTRODUCTION

Circuit quantum electrodynamics describes at a quantum
level the interaction between electromagnetic fields and
artificial atoms implemented by quantum conductors such
as Josephson junctions [1] or quantum dots [2–4]. This new
architecture has triggered a number of pioneering experiments
[5–8]. However, quantum conductors can also be continuously
driven out of equilibrium by dc biases, giving rise to situations
having no evident counterpart in atomic physics. Recent
predictions and experiments relevant to these situations already
point to interesting quantum electrodynamics effects. To
cite a few, dc driven quantum conductors can be used as
stochastic amplifying media giving rise to lasing (or masing)
transitions in the field stored in rf cavities [9–11], as sources
of sub-Poissonian [12–16] and squeezed radiation [17–26].
Conversely, nonclassical features of an incoming field may be
revealed in the I (V ) curves of the conductor [27].

The common underlying mechanism for these effects is the
probabilistic transfer of discrete charge carriers through the
quantum conductors. The resulting current fluctuations excite
the surrounding electromagnetic environment. This coupling
not only results in photon emission, but also modifies the
transport properties of the conductor itself [28–37], an effect
known as dynamical Coulomb blockade (DCB) [38]. By
increasing the impedance of the electromagnetic environment
to values comparable to the resistance quantum RK = h/e2 �
25.9 k�, the resulting strong coupling suppresses the transport
at low voltage and low temperature for a normal conductor
[28–30,35–37].

So far most DCB studies focused on the conductor’s
transport properties at low frequencies [39,40], or at higher
frequencies [41–43] but without describing photon radiation.
Recent progress in microwave techniques opens new perspec-
tives for investigating the quantum properties of the emitted
radiation [11,23,34,44,45]. Such radiative properties lie out of
the scope of the standard DCB approach which focus primarily
on electrons. Yet one may expect the emission of nonclassical
radiation in a strong coupling regime as DCB generally induces
important nonlinearities. In the case of a Josephson junction,
it has indeed been predicted [46,47] that the emitted photons
are strongly antibunched.

Focusing on photons rather than on electronic variables
is also a well-suited point of view if one is interested in

what is actually measured in a quantum circuit experiment
at GHz frequencies. The classical and quantum back actions
of the measurement channels are thus treated equally with
the system. The question of modeling measurement was
initially addressed by Lesovik and Loosen [48,49] by coupling
a quantum conductor to an LC resonator representing the
measurement apparatus. The general point of view considered
here is that the system is ultimately connected to a transmission
line carrying the photon radiation and that the measurements
are realized on these output photons. Recently, the standard
input-output theory of quantum optics [50,51] has been
adapted to describe the field response of quantum conductors
[20–25].

In this paper, we consider the case of a normal tunnel
junction arbitrarily coupled to radiation. As a first step, we
reconsider the model of Lesovik and Loosen and extend it to
include measurement back action, i.e., DCB induced by the LC

resonator on the quantum conductor. We find that the energy
transfer between the conductor and the resonator conserves
the same structure as in the absence of DCB, a combination
of emission and absorption noises, but with current correlators
simply dressed by DCB inelastic processes. Next, we develop a
Hamiltonian approach which considers not only the electronic
transport through the conductor but also the associated
radiative dynamics via an input-output description [50,51].
Considering the Lesovik and Loosen geometry complemented
by a transmission line, we find that the energy transfer can be
read out directly in the power of the output field. Finally, we
exploit the Hamiltonian approach and propose a well-suited
circuit geometry [Fig. 1(c)] in which a normal tunnel junction
in the strong DCB regime can efficiently squeeze radiation.
Squeezing in this scheme is induced by the dissipative bath
provided by the tunnel junction [52,53], together with direct
parametric down-conversion resulting from the ac modulation
of the field reflection coefficient.

The outline of the paper is the following: in Sec. II, we
first discuss the DCB effect of a high-impedance LC circuit
on a tunnel junction, and evaluate the power emitted in the LC

circuit. In Sec. III, in order to account for energy dissipation in
the system, we add a coupling to a dissipation line and set the
stage for an input-output description of the junction-resonator
circuit. In Sec. IV, extending the input-output analysis to a
particular circuit where the tunnel junction is both strongly
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FIG. 1. Schematics of the considered circuits: (a) A tunnel
junction with quasiparticle current Îqp is embedded in an LC circuit
described by conjugated fields at the depicted node: the inductive
magnetic flux �, and the capacitive influence charge Q. (b) A
transmission line in series with the inductor damps the circuit by
radiating outgoing modes aout, which can be detected with a matched
detection chain (not shown). (c) A high resistance (R > RK) RC

circuit is connected to the junction. The resulting quantum flux
fluctuations �B (t) are responsible for strong dynamical Coulomb
blockade modifying the quasiparticle current Îqp, which can be
efficiently collected in a matched detection band of the transmission
line.

coupled to a DCB resistive circuit and weakly coupled to a
transmission line for readout via a LC resonator, we show
how strong squeezing emerges under a parametric ac driving.

