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Electron paramagnetic resonance calculations for hydrogenated Si surfaces
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Electron paramagnetic resonance (EPR) signatures, more specifically the elements of the electronic g tensor,
are calculated within density functional theory for hydrogenated Si(111), Si(001), Si(113), Si(114), Si(112̄), and
Si(110) surfaces. Thereby both perturbation theory and a more sophisticated Berry phase technique are applied.
Specific defects on different surface orientations are shown to reproduce the resonances at ḡ = 2.0043 and
ḡ = 2.0052 measured for hydrogenated microcrystalline silicon: The latter value is argued here to originate from
regions with low hydrogen coverage; the resonance at ḡ = 2.0043 is shown to appear in positions with dihydride
environment, where an H atom is directly bound to the silicon dangling-bond atoms. A third group of EPR signals
with considerably larger ḡ values between 2.006 and 2.009 is predicted for highly symmetric dangling bonds
resembling single dangling-bond defects in silicon bulk material. As the exact value depends strongly on local
strain, this type of defect can explain a less intense signal with large g strain observed in microcrystalline as well
as in amorphous material.
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I. INTRODUCTION

There has been a long-standing and growing interest in the
electrical, structural, and optical properties of hydrogenated
nanocrystalline and microcrystalline (μc Si:H) silicon [1,2].
This interest is fueled largely by the promises of μc Si:H
for thin-film solar cell development. The material enables the
(low-cost) fabrication of large area thin-film structures at low
temperatures, and, in particular, on flexible substrates using
roll-to-roll processing [3]. Its complex structure comprising
amorphous matrix, crystallites, pores, and interfaces is a
distinctive feature of μc Si:H. It severely complicates the
exploration of the relation between atomic geometry and
electronic properties. Electron paramagnetic resonance (EPR)
is one of the techniques frequently used to characterize μc
Si:H and related material [4]. So far, the availability of
powder spectra and the still limited sensitivity of magnetic
resonance spectroscopy if applied onto single surfaces prevents
a resolution of Si-related hyperfine splittings. Often, only the
electronic g tensor, or even its angular average ḡ, can be
determined and remains as a basic key to identify the dominant
paramagnetic defect structures. In bulk material, by comparing
measured and calculated g tensors, often an assignment of
spectral signatures to microscopic structural motifs is possible,
see, e.g., Refs. [5–8].

In case of amorphous silicon (a-Si:H), localized defect
states in the mobility gap are known to limit the per-
formance of thin-film solar cells and other devices. The
defect centers are often paramagnetic and give rise to an
inhomogeneously broadened asymmetric EPR line at around
ḡ = 2.0050 . . . 2.0055 [9]. Two additional, less intense signals
have been recently derived from careful line shape analysis:
one signal with large g strain between 2.006 . . . 2.008 and
a H-related doublet around 2.0045. Both signals can also
be observed in μc Si:H material [10]. Here, two further
resonances are observed at ḡ = 2.0043 and ḡ = 2.0052 [11].
Both resonances were speculated to originate from surface
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related states, either from intrinsic Si dangling-bond (db)
defects or from electronic states related to adsorbed species
[12]. The present paper aims at assisting in the assignment of
these resonances and thus in the identification of relevant μc
Si:H defect structures by density-functional theory (DFT) elec-
tronic structure and g-tensor calculations for a variety of Si:H
surface orientations shown in Fig. 1. In addition to presenting
numerical values for many conceivable defect structures we
search for general trends that govern the relation between
microscopic structural motifs and paramagnetic resonances.

Our work is organized as follows: After a brief overview
of the methodology and numerical implementation we present
and discuss results for a large variety of dangling-bond defects
at hydrogenated silicon surfaces. Besides the Si(111) and
Si(001) surfaces, well known from wafers in semiconductor
technology, also the corresponding perpendicular cuts Si(112̄)
and Si(110) as well as stable Si(113) and Si(114) high-index
surfaces are investigated. Depending on the hybridization of
the db Si atoms, the structural motifs, and the H content in the

FIG. 1. Microcrystal with different surface orientations. Besides
low-index surfaces, stable high-index orientations (112̄), (113), (114)
are indicated. Other high-index surfaces tend to faceting into low-
index terraces.
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neighborhood, we observe a three-modal ḡ distribution for db
defects with values between 2.006 . . . 2.009 and slightly above
2.005 as well as 2.004, which can explain the experimental data
observed for μc Si:H.

II. METHODOLOGY

A. g tensor definition and calculation

The definition of the electronic g tensor starts from the
leading term in the phenomenological spin Hamiltonian

Ĥspin = α

2
�S · g · �B (1)

which is typically employed to describe EPR resonances. The
elements of the g tensor are, thus, given as second energy
derivatives with respect to the components of the magnetic
field and the electron spin

gμν = 2

α

∂2〈Ĥ 〉
∂Bμ∂Sν

∣∣∣∣ �B=0

. (2)

According to Ref. [13], in the presence of a constant external
magnetic field �B, one obtains the following terms up to the
second order in the fine structure constant,

gμν = gZδμν + gZ−K
μν + gSO

μν + gSOO
μν , (3)

where gZ = ge = 2.002 319... corresponds to the free-electron
g factor.

The Zeeman kinetic energy correction (or relativistic
mass correction) gives rise to an isotropic, purely kinematic
relativistic correction

gZ−K
μν = −α2ge

2Seff
δμν

∑
σ=±

σ
〈
T̂ (0)

σ

〉
. (4)

Here, Seff is the total spin and 〈T̂ (0)
σ 〉 is the kinetic energy

expectation value of the ground state with respect to the orbitals
of spin channel σ = ±1, respectively (↑ and ↓). Usually, the
relativistic mass correction provides a minor, but already for
light elements non-negligible, contribution of a few percent,
cf. Table I.

TABLE I. Calculated principal values of the g tensor for the
prototypical, axial symmetric Si(111):H dangling-bond (db) defect
(cf. Fig. 2) modeled within a 2

√
3×2

√
3 unit cell using a 6×6×1 k-

point mesh. The Zeeman kinetic energy (Z-K), the dominating spin-
orbit (SO) term, and the almost negligible spin-other orbit (SOO)
contributions are given separately (in [ppm]). As a potentially more
accurate alternative for gSO, the contribution gorb obtained via the
orbital magnetization is also given (in brackets).

g⊥ g‖

gZ = ge 2.002 319 2.002 319
gZ−K [ppm] −85 −85

gSO [ppm] 7 145 −1 129

(gorb) [ppm] (7 156) (−1 130)

gSOO [ppm] 5 5

g 2.009 385 2.001 111

The most relevant g tensor contribution, however, is caused
by spin-orbit coupling

gSO
μν = α

2Seff

[∑
σ=±

σ

∫
∇V σ

eff(�r) × �j (1),μ
σ (�r)d3r

]
ν

, (5)

where �j (1),μ
σ (�r) is related to the spin current �jσ induced by an

external magnetic field �Bμ = B �eμ and may be expanded as

�jσ (�r, �Bμ) = �j (0),μ
σ (�r) + �j (1),μ

σ (�r)| �Bμ| + O(B2). (6)

The relevant linear response term can be written as

�j (1),μ
σ (�r) = 2

∑
o

Re
〈
ϕ(0)

o,σ

∣∣Ĵ pĜσ (εo,σ )Ĥ (1),μ
∣∣ϕ(0)

o,σ

〉

+ α

2
nσ (�r) �Bμ × �r, (7)

where Ĥ (1),μ=α
2
�̂L · �Bμ denotes the first order perturbation

by the homogenous external magnetic field and the second,
diamagnetic term ensures gauge invariance in the symmetric
gauge �A(�r) = 1

2
�Bμ × �r . Finally, Ĵ p and Ĝσ (ε) are the para-

magnetic current operator and the Green’s function,
respectively,

Ĵ p = 1

2
(p̂|r〉〈r| + p̂|r〉〈r|) (8)

Ĝσ (ε) =
∑

e

∣∣ϕ(0)
e,σ

〉〈
ϕ(0)

e,σ

∣∣
ε − εe,σ

. (9)

In principle, the summation in the latter involves all vir-
tual (empty) orbitals. Nevertheless, by making use of the
completeness relation, it is possible to determine Ĝσ (ε) by
solving a linear system involving occupied states exclusively,
cf. Refs. [14] and [15]. This projection onto the valence bands
is beneficial to save computational costs; it increases numerical
stability as well as accuracy, since it makes the approach
robust against uncertainties in the energy difference between
occupied and unoccupied states. The induced spin currents
determine the dominating contribution to the g tensor, cf.
Table I. Hence, they can be used to rationalize the deviation
of the elements of the g tensor from the free-electron value ge

in a very illustrative way. Exemplarily, we show in Fig. 2 the
current difference of the two spin channels calculated for the
Si(111):H dangling-bond defect for an external magnetic field
aligned perpendicular to the displayed plane. A more detailed
discussion is given in Sec. III A.

Finally, as a many-particle correction, the spin-other orbit
term gSOO describes the contribution of the magnetic field
induced by the current from the other electrons

gSOO
μν = 1

Seff

∫
m(�r) �eν · �B(1),μ(�r) d3r . (10)

Here, m(�r) = n↑(�r) − n↓(�r) is the magnetization density and
�B(1),μ the magnetic field induced via Biot-Savat’s law by the
total current �j (1),μ(�r) = �j (1),μ

↑ (�r) + �j (1),μ
↓ (�r) corrected for self-

interaction [16,17]

�B(1),μ(�r) = α

∫ [ �j (1),μ(�r) − ( �j (1),μ
↑ (�r) − �j (1),μ

↓ (�r)
)]

× �r − �r ′

|�r − �r ′|3 d3r. (11)
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FIG. 2. Hydrogenated Si(111):H surface with a single H vacancy. Left: atomic structure (Si large, H small) and isosurfaces of the
magnetization density m(�r) = n↑(�r) − n↓(�r). The main part [m(�r) > 0 red, m(�r) < 0 blue] is located at the unsaturated dangling bond Si atom.
There are three fluctuations of m(�r) along the zigzag bond directions into the crystal. Calculated current density difference �j (1),μ

↑ (�r) − �j (1),μ
↓ (�r)

(middle) and induced magnetic field �B (1),μ(�r) (right), both for the external magnetic field aligned perpendicular to the displayed plane (see also
text). To facilitate direct comparison, the magnetization density is indicated again by isolines.