II. POWER EMITTED WITH STANDARD DCB

As discussed in the Introduction, the measurement of finite-
frequency current fluctuation can be accounted for by the weak
coupling to a LC resonator modeling the detector [48,49]. The
power emitted by the quantum conductor towards the detector
then accurately describes finite-frequency noise measurement.
For a high-impedance and therefore strongly coupled LC

resonator, the measurement back action must be included in
the formalism. We therefore consider a tunnel junction element
shunted by an LC circuit of resonant frequency ω0 = 1/

√
LC

and characteristic impedance ZLC = √
L/C. We treat it in the

standard DCB formulation [38] assuming the LC detector to be
always in a thermal state. Describing the relaxation dynamics
of the detector will be the subject of the next section.

The electrodynamic coupling gives rise to inelastic tun-
neling events, modifying the charge transfer dynamics of
the junction. This physics is described by the Hamiltonian
H0 = Hqp + HT + HLC , with

Hqp =
∑

l

εlc
†
l cl +

∑
r

εrc
†
r cr (1)

describing the left and right electrodes of the junction,

HLC = Q2

2C
+ �2

2L
(2)

the energy stored in the LC circuit, and HT = T + T † with
T = ∑

l,r τl,r c
†
l cre

ie�/h̄ the tunnel coupling which simultane-
ously transfers quasiparticles from the right to the left electrode
with amplitude τl,r , while displacing the influence charge of
the capacitance by the electron charge

eie�/h̄Qe−ie�/h̄ = Q − e, (3)

corresponding to the node commutation relation

[�,Q] = ih̄. (4)

HT is the minimal coupling of the junction to its circuit,
neglecting the intrinsic electrodynamics of the electrodes
[15,54,55] beyond the mean-field approximation encompassed
in the shunting capacitance C and the inductance L.

From this Hamiltonian we obtain the quasiparticle current

Îqp = d

(
e
∑

l

(c†l cl)

)/
dt = ie

h̄
(T † − T ), (5)

the displacement current

ÎD = dQ/dt = ie

h̄
(T † − T ) − �/L, (6)

and the inductive current ÎL = �/L which correctly compen-
sate at the circuit node Îqp = ÎD + ÎL as required by gauge
invariance. We now consider the radiative properties in the
presence of both dc and ac bias, by evaluating the power
emitted in the LC circuit

PLC = dHLC/dt = ÎqpQ + QÎqp

2C
(7)

and computing its expectation value to lowest order in the
tunnel coupling HT . To do so, we take the uncoupled boundary
condition for the density matrix ρ = ρqp ⊗ ρLC . The elec-
trodes are initially at thermal equilibrium ρqp = e−βHqp/Zqp.
The LC circuit is set in a displaced thermal state [56,57]

ρLC = D[γ ]e−βHLC /ZLCD†[γ ], (8)

where the displacement vector γ = ieVac

2rh̄ω0
, with r =√

πe2ZLC/h, gives the deterministic voltage

〈V (t)〉 = T r(ρLCd�/dt) = Vac cos(ω0t) + Vdc. (9)

The average power reads [58]:

〈PLC(t)〉 = [1 + nB(h̄ω0)]SIqp (ω0,t) − nB(h̄ω0)SIqp
(−ω0,t)

2C

− 〈Îqp(t)〉Vac cos(ω0t), (10)

where nB(h̄ω0) is the bosonic thermal population of the LC

mode,

SIqp (ω,t) =
∫

dτ e−iωτ 〈Îqp(t + τ )Îqp(t)〉 (11)

is the power spectral density of quasiparticle current fluc-
tuations [57] (emission noise being here at positive fre-
quency), and 〈Îqp(t)〉 is the average quasiparticle current. In
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this expression both SIqp (ω0,t) and 〈Iqp(t)〉 have an explicit
time dependence due to the breaking of time-translational
invariance by the ac bias.

The first term in Eq. (10) describes the power being emitted
(absorbed) by the junction via its emission(absorption) current
fluctuations. We recover the same structure as for a weakly
coupled LC detector in the absence of ac driving [48,49],
the important difference being that the tunneling dynamics
encompassed in SIqp (ω0,t) take into account both DCB and
photon-assisted tunneling effects. The second term describes
the Joule power dissipated in the junction via its mean current
response in phase with the ac excitation. Indeed, computing the
power injected in the electrodes Pqp = dHqp/dt [58] confirms
that its average value is equal to the electrical power delivered
by the dc source, minus that carried away by the LC circuit
which, here, acts both as a power source and sink:

〈Pqp(t)〉 = 〈Îqp(t)〉Vdc − 〈PLC(t)〉. (12)

This perturbative approach, valid in the high tunneling resis-
tance limit, considers flux (voltage) fluctuations arising only
from the external circuit dynamics. Moreover, it implicitly
assumes the presence of additional mechanisms not specified
in the Hamiltonian H0, restoring the initial state of the full
system in between every tunneling event. In the following we
explicitly consider such mechanism.