In the lower part of Fig. 2 we show this quantity for the
Si(111):H dangling-bond defect. At least for the systems
studied here, the resulting spin-other-orbit contributions are
two orders of magnitude lower than other corrections to the
free-electron g factor, cf. Table I. Notice that the evaluation
of the terms for systems described by periodic boundary
conditions requires a gauge invariant formalism. This is
ensured by using the gauge including projector augmented
wave (GIPAW) method [14].

g tensor calculations via the spin currents entering Eqs. (5)
and (10) are based on linear magnetic response theory. Thereby
both the influence of the magnetic field �B and the spin-
orbit coupling are considered small perturbations. Numerical
instabilities in the calculation of the Green’s function Ĝσ (ε),
cf. Eq. (9), may occur for systems with quasidegenerate states
causing large energy denominators in the Green’s function
[16,18]. As shown by one of the present authors [16], there
is an alternative approach to the calculation of the g tensor,
which goes beyond linear magnetic response. It starts from the
total magnetization defined as energy derivative with respect
to the magnetic field

�M = − ∂Etot

∂ �B

∣∣∣∣ �B=0

=
∑

n

fn〈ϕn| − ∂Ĥ

∂ �B |ϕn〉 �B=0, (12)

where fn are the occupation numbers of state ϕn. Comparing
the definition of the g tensor (2) with the magnetization (12)
shows that the elements of the g tensor may be obtained by
the variation in �M upon a spin flip

gμν = − 2

α

∂Mμ

∂Sν

= − 2

α
�eμ

�M(�eν) − �M(−�eν)

Seff − (−Seff)

= − 2

αSeff
Mμ(�eν)

= geδμν + gZ−K
μν − 2

αSeff
Morb

μ (�eν) . (13)

Here, we took advantage of the fact that the total magne-
tization can be divided into the spin magnetization caused by
the Zeeman terms and the orbital part caused by spin-orbit
coupling. In this sense, the last term labeled gorb substitutes
for the gSO term but requires by construction the evaluation of
occupied states exclusively. For finite systems it can be easily

evaluated via

�Morb = α

2

∑
n

fn〈ϕn|r̂ × v̂|ϕn〉, (14)

where the velocity operator is given by the commutator v̂ =
−i[r̂ ,Ĥ ]. In case of periodic systems, however, the position
operator is not well defined; a problem which can be coped
with by using a Berry phase formula [19,20]. By inserting
SO including wave functions the approach via the orbital
magnetization goes beyond linear response and circumvents
perturbation theory [7,16,18]. Provided that the contribution of
the spin-other orbit term is almost negligible, which is the case
for the present systems under study (cf. Table I and Ref. [21]),
the two approaches lead essentially to the same results, with
deviations clearly smaller than 1×10−5. Based on this finding
and the verified robustness of both methodologies applied
here, we present the SOO term including results of the linear
magnetic response method throughout the rest of this paper.

B. Numerics

The present calculations are based on the QUANTUM-
ESPRESSO [22] implementation of the density functional theory
(DFT). The PBE functional [23] is used to describe the
electron-electron interaction within the generalized gradient
approximation (GGA). The DFT band-gap problem, i.e., the
underestimation of the unoccupied-states energies, is irrelevant
for our g-tensor calculations. Both applied methods rely
on occupied states exclusively; the Berry phase approach
by construction and the linear magnetic response by taking
advantage of the completeness relation. The Si surfaces are
modeled within the supercell approach, i.e., finite material
slabs decoupled along the surface normal by a vacuum region.
Norm-conserving Troullier-Martins pseudopotentials [24] are
used to describe the electron-ion interaction. The electron
states are expanded in plane-wave basis, ideally suited for
periodic boundary conditions.

Convergence tests with respect to slab thickness, Bril-
louin zone (BZ) sampling, and plane-wave energy cutoff
necessary to obtain converged g tensors were performed
using a paramagnetic dangling bond at the Si(111):H surface,
cf. Fig. 2. Using convergence criteria �2.6×10−3 eV

Å
and

�1.36×10−4 eV for atomic surface forces and energies,
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FIG. 3. Calculated g tensor components (bottom) for various
surface unit cells (indicated above) used to model the prototypical
Si(111):H dangling-bond defect.

respectively, six freely relaxed Si layers are found to be
sufficient to properly describe the Si(111):H structure and
total energy. However, 10 layers are needed to converge the g

tensor within 1×10−4, i.e, the typical experimental accuracy.
Concerning the vacuum region, we find 10 Å sufficient for
fully converged results. These calculations were performed
for various plane-wave energy cutoffs. It is found that 30
Ry ensure well-converged structural and electronic properties.
The g tensor calculation (via both linear magnetic response
as well as Berry’s phase) requires slightly denser k-point
meshes than typical DFT total-energy calculations. In case
of the Si(111) dangling bond modeled within a comparatively
small

√
3×√

3 unit cell, we find an 8×8×1 mesh necessary
for the Brillouin zone sampling; for larger cells smaller k-point
samplings are sufficient, e.g., 4×4×1 for a 2

√
3×2

√
3 cell.

The surface defect-defect interaction can potentially lead
to a slow convergence with respect to the lateral unit cell
size. In order to explore this issue, we modeled the Si(111):H
dangling bond within a 1×1,

√
3×√

3, 2×2, 2
√

3×2
√

3, and
4×4 surface unit cells, cf. Fig. 3. It can be seen that the
calculated g tensors converge rapidly with cell size. It needs
to be mentioned here, however, that this is partially related
to the high symmetry of this particular defect. Defects with
lower symmetry may induce long-ranging lateral strain fields

FIG. 4. Si(111):H dangling-bond defect: g tensor components
calculated for strain. Whereas the component g|| parallel to the surface
normal appears quite robust, the lateral components g⊥ depend
critically on the strain.

which require larger unit cells for an adequate modeling. One
might expect the Si lattice constant entering the calculations
to influence the calculated g tensor in a similar way. The
present calculations are performed using a relaxed Si lattice
parameter a0 = 5.461 Å. This is about 0.5% larger than the
measured value of 5.43 Å [25] and reflects the slight bond
strength underestimation typical for the GGA. We find the
g tensor components to depend nearly linearly on the lattice
constant (see Fig. 4). The absolute magnitudes of the respective
changes are, however, below 6×10−4 per percentage strain for
the g⊥ and 0.3×10−4 for g‖. Whereas the latter is negligible,
the influence of strain onto the lateral g tensor components
is of course critical. On the one hand, this means that great
care has to be spent in the theoretical description; on the other
hand, this shows that the g tensor provides a sensitive probe
for local strain at surfaces and interfaces.

III. RESULTS AND DISCUSSION

A. Hydrogenated Si(111) surface

Provided the hydrogen chemical potential is sufficiently
high, hydrogenation of the Si(111) surface leads to an 1×1
reconstructed Si(111):H surface where all Si surface dangling
bonds (db) are saturated by H [26,27]. The stability of this
surface is demonstrated by the comparatively high defect
formation energy required to remove a single hydrogen

Eform = ESi(111) − (
Edb

Si(111) + 1
2EH2

)
, (15)

which we determine to be 1.14 eV, considering a 2
√

3×2
√

3
surface unit cell. Hydrogen removal results in an unsaturated,
singly occupied db, i.e., in a paramagnetic defect. The
corresponding magnetization density is shown in Fig. 2.
Mainly localized at the db Si atom, there are also spin
polarization fluctuations along the three back bonds that point
into the Si bulk. The sp3 hybridized db in form of a tripod
points into the [111] direction. Its C3V symmetry is reflected
in an axial-symmetric g tensor, which is, thus, completely
characterized by its components parallel and perpendicular to
the surface normal, g‖ and g⊥, respectively.

125310-4
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FIG. 5. Band structures calculated for the Si(111):H 2
√

3×2
√

3
surface, completely hydrogenated (top) and with a single db defect
(bottom); spin up/down indicated in red/green. Transition energies
entering the Green’s function calculation are exemplarily indicated,
see text. The gray background is the surface projected Si bulk band
structure.

The corresponding band structures for the fully hydro-
genated Si(111):H surface, and an isolated Si(111) db defect,
calculated within a 2

√
3×2

√
3 unit cell are shown in Fig. 5.

In the former case spin up and down bands are degenerate,
while there is a clear spin splitting for the defect structure, due
to the odd number of electrons. The first occupied (red, spin
up) and unoccupied (green, spin down) defect bands below
and above the Fermi energy EF show almost no dispersion.
This is indicative for a weak defect-defect interaction and
for strongly localized defect states. Since their energies enter
the denominator of the Green’s function (9), this explains
the rapid convergence of the calculated g tensor discussed
in Fig. 3.

In Table I the calculated g tensor for the Si(111):H db
defect is decomposed into the different terms contributing to
the deviation from the free-electron value ge. Obviously, the
main contribution and noteworthy the full anisotropy of the
g tensor are caused by the spin-orbit term. A striking feature
is a large g⊥ value, indicative for a strong spin-orbit splitting
in the surface plane, reminiscent of the Rashba effect [28].
As we will see in the following, the Si(111):H db defect
provides a prototype example which can also be found in
slightly modified, less symmetric form at various Si surfaces
with different orientations. However, with angular average
values above 2.006, this type of dangling bond cannot explain
the dominant signals at 2.0043 and 2.0052. Instead, it provides
an explanation for the less intense signals with large g strain
between 2.006 and 2.008, which can be observed in μc Si and
a-Si:H [10]. It is also reminiscent for single dangling-bond
defects in silicon bulk material [29,30]. We will come back to
this point later.

FIG. 6. Side view of the clean Si(001)c(4×2) surface shown
along the dimer rows. The alternating buckling of the Si-Si dimers
can be clearly seen.

B. Hydrogenated Si(001) surfaces

Clean Si(001) surfaces reconstruct due to the dimerization
of the topmost atoms. The dimers are asymmetric, consisting
of an sp2-like bonded down atom, which moves closer to the
plane of its three nearest neighbors, and an up atom, which
moves away from the plane of its neighbors and possesses
a p-like dangling bond. The process of rehybridization is
accompanied by a charge transfer from the down to the up
atom. To minimize the electrostatic energy and to relieve local
stress, the direction of buckling alternates within the dimer
rows. The registry of buckling in neighboring dimer rows
is phase shifted, such that the Si(001) surface ground state
reconstructs c(4×2) [31], see Fig. 6. Hydrogenation of this
surface leads to monohydride Si(001)(2×1):H and dihydride
Si(001)(1×1):H surfaces, depending on the hydrogen chemi-
cal potential [32–34].