III. CIRCUIT MODEL FOR DISSIPATION

We now go beyond the standard DCB approach and include
a dissipative channel in the model [see Fig. 1(b)] by adding
a semi-infinite transmission line [50,59] characterized by the
impedance Z�. This not only provides (i) a precise mechanism
for the damping of the LC circuit, but also (ii) a way to compute
the properties of the radiation emitted by the junction into a
linear detection circuit using an input-output approach. Our
analysis thus extends previous works [20,26] by considering
both quasiparticles and strong (DCB) back action. We find, in
particular, that the standard DCB formulation used to describe
the circuit of Fig. 1(a) is justified in the limit case where the
LC resonator leaks photons in the transmission line much
faster than it exchanges photons with the tunnel junction, so
that a separation of time scales occurs. This corresponds to
an impedance mismatch to the readout circuit RT � Z2

LC/Z�,
where RT denotes the junction’s tunnel resistance and Z� =√

�/c the transmission line characteristic impedance, with
� and c standing for the lineic inductance and capacitance,
respectively.

The energy stored in the LC mode now reads

HLC = Q2

2C
+ (� − �A)2

2L
. (13)

The dynamics of the transmission line is described by the
Hamiltonian [50]:

Hline =
∫ +∞

0
dx

[
1

2�

(
∂�line(x)

∂x

)2

+ qline(x)2

2c

]
, (14)

where we introduced the conjugated variables �line(x) and
qline(x) describing the flux and charge density in the line,
x being the position along the line. The bosonic operators

describing the input ain,ω and output aout,ω fields enter the
mode decomposition of �line,

�line(x) =
√

h̄Z�

8π2

∫ +∞

0

dω√
ω

[ain,ωe−ikx + aout,ωeikx + H.c.].

(15)

The input-output theory is obtained by considering the time-
evolution equations in the interaction representation and
imposing the coupling between the line and the LC oscillator
via �A ≡ �line(0).

In the Heisenberg picture, the equations of motion for
the LC circuit variables are ∂t� = ∂QH = Q/C and ∂tQ =
−∂�H . Combined, they couple the fields of the line, the flux
of the LC circuit,

C∂2
t � = �A − �

L
+ Î H

qp , (16)

and the current operator Î H
qp = eiHt Îqpe

−iH t defined in Eq. (5)
in the Heisenberg representation. No charge can accumulate
on the node A, and we obtain a second equation

1

�

∂�line(0)

∂x
= �A − �

L
, (17)

from ∂�A
H = 0. In a second step, the current operator is

expanded in the linear response regime

Î H
qp (t) = Îqp(t) + i

h̄

∫ t

−∞
dt ′ [HT (t ′),Îqp(t)], (18)

where Îqp(t) denotes the current evolved with the Hamiltonian
unperturbed by HT . Solving for Eqs. (16) and (17) in frequency
domain, one arrives at

aout,ω = ∗(ω)

(ω)
ain,ω − iω2

0

√
2Z�

h̄ω

ÎH
qp (ω)

(ω)
, (19)

with (ω) = ω2 − ω2
0 + iωκ . κ = Z�

L
is the LC resonator

damping rate due to the transmission line. The first term
corresponds to the input field reflected by the resonator with
a phase shift (time delay). The second term is the field
emitted by the tunnel junction itself and carrying current noise
fluctuations. As such, Eq. (19) does not fully solve the circuit
dynamics since the output field still enters the current Î H

qp in
the flux � dressing the tunneling operator T , calling for a
self-consistent solution.

However, writing the rescaled flux �̃(ω) =√
2ω/(h̄Z�ω

4
0)�(ω) as

�̃(ω) = −
2ain,ω + (

i
ω

+ 1
κ

)√ 2ωZ�

h̄
Î H

qp (ω)

(ω)
, (20)

we find that the flux fluctuations at frequency ω0 arising
from the second term, which calls for the self-consistency,
are negligible in the case of strong impedance mismatch

SIqp (ω0)L2ω0

h̄Z�

∼ Z2
LC

RT Z�

 1. (21)

This can also be formulated in the time domain by inspecting
the dynamics of the LC resonator: photons will leak much
faster to the transmission line rather than to the tunnel
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junction [25,27], when κ � (ZLC/h̄)[SIqp (−ω0) − SIqp (ω0)] ∼
(ZLC/RT ) ω0, yielding the same small parameter as Eq. (21).
For circuits having this separation of time scales, the ap-
proximation Î H

qp = 0 in Eq. (20) then reproduces standard
DCB expressions [37,38] (see also Appendix A) for phase
fluctuations across the tunnel junction characterized by the
impedance seen by the junction Re Zt (ω) = Z�ω

4
0/|(ω)|2.

The resulting flux � is finally substituted in the current Î H
qp in

Eq. (19), enabling the calculation of spectral properties of the
emitted light even for very strong DCB back action. The net
power carried out by the transmission line reads

PTL(t) = 〈A†
out(t)Aout(t)〉 − 〈A†

in(t)Ain(t)〉, (22)

where Ain/out(t) = ∫ +∞
0

dω
2π

√
h̄ωain/out,ωe−iωt . The details of

its calculation are given in Appendix A taking the incoming
field to be described by a displaced thermal state.