Starting either from the ideal clean Si(001)c(4×2), the
homogeneous monohydride (MH ) Si(001)c(2×1):H or the
completely saturated dihydride (DH ) Si(001)(1×1):H sur-
faces, various defect structures were obtained by saturating
and creating Si dangling bonds, see Figs. 7 and 8 for schematic
top views and corresponding band structures. We mention that
many more local structure motifs are conceivable [31] than we
are able to consider here.

In case of the structures 1–5, cf. Fig. 7, we find the
unoccupied gap surface states to derive from Si dimer down
atoms, as known from the clean Si(001)c(4×2) surface [31].
The corresponding bands show a large dispersion along the
J -K and J ′-	 directions and almost no dispersion along 	-J
and K-J ′, which underlines the strong dimer-dimer coupling
along the dimer rows. The dispersion of the filled states is less
pronounced and again essentially restricted to the direction
along the dimer rows. The Si-Si-H hemihydride in structure 1
is calculated here under the constraint that it is paramagnetic. If
one allows for a metallic occupation, the structure relaxes into
a diamagnetic ground state with half occupied metallic spin up
and spin down bands, cf. Ref. [35]. The defect structures 6–9,
cf. Fig. 8, are derived from the hydrogen covered surface by
H abstraction; they are characterized by more localized defect
states which show little dispersion.

The g tensors calculated for the defect structures 1–9
are compiled in Table II, together with the experimental
values from Ref. [11]. The microcrystals in the experimentally
characterized samples are randomly oriented. Therefore only
angular averaged ḡ values are measured. The paramagnetic
hemidydride structure 1 is unique, as its calculated angular
average ḡ is much smaller than the free-electron value ge, cf.
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FIG. 7. Symbolic top view of Si(001):H surface supercells (left)
and corresponding band structures (right), shown here for surfaces
with low hydrogen coverage. The first Brillouin zone is depicted in
the insert (top right). Energies are given with respect to the Fermi
level; spin-up bands plotted in red, spin-down in green.

Table II. Structure 2 behaves similar, but with ḡ already a little
larger than ge. All other ḡ values presented throughout this
work are considerably larger than ge. The comparatively small
ḡ values of structures 1, 2, and in parts also 3 can be explained
by the low energy of the above mentioned strongly dispersive
surface bands (representing electron states delocalized along

FIG. 8. Symbolic top view of Si(001) surface supercells (left) and
corresponding band structures (right), shown here for structures with
high hydrogen coverage, cf. Fig. 7.

the dimer). Far below the unoccupied spin-down state of the
dangling bond, they result in comparatively small HOMO-
LUMO gaps below 0.6 eV within the spin-down channel.
In contrast to the structures with higher H coverage, these
g tensors, thus, contain considerable contributions of the
spin-down channel, leading to negative deviations from ge.
A prerequisite of this fingerprint is, however, a Si-Si-H hemi-
hydride dimer embedded in a hydrogen-free dimerized neigh-
borhood, in other words, a well-ordered region with minor
H coverage.

Interestingly, mono- and dihydride surfaces with single
missing H atoms, i.e., structures 6 and 9, give rise to ḡ

values close to the experimental data at 2.0043 and 2.0053,
respectively. The larger value at ḡ = 2.0052 can again be
attributed to the Si-Si-H hemihydride structure, but now in a
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TABLE II. Calculated g tensors of various Si(001) db structures in comparison to experimental values for μc-Si:H [10,11]. ϑ of g3 is given
with respect to the surface normal [001].

ḡ g1 g2 g3 ϑ

1) single adsorbed H 2.000 22 1.998 24 2.002 11 2.000 30 28.6 ◦

2) 3 adsorbed H sym. 2.002 37 1.999 17 2.002 97 2.004 97 40.9 ◦

3) 3 adsorbed H asym. 2.003 56 2.004 28 2.005 08 2.001 33 32.8 ◦

8) DH with 3 H vacancies 2.004 84 2.007 27 2.005 28 2.001 98 39.5 ◦

6) MH with H vacancy 2.005 26 2.008 16 2.005 75 2.001 87 33.5 ◦

5) 7 adsorbed H 2.005 37 2.008 25 2.005 89 2.001 97 34.4 ◦

4) 5 adsorbed H 2.005 38 2.007 52 2.006 21 2.002 42 29.5 ◦

expt. μc − Si:H 2.0052
7) MH with adsorbed H 2.004 22 2.006 94 2.004 18 2.001 54 33.5 ◦

9) DH with H vacancy 2.004 34 2.006 52 2.004 51 2.001 99 33.6 ◦

9∗) DH with H vacancy 2.004 54 2.006 70 2.003 79 2.003 16 41.8 ◦

expt. μc − Si:H 2.0043
expt. hfs(B) 2.0045 2.0056 2.0056 2.0024

monohydride or slightly mixed mono-/dihydride environment.
As illustrated in Fig. 9 (structure 6), this results in a distorted
dangling bond tilted by about 32◦ against the surface normal.
The db Si atom is still sp3 hybridized, but the magnetization
density is clearly distinct from that of the S(111):H vacancy (cf.
Fig. 2). Due to surface reconstruction the prototypical tripod
cannot be fully established and is reduced to a bipod; i.e., the
dangling bond is built up by the p-like central part and only
two fluctuations along the zigzag lines into the microcrystal.

The resonance at ḡ = 2.0043, on the other hand, re-
quires a clearly dihydride environment. As shown in Fig. 9
(structure 9), H cleavage then might result in a sp2-like
hybridized db Si atom and in an apparently in-plane oriented
magnetization density. This alignment becomes even more
obvious in structure 9∗, which provides a symmetrized version
of structure 9 with an adjacent H atom in a bond bridging
position. The symmetric structure is energetically slightly
favored by about 20 meV and provides a magnetization density
which can be best explained as a kind of double dangling bond,
Fig. 9 (structure 9∗). The relative stability, however, depends on
the details of the environment. Small inhomogeneities might
lead to a symmetry break. At elevated temperatures dynamical
fluctuations become possible, rendering on average the sym-
metric structure 9∗. As can be seen from Table II, independent
of a possible bistability, the underlying configuration can
nicely explain the resonance at ḡ = 2.0043.

C. Hydrogenated Si(113) and Si(110) surfaces

High-index surfaces of Si tend to facet into low-index
planes. Si(113) is one of a few exceptions in this respect
as its surface energy is about as small as for Si(001). Our
calculations for the hydrogenated Si(113) surface start from
the model established by Jacobi and co-workers [36] shown
in Fig. 10. It can be described as composed of (111) terraces
separated by [1̄1̄2] steps, cf. dashed lines in Fig. 10. This model
is energetically favored as shown earlier by one of the present
authors [37] and is in agreement with infrared [38–40] and
Raman spectroscopy [41].

To create paramagnetic defects at the Si(113):H surface, we
have to consider three conceivable H positions as indicated by

H1, H2, and H3 in Fig. 10, top. The calculated g tensors for
the three defect models are given in Table III; corresponding
magnetization densities are shown in the lower part of Fig. 10.
H2 can be described as a mixture of two structures known from
the Si(001):H surface. Its magnetization density resembles
the bipod of structure 6, but the chemical environment is
more similar to the dihydride case of structure 9. Notably,
the resulting ḡ value of about 2.0047 reflects the average of
the respective g tensors (2.0053 and 2.0043). H3 is derived
from the same sp2 hybridized Si atom, but now with the
p-like part of the dangling bond in-plane oriented. This leads
to an energy lowering by 0.03 eV compared to H2. The
magnetization density of H3 is reminiscent of H2, but inverted
with respect to a (110)-oriented mirror plane. Hence, both
are similar to the structures 9, 9∗ at the dihydride Si(001):H.
But the close neighborhood to the [110]-oriented step edge,
separating the narrow (001) terraces, leads to increased local
strain and increased g values in the [110] direction.

The most stable paramagnetic dangling bond at the
Si(113):H surface, however, is related to position H1. The
respective vacancy defect is energetically favored by about
0.2 eV. Its calculated g tensor agrees almost exactly with
the calculation for the Si(111):H db defect, cf. Table I. This
is not too surprising, as the chemical environment of the
nearest and the next-nearest neighbor atom of the respective
db are identical, and only affected by slight strain: The angle
of the principal value closest to the surface normal (g3)
is 28.7 ◦ for H1, deviating only 0.8 ◦ from the ideal [111]
direction. As shown in Fig. 10, these small deviations from the
ideal symmetry are, nevertheless, visible in the magnetization
density; they are, e.g., manifested in a spin polarization of two
neighboring H atoms and a slightly deformated db orbital.

A similar, even more symmetric geometry is found for a
dangling bond at the Si(110) surface: The clean Si(110) surface
reconstructs 16×2, forming two eight atom long (110) terraces
with a step in between. Hydrogenation does not change the
reconstruction pattern and leads to a configuration where the
terrace Si atoms are nearly in truncated bulk positions [43].
Therefore, we model the Si(110):H surface within a (1×1)
reconstruction and neglect the steps. This model structure
has been shown to account reliably for the surface optical
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FIG. 9. Structural models, magnetization densities (insets), and
induced spin currents calculated for selected defect structures from
Figs. 7 and 8: 1 (top), 6 (middle); besides 9, its symmetric ground
state 9∗ (bottom) is shown. For comparison and further details, see
also Fig. 2 and text.

response of Si(110):H [37]. All surface adsorbed hydrogen
atoms are then in equivalent configurations and there is only
one possible vacancy position, at least if single vacancies are
considered. The structure and the distribution of the unpaired
electron is shown in Fig. 10. Again the magnetization density
is very similar to that of the H vacancy at Si(111):H, already
in the rather small supercell. Also the principal axis of the
g tensor deviates only slightly by 1.0 ◦ from the ideal [111]
direction, showing again the symmetry of the structural and
chemical environment of the nearest and next-nearest neighbor
atoms and in particular the lateral strain. As a result, typical

FIG. 10. Top: Structure model for ideal Si(113):H. Possible H va-
cancy positions are marked. The dashed lines show low-index crystal
orientations. Lower parts: geometries and magnetization density of H
vacancies at Si(113):H. H2 and H3 provide rather specific dangling
bonds (middle, left/right); H1 mimics the symmetric, tripod-like H
vacancy at Si(111) (bottom, left), cf. Fig. 2. For further comparison, a
respective view onto the dangling bond of Si(110):H with H vacancy
[rotated by �([110],[113])] is also given (bottom, right).