As a result, in the high quality factor limit ω0 � κ , the
expression of PTL(t) agrees precisely with the mean power
〈PLC(t)〉 derived in the previous section [see Eq. (10)] with
the same form as in the absence of DCB. It is worth noting
that the products of the two terms in Eq. (19) mix the field
and the junction dynamics giving rise to the Bose factors in
Eq. (10), which vanish at low temperature h̄ω0 � kBT , and to
the Joule power dissipated in the junction.

IV. SQUEEZED RADIATION

We continue with the Hamiltonian approach and input-
output framework to analyze a specific circuit, illustrated
in Fig. 1(c), for which we will demonstrate that efficient
squeezing in the output radiation can be realized.

As strong DCB is responsible for nonlinearities in transport,
it is expected to also favor squeezing in the field emitted by
the tunnel junction. The circuit of Fig. 1(b) is, however, not
adapted to this effect. For strong impedance mismatch, the
incoming mode is almost perfectly reflected by the junction,
polluting the outgoing field with unsqueezed fluctuations. The
impedance-matched junction [23,26], on the other hand, shunts
environment fluctuations, thereby reducing nonlinearities and
squeezing efficiency. We thus consider Fig. 1(c) where DCB
and readout are spatially separated: on one side, the tunnel
junction is coupled to a resistive circuit producing strong DCB;
on the other side, a weakly coupled (i.e., low impedance)
resonant circuit is used to probe the radiation emitted by the
junction, providing a good impedance matching to the junction
over a narrow bandwidth. In the following, we consider a
situation where the classical bias at the junction consists in
a dc voltage superimposed to an ac modulation at twice the
resonator’s frequency: Vcl(t) = Vdc + Vac cos 2ω0t .

A. Noise and linear response

We assume the following hierarchy of resistances RT �
R � RK � Z�,ZLC . The high resistance R imposes strong
fluctuations for �B at the tunnel junction. An even larger RT

is necessary to avoid shunting those fluctuations. In contrast
to that, the resonant circuit produces weak flux fluctuations
giving a negligible contribution to DCB effects and the flux
� can be expanded to second order yielding the inductive

coupling

H � Hu − � Îqp − (e�/h̄)2Hu
T /2 (23)

in the Hamiltonian in which the tunnel coupling T u is dressed
by the flux �B only,

Hu
T = T u + T u†, T u =

∑
l,r

τl,r c
†
l cre

−ie�B/h̄. (24)

Hu governs the uncoupled evolutions of the DCB tunnel
junction and weakly damped LC resonator. Hence, dynamics
of the tunnel junction and DCB resistive circuit have been
isolated, only weakly probed by the readout circuit.

The input-output theory is constructed similarly to
Ref. [26]: time evolution is still described by Eqs. (16) and
(17); the current operator is expanded in the flux � and in the
linear response regime (tunnel limit) with Hamiltonian (23),

Î H
qp (t) = Îqp(t) − i

h̄

∫ t

−∞
dt ′ �(t ′)[Îqp(t ′),Îqp(t)]

+ i

h̄
�(t)

∫ t

−∞
dt ′

(e

h̄

)2
[Hu

T (t ′),Hu
T (t)]. (25)

This double expansion is in fact justified by two small
parameters: ZLC/RK  1 ensures weak flux fluctuations for
� and RK/RT  1 controls the linear regime for the tunneling
current. Equation (25) can be rewritten in a more suggestive
linear response form

Î H
qp (ω) = Îqp(ω) −

∑
n

Yn(ω)V (ω − 2nω0) (26)

in the presence of the ac bias with frequency 2ω0, where we
introduced the quantum voltage V (t) = �̇(t). The admittances
are related to the quasiparticles shot noise via a Kubo-like
relation

Yn(ω) = i

∫
dω1

2π

δSn(ω1) ω

h̄(ω − 2nω0)(ω − ω−
1 )ω+

1

. (27)

Here ω±
1 = ω1 ± i0+ and

δSn(ω1) = Sn(−ω1) − Sn(ω1 − 2nω0),

where the quasiparticle current noise spectral power of Eq. (11)
is expanded in Fourier components

SIqp (ω,t) =
∑

n

Sn(ω)e−2inω0t . (28)

For a tunnel junction in the absence of DCB, the iden-
tity Sn(−ω1) = Sn(ω1 − 2nω0) for n �= 0 implies that all
admittances Yn�=0 vanish, indicating an absence of current
rectification, as well as Y0(ω) = 1/RT , recovering the tunnel
junction bare resistance. In the general case, the imaginary
parts of the admittances Yn(ω) all vanish for ω → 0 as there
can be no phase shift with respect to the applied bias in the dc
regime.