tripod-like fluctuation of the spin density along the Si-Si zigzag
lines into the microcrystal can be established. Nevertheless, the
lateral components are by far larger than that of the Si(111):H
db prototype, resulting in a quite large averaged ḡ value of
about 2.0087. A similar observation is known from Si bulk
material, where single dangling-bond defects with similar g

tensor anisotropy and ḡ values between 2.007 and 2.010 have
been observed (see also Table III). We note that increasing the
lateral cell size tends to decrease the two lateral components,
but only to a small amount below 1×10−4.

D. Hydrogenated Si(114) and Si(112̄) surfaces

The Si(114) surface is another high-index surface not
subjected to faceting. Our calculations start from the 2×1
reconstruction model proposed for the clean surface by Barlow
et al. [44]. It features a tetramer, a dimer, and two rebonded
atoms. The dimer and the closed side of the tetramer buckle
and also the two rebonded atoms are at different heights.
Hydrogen adsorption reduces the dimer buckling as known
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TABLE III. Calculated g tensors and relative formation energies of H vacancies at Si(113):H; also the Si(110):H db and Si(111):H db
values are given. ϑ is given with respect to the [111] direction. For comparison, experimental data for single db defects in Si bulk materials
(Si B/E) [2,29,42] is cited.

�Eform [eV] ḡ g1 g2 g3 ϑ

H2 0.20 2.004 69 2.007 31 2.004 42 2.002 34 8.4 ◦

H3 0.17 2.004 96 2.009 52 2.003 67 2.001 70 39.5 ◦

H1 0.00 2.006 73 2.009 15 2.009 70 2.001 34 0.8 ◦

Si(111):H db 2.006 63 2.009 38 2.009 38 2.001 11 0.0 ◦

Si(110):H db 2.008 77 2.011 60 2.013 30 2.001 43 1.5 ◦

expt. Si B (bulk) 2.0071 2.0096 2.0112 2.0005 1.3 ◦

expt. Si E (bulk) 2.0099 2.0135 2.0150 2.0012 3 ◦

from Si(001):H; saturation with hydrogen without breaking
any Si-Si bonds leads to the monohydride structure shown
in Fig. 11 (left). It is characterized by eight inequivalent H
atoms [45], i.e., eight conceivable vacancy positions. The
calculated g tensors for the respective paramagnetic db defects
are compiled in Table IV. They group into pairs with similar
values which correspond to structurally similar defects and
are furthermore characterized by similar relative formation
energies. The lowest formation energies occur for H vacancies
at Si dimers, or at the open tetramer ends, all providing average
ḡ values similar to that of the Si(111):H prototype.

The dihydride Si(114):H surface structure shown in Fig. 11
(right) is expected for higher values of the hydrogen chemical
potential. Here, six different hydrogen, i.e., dangling-bond
positions H1–H6 occur. H3 and H4 terminate single Si surface
atoms and are quite similar to H3/H2 at the Si(113):H surface
(cf. Fig. 10), but with reduced possibilities to relax. The
additional local strain leads to further enlarged ḡ values for the
respective H vacancies, see also Table V. Comparatively large
ḡ values are also obtained for H1 and H5, both terminating
threefold coordinated surface Si atoms: If these positions
are dehydrogenated, the resulting dangling bonds mimic the
prototypical tripod of the Si(111):H surface. Nevertheless,
all these configurations provide exceptionally high formation
energies and are, thus, less probable to occur. H2 and H6 are
by about 1.6 eV lower in energy; they resemble structurally

FIG. 11. Structure models for Si(114):H monohydride (top, left)
and dihydride (top, right) surfaces. Possible H vacancy positions
are marked. In the lower part, the spin distribution is given for
the sp2 hybridized H2 (left) and the symmetric, bond-bridging H2∗

configurations (right ), cf. Table V.

the dihydride Si(001) dimers structure 9/9∗. Hence, they offer
two different configurations: (i) a metastable state with a
sp2-like hybridized db Si atom, where the H-Si-H units are
asymmetrically distorted and (ii) a (more) symmetric ground
state, with one of the adjacent H atoms in a bond-bridging
position. Again, both configurations provide average ḡ values
slightly above 2.004 (cf. Table V). Like the corresponding
structures at the Si(113):H and Si(001):H surface, they are,
thus, expected to contribute to the experimentally observed
2.0043 resonance.

This result is corroborated by our calculations for the
Si(112̄) surface. It is characterized by three types of termi-
nating hydrogen atoms, cf. Fig. 12. Two of them, H1 and H3,
are in (111)-like bonding configurations; their calculated g

tensors (cf. Table VI) are reminiscent of that of a moderately
distorted sp3-hybridized dangling bond. A third, H2, is bonded
similarly as in the dihydride Si(001):H case. Similar to
H2/H6 at the Si(113) surface, along [11̄0] they build up
a row of dihydride Si atoms. A supercell, which twofold
repeats the bulk periodicity as indicated in Fig. 12 (right),
allows for Si dimer formation, leading to various possibilities
of mixed monohydride and dihydride configurations. The g

tensors calculated for a bunch of conceivable H2 vacancy
configurations are listed in Table VI. Those with a sp2

hybridized db atom depend strongly on the termination of the
neighboring Si atoms (2.0039 to 2.0049). The bond-bridging
position turns out to be rather robust against changes in the
chemical and structural environment, thereby reproducing the
experimentally observed value of 2.0043.