The evaluation of the functions Sn(ω), and thus Yn(ω)
is straightforward for a tunnel junction, using the standard
P (E) theory [42,57]. The resulting expressions are given in
Appendix B. The effect of the very strong DCB assumed here
is encoded in the function [38]

P (E) = 1√
4πEckBT

e−(E−Ec)2/(4EckBT ), (29)
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which gives the probability of the environment to absorb an
energy E from a tunneling electron. Ec = e2/(2CB) is the
charging energy. The equilibrium noise is expressed as a
convolution product

Seq(ω) =
∫ +∞

−∞
dE P (E)S(0)

eq (ω + E/h̄), (30)

in terms of the finite-temperature noise power spectrum of a
simple tunnel junction

S(0)
eq (ω) = 2

RT

h̄ω

eh̄ω/kBT − 1
. (31)

B. Photon correlators

The current response (26) is the missing piece needed to
complete the input-output calculation with Eqs. (16) and (17).
Assuming κ  ω0, we obtain the boundary equation relating
the input and output fields

(ω + iκ+)aout,ω+ω0 = (ω + iκ−)ain,ω+ω0 − i

√
ω0Z�

2h̄
Îqp,ω+ω0

− iY1

2C
(a†

out,ω0−ω − a
†
in,ω0−ω), (32)

where 2κ± = Y0/C ± κ , with the notation Yn ≡ Yn(ω0). Y0/C

and κ are, respectively, the damping rates of the LC resonator
to the tunnel junction and transmission line. One can check that
in the absence of DCB, Y0(ω) = 1/RT and Y1 vanishes, so that
only dissipative squeezing occurs [25,26]. On resonance and
for impedance matched junction and resonator [60]

Z2
LC

RT Z�

= QZLC

RT

= 1, (33)

or κ− = 0, where Q = ZLC/Z� is the quality factor of the
resonator, aout,ω0 ∝ Îqp,ω0 and squeezing properties in the noise
fluctuations of the junction are imprinted in the output field
[23]. With DCB and higher nonlinearities, Y1 �= 0 and the
last term in Eq. (32) introduces a parametric down-conversion
mechanism on the input field, similarly to a parametric
amplifier [61,62]. In the general case, squeezing of the
output field thus results from an interplay between these two
mechanisms: squeezed radiation from the junction and direct
parametric down-conversion. Note that the first right-hand side
term in Eq. (32) corresponds to the reflected part of the input
field, detrimental to squeezing.

Equation (32) is linear and can be easily inverted to express
the output field aout,ω0+ω in terms of the fields ain,ω0+ω,
a
†
in,ω0−ω, Îqp,ω+ω0 , and Îqp,ω−ω0 , in order to compute the

output field correlations. The details of the calculation and
the precise coefficients are given in Appendix C. Squeezing is
characterized by the power spectrum Sθ (ω) of the quadrature
Xθ,ω = e−iθ aout,ω+ω0 + eiθa

†
out,ω0−ω, rotated by the angle θ

compared to the quadrature in phase with the ac excitation,
defined as

〈{Xθ,ω,Xθ,ω′ }〉 = 2Sθ (ω)2πδ(ω + ω′), (34)

which can be measured with a rf heterodyning scheme, e.g.,
[11,24]. For each value of QZLC/RT , we determine numeri-
cally the optimal θ , Ec, Vdc, and Vac which optimize squeezing.
Sθ (ω) is always minimum at ω = 0, with a bandwidth of the

FIG. 2. Lower panel: From Eq. (32), squeezing of the output
quadrature Xθ,ω = e−iθ aout,ω+ω0 + eiθ a

†
out,ω0−ω, at the resonant fre-

quency ω0, as a function of the impedance-matching parameter
QZLC/RT for very strong resistive DCB. The continuous line
corresponds to the zero temperature limit, whereas the dashed
and dotted curves correspond to temperatures of 7 and 14 mK,
respectively, for a resonance at ω0/2π = 6 GHz. The charging energy
Ec, the quadrature angle θ , and the bias voltage at the junction are
chosen to optimize (minimize) SX1 for each QZLC/RT . The middle
and upper panels give the associated variations of EC , θ , and of Vdc

and Vac at 7 mK.

order of κ . Results for the squeezed quadrature at ω = 0,
noted SX1 , are displayed in Fig. 2 at different temperatures.
At Ec/h̄ω0 = 0, only dissipative squeezing survives and we
recover the values in the absence of DCB [23,25,26], namely,
SX1 = 0.618 at zero temperature. Squeezing then improves
with the ratio QZLC/RT , showing that DCB effects can
significantly improve the squeezing efficiency.
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At large QZLC/RT � 1, the down-conversion mechanism
dominates and a simple physical picture explains squeezing
of the output field in analogy with flux-driven parametric
amplifiers [63,64]. For strong DCB, the 2ω0 ac modulation of
the classical bias drives the junction from a nearly insulating
state with a very large impedance to a conducting state with
an impedance near RT . For QZLC � RT , the corresponding
microwave reflection coefficient between the LC circuit and
the junction oscillates between its extremal values, thereby
implementing a parametric drive of the resonator. Microwave
resonators with characteristic impedances in the range of a
few kilohms have been reported using either kinetic [65,66]
or electromagnetic inductance [67], with quality factor Q well
exceeding 105 (Ref. [66]), allowing one to reach values as high
as a few 103 for the ratio QZLC/RT , while keeping RT in the
100 k� range to ensure that RT � RK . The optimum charging
energy can be seen to increase with increasing QZLC/RT , but
remain within realistic boundaries: Junctions with nanoscale
cross section [68] can implement charging energies as large as
Ec/h = 4 THz. Promising squeezing levels, well above 10 dB
thus seem within experimental reach.

In summary, we formulated a general input-output theory
that captures at the same level strong dynamical Coulomb
blockade physics and the quantum properties of the emitted
light. We showed how strong blockade amplifies quadrature
squeezing in the emitted field under parametric excitation.
We gave specific results for the case of a tunnel junction
but the generality of our approach makes it applicable to
other conductors. The cases of quantum dots [2–4] and hy-
brid systems such as superconductor-insulator-superconductor
junctions [69] seem particularly appealing for the purpose
of squeezing efficiency. The extension of our approach to
cotunneling processes, where two electrons may cooperate
to emit a photon [70,71], is another promising direction.
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APPENDIX A: DCB POWER RADIATED IN
THE TRANSMISSION LINE

We consider the closed form (19) as the starting point for
evaluating the output field correlations. Neglecting Î H

qp and

using a thermal distribution for the input field, 〈a†
in,ωain,ω′ 〉 =

2πnB(h̄ω)δ(ω − ω′), we recover standard DCB expressions
[37,38] for phase fluctuations across the tunnel junction

〈eie�(t)/h̄e−ie�(0)/h̄〉 ≡ eJ (t), (A1a)

J (t) = 2
∫ +∞

0

dω

ω

Re Zt (ω)

RK

×
[

coth

(
βω

2

)
(cos ωt − 1) − i sin ωt

]
, (A1b)

where β = 1/(kBT ) is the inverse temperature of the input field
and ReZt (ω) = Z0ω

4
0/|(ω)|2 is the real part of the impedance

seen by the junction.
Let us consider first the absence of an ac bias voltage. The

power injected in the output field is expressed as

〈A†
out(t)Aout(t)〉 =

∫ +∞

0
dωh̄ωfout(ω), (A2)

where we introduced the photon-flux density from
〈a†

out,ωaout,ω′ 〉 = 2πfout(ω)δ(ω − ω′). Defining the scattering
phase eiθω = ∗(ω)

(ω) and the normalization factor Nω =
ω2

0
i(ω)

√
2Z0
h̄ω

, the decomposition equation (19) of the input field
produces four terms in the calculation of fout(ω):

〈a†
out,ωaout,ω′ 〉 = ei(θω′−θω)

〈
a†

in,ωain,ω′
〉

+Nω′e−iθω
〈
a†

in,ωÎH
qp(ω′)

〉
+N ∗

ωeiθω′ 〈Î H
qp(−ω)ain(ω′)

〉
+NωN ∗

ω′
〈
Î H
qp(−ω)Î H

qp(ω′)
〉
. (A3)

The first term is readily calculated:

ei(θω′−θω)〈a†
in,ωain,ω′ 〉 = 2πδ(ω − ω′)nB(ω). (A4)

It is equal to the photon flux 〈a†
in,ωain,ω′ 〉 of the incoming

field ain,ω. This term is subtracted in the net output power
PLT defined in Eq. (22). The last term is written in terms of
the power spectral density of quasiparticle current fluctuations
SIqp (ω). It takes the form

NωN ∗
ω′

〈
Î H

qp (−ω)Î H
qp (ω′)

〉 = |Nω|2SIqp (ω)2πδ(ω − ω′), (A5)

where only the first term is kept in the expansion (18) of Î H
qp .

If we use this result in the expression of the radiated power,
Eq. (A2), we arrive at the contribution SIqp (ω0)/(2C) under the
assumption of a sharp resonance κ  ω0 and the integral∫ +∞

0
dωh̄ω|Nω|2 � Z0ω

2
0

2κ
= 1

2C
, (A6)

in agreement with the prefactor in Eq. (10). SIqp (ω0) is
interpreted as the emission noise corresponding to the power
emitted by current fluctuations in the tunnel junction, even
in the absence of the input field. It takes into account the
influence of DCB on transport and the noise can be written as
a convolution SIqp (ω) = ∫

dε P (ε)S0
Iqp

(ω − ε/h̄) between the

energy distribution function P (E) = 1
h

∫ +∞
−∞ dt eJ (t)+iEt/h̄ and

the noise in absence of DCB effect

S0
Iqp

(ω) = 1

RT

∑
±

h̄ω ± eVdc

eβ(h̄ω±eVdc) − 1
. (A7)

The second and third terms in Eq. (A3) are complex conjugate
to each other. In contrast to the last term in Eq. (A3), it is
now the second term in the expansion of Eq. (18) which
contributes to the calculation. The first term in Eq. (18)
creates electron-hole excitations across the junction and has
a vanishing expectation. In the calculation, we make use of the
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following identity:

〈a†
in(t)[HT (t1),Îqp(t2)]〉
= 〈[Îqp(t1),Îqp(t2)]〉(〈a†

in(t)�(t2)〉 − 〈a†
in(t)�(t1)〉), (A8)

which is valid because the field ain, and therefore �(ω) =
−ih̄Nωain(ω), have Gaussian distributions. After a tedious but
straightforward calculation, we find the additional contribution
nB(ω)[SIqp (ω) − SIqp (−ω)]|Nω|2 to fout(ω). This term van-
ishes at zero temperature. We then integrate over frequencies
using the integral, Eq. (A6), and obtain the correction to the
power in the output field

nB(ω)[SIqp (ω) − SIqp (−ω)]

2C
. (A9)

To summarize, adding all contributions from Eq. (A3), the
calculation of the net output power PLT in the input-output
formalism coincides with the power 〈PLC(t)〉 received by the
LC resonator in the standard DCB approach of Sec. II.

The presence of an ac voltage can be included rigorously
in the quantum formalism thanks to the displacement operator
D acting on both frequencies ω0 and −ω0. Quantum averages
are then taken with respect to the displaced density operator
ρ = De−βH D†/Z and the action on the input field is given by

D†ain,ωD = ain,ω + Vac

2ZLC

√
Z0

2h̄ω0

× [2πδ(ω − ω0) − 2πδ(ω + ω0)]. (A10)

Using the expression (20) of �, we obtain the shift in the flux

D†�(ω)D = �(ω) + iVac

2ω0
[2πδ(ω − ω0) − 2πδ(ω + ω0)],

(A11)

leading to D† ∂�(t)
∂t

D = ∂�(t)
∂t

+ Vac cos(ω0t). Instead of dress-
ing the density operator with D, it is possible to work with the
undisplaced density operator e−βH /Z while all operators of
the theory are dressed by D and D†. The input-output relation
(19) is then transformed to

aout,ω = ∗(ω)

(ω)
ain,ω − Vac

2ZLC

√
Z0

2h̄ω0

× [2πδ(ω − ω0) + 2πδ(ω + ω0)]

− iω2
0

√
2Z0

h̄ω

ÎH
qp (ω)

(ω)
, (A12)

where the flux in the current Î H
qp (t) contains the classical

evolution Vac
ω0

sin(ω0t). Inserting this result into the expression
of the net injected power PTL(t) retrieves Eq. (10) of Sec. II.

APPENDIX B: CURRENT CORRELATORS

We consider a classical sinusoidal ac bias applied to
the tunnel junction Vcl(t) = Vdc + Vac cos 2ω0t . The standard
Fourier decomposition

ei(eVac/2h̄ω0) sin(2ω0t) =
∑
m∈Z

Jm

(
eVac

2h̄ω0

)
e2imω0t , (B1)

introducing the Bessel functions Jn, is used to derive the
photoassisted noise, or current-current correlators

Sn(ω) = 1

2

∑
m∈Z

{
Jm

(
eVac

2h̄ω0

)
Jm+n

(
eVac

2h̄ω0

)

× Seq(ω − eVdc/h̄ − 2mω0) + Jm

(
eVac

2h̄ω0

)

×Jm−n

(
eVac

2h̄ω0

)
Seq(ω + eVdc/h̄ + 2mω0)

}
. (B2)

In particular, the effect of DCB fluctuations factorizes and is
entirely encoded in the equilibrium noise function Seq(ω) [see
Eq. (30)].

APPENDIX C: SOLUTION OF THE INPUT-OUTPUT EQUATIONS

Injecting the linear response current expression (26) into Eqs. (16) and (17), we arrive at the coupled equation[
ω2 − 1 − Z�Y0(ω)

LC
− iω

(
Z�

L
− Y0(ω)

C

)]
ain,ω −

[
ω2 − 1 + Z�Y0(ω)

LC
+ iω

(
Z�

L
+ Y0(ω)

C

)]
aout,ω

= i

LC

√
2Z�

h̄ω
Îqp(ω) −

∑
n∗< ω

2ω0

√
1 − 2nω0

ω
Z�Yn(ω)

[(
1

LC
+ i

ω − 2nω0

Z�C

)
ain,ω−2nω0

+
(

1

LC
− i

ω − 2nω0

Z�C

)
aout,ω−2nω0

]
+

∑
n∗>ω/2ω0

√
2nω0

ω
− 1Z�Yn(ω)

[(
1

LC
− i

2nω0 − ω

Z�C

)
a
†
in,2nω0−ω

+
(

1

LC
+ i

2nω0 − ω

Z�C

)
a
†
out,2nω0−ω

]
, (C1)

valid in the general case, where n∗ stands for n �= 0. This lengthy expression can nevertheless be simplified in the limit of a high
quality factor κ  ω0. First, Eq. (17) can be written as � = −L

�
∂x�line(0) + �A where the second term is much smaller than the

first one. Moreover, only the n = 0,1 terms matter in Eq. (C1), and other values of n are suppressed in the limit κ/ω0 → 0, filtered
by the LC resonator. n = 1 is the standard parametric term which couples frequencies ω0 and −ω0. After a few straigthforward
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algebraic manipulations assuming κ  ω0, we obtain the relation (32) given in the main text. It can also be written in matrix
form,

M+

(
aout,ω+ω0

a
†
out,ω0−ω

)
= M−

(
ain,ω+ω0

a
†
in,ω−ω0

)
− i

√
ω0Z�

2h̄

(
Îqp,ω+ω0

−Îqp,ω−ω0

)
, (C2)

with

M± =
(

ω + iκ± iY1/2C

−iY ∗
1 /2C −ω − iκ±

)
. (C3)

The solution is

aout,ω+ω0 = λωain,ω+ω0 + μωa
†
in,ω0−ω + αωÎqp,ω+ω0 + βωÎqp,ω−ω0 , (C4)

with the frequency-dependent coefficients

λω = (κ+ − iω)(κ− − iω) − |Y1/2C|2
Dω

, μω = Y1

2C

κ

Dω

αω = −
√

ω0Z�

2h̄

κ+ − iω

Dω

, βω =
√

ω0Z�

2h̄

Y1

2CDω

, (C5)

and Dω = (κ+ − iω)2 − |Y1/2C|2. They satisfy the unitary identity

|λω|2 − |μω|2 + (|αω|2 − |βω|2) 2h̄ω0Y0 = 1

to preserve the commutation relation of the output field [aout,ω,a
†
out,ω′ ] = 2πδ(ω − ω′).

The quadrature power spectrum Sθ (ω) introduced in Eq. (34) indicates squeezing if Sθ (ω) < 1. Using Eq. (C4), we find
Sθ (ω) = A1(ω) + e−2iθA2(ω) + e2iθA∗

2(ω) with

A1(ω) = (|λω|2 + |μω|2)[1 + 2nB(h̄ω)] + (|αω|2 + |βω|2)[S0(ω0) + S0(−ω0)] + 2S1(ω0)Re(α∗
ωβω + α∗

−ωβ−ω), (C6a)

A2(ω) = (λωμ−ω + λ−ωμω)[1/2 + nB(h̄ω)] + 1

2
(αωβ−ω + α−ωβω)[S0(ω0) + S0(−ω0)] + (|αω|2 + βωβ−ω)S1(ω0). (C6b)

Using the polar representation A2 = |A2|eiϕ , one sees that the most squeezed quadrature is given by the angle θ = ϕ/2 + π/2,
and

Sθ=ϕ/2+π/2 = A1 − 2|A2|. (C7)

This is, in particular, the angle chosen in Fig. 2.

[1] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).
[2] K. Petersson, L. McFaul, M. Schroer, M. Jung, J. Taylor, A.

Houck, and J. Petta, Nature (London) 490, 380 (2012).
[3] T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and A.

Wallraff, Phys. Rev. Lett. 108, 046807 (2012).
[4] J. Viennot, M. Dartiailh, A. Cottet, and T. Kontos, Science 349,

408 (2015).
[5] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero,

M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis
et al., Nature (London) 459, 546 (2009).

[6] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik,
E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, Nature (London) 495, 205 (2013).

[7] K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, Nature
(London) 499, 62 (2013).

[8] L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B.
Huard, Science 348, 776 (2015).

[9] C. Padurariu, F. Hassler, and Y. V. Nazarov, Phys. Rev. B 86,
054514 (2012).

[10] F. Chen, J. Li, A. D. Armour, E. Brahimi, J. Stettenheim, A. J.
Sirois, R. W. Simmonds, M. P. Blencowe, and A. J. Rimberg,
Phys. Rev. B 90, 020506 (2014).

[11] Y.-Y. Liu, J. Stehlik, C. Eichler, M. J. Gullans, J. M. Taylor, and
J. R. Petta, Science 347, 285 (2015).

[12] C. W. J. Beenakker and H. Schomerus, Phys. Rev. Lett. 86, 700
(2001).

[13] C. W. J. Beenakker and H. Schomerus, Phys. Rev. Lett. 93,
096801 (2004).

[14] I. C. Fulga, F. Hassler, and C. W. J. Beenakker, Phys. Rev. B 81,
115331 (2010).

[15] A. V. Lebedev, G. B. Lesovik, and G. Blatter, Phys. Rev. B 81,
155421 (2010).

[16] F. Hassler and D. Otten, Phys. Rev. B 92, 195417 (2015).
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[46] J. Leppäkangas, M. Fogelström, A. Grimm, M. Hofheinz, M.

Marthaler, and G. Johansson, Phys. Rev. Lett. 115, 027004
(2015).

[47] S. Dambach, B. Kubala, V. Gramich, and J. Ankerhold, Phys.
Rev. B 92, 054508 (2015).

[48] G. B. Lesovik and R. Loosen, Pis’ma Zh. Éksp. Teor. Fiz. 65,
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