TABLE IV. Calculated g tensors and relative formation energies
of H vacancies (i.e., db defects) at monohydride Si(114):H, cf. Fig. 11
(left). Dimer D1/2, rebonded R1/2 as well as tetramer positions (T1
to T4). ϑ of g3 is given with respect to the surface normal [114].

�Eform [eV] ḡ g1 g2 g3 ϑ

R2 0.55 2.006 22 2.010 42 2.006 19 2.002 05 12.2 ◦

R1 0.55 2.005 97 2.010 38 2.005 44 2.002 08 13.9 ◦

T4 0.38 2.005 67 2.007 88 2.007 00 2.002 15 31.8 ◦

T3 0.35 2.005 56 2.007 69 2.006 78 2.002 20 30.8 ◦

T1 0.00 2.006 41 2.009 36 2.008 14 2.001 72 30.1 ◦

T2 0.00 2.006 59 2.009 74 2.008 05 2.001 99 34.0 ◦

D2 0.00 2.006 37 2.009 60 2.006 40 2.003 14 37.7 ◦

D1 0.00 2.006 64 2.010 16 2.006 64 2.003 12 37.2 ◦
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TABLE V. Calculated g tensors and relative formation energies of
H vacancies at dihydride Si(114):H, cf. Fig. 11 (right). The ∗ denotes
structures with an adjacent H atom in a symmetric bond-bridging
position, cf. Fig. 9 (structure 9∗). ϑ of g3 is given with respect to the
surface normal [114].

�Eform [eV] ḡ g1 g2 g3 ϑ

H3 1.73 2.005 30 2.008 33 2.004 96 2.002 61 44.5 ◦

H4 1.71 2.005 16 2.009 29 2.004 52 2.001 69 65.0 ◦

H1 1.63 2.008 20 2.012 61 2.010 56 2.001 42 38.2 ◦

H5 1.53 2.007 20 2.009 52 2.010 92 2.001 15 35.0 ◦

H2 0.08 2.004 03 2.002 67 2.003 53 2.005 89 29.0 ◦

H2∗ 0.05 2.004 03 2.002 25 2.003 72 2.006 11 34.7 ◦

H6 0.01 2.004 00 2.002 33 2.003 72 2.005 96 37.0 ◦

H6∗ 0.00 2.004 21 2.002 99 2.003 52 2.006 11 27.6 ◦

Judging from the robustness of the angular averaged ḡ

values, the model with the bond-bridging H atoms serves as
the most probable candidate. However, an assignment based
solely on the ḡ value is not fully conclusive. Furthermore,
the anisotropy of the g tensor is almost identical for both
possible configurations as can be easily seen, e.g., in Table V
for the Si(114):H surface. A distinction, in principle, would
be possible via the intensity of the hyperfine (hf) splittings of
the Si dangling atoms. Due to the double db character of the
bond-bridging configuration, hf interactions with two Si db
atoms are found, with hf splittings about 280 MHz, in contrast
for the sp2-like hybridized single db configuration with values
about 250 MHz. Interestingly the anisotropy is almost twice as
large for the single db configurations ≈(−70, −70, 140) MHz
as for the double db ≈(−40, −40, 80) MHz.

Further insight can be gained by the hf splittings due to
the directly involved H atoms. In Ref. [10], ḡ values of
about 2.0045 in μc-Si:H a-Si:H have been attributed to a
hf-split doublet line, labeled ‘hfs(B).’ The hf splitting clearly
originates from 99.99% abundant 1H nuclei, but none of the
known spectra in silicon bulk and a-Si:H material fits to this
particular EPR signature. Almost all signals provide (i) much
too small splittings with (ii) different symmetry (two small
and one larger value). A Si-H-Si defect in silicon bulk [46] can
roughly explain the hf splitting, but its g tensor is completely
different (ḡ ≈ 1.999) [47]. As shown in Table VII, H atoms
in bond-bridging Si-H-Si configurations provide exceptionally
large 1H hf splittings in general, also for all investigated surface
orientations, thereby nicely agreeing with the experimental

FIG. 12. Schematic views of the Si(112̄):H surface with possible
vacancy positions indicated (top). In the lower part, the spin
distribution is given for the sp2 hybridized H2 (right) and the
symmetric, bond-bridging H2∗ configurations (left).

hf tensor [48]. Our DFT calculations further show that the
corresponding g tensor is shifted towards much higher values
if the Si-H-Si defect is situated at the surface (see also Table II).
Based on our calculations, we thus attribute the less intense
‘hfs(B)’ signal (around 2.0045) in μc-Si:H and a-Si:H to
surface-near H atoms in bond-bridging Si-H-Si positions.

IV. CONCLUSIONS

Density-functional theory calculations on a large number of
H vacancy defects at hydrogenated Si surfaces were performed
in order to determine the g tensors for the paramagnetic
dangling-bond defect states. The calculations show that the
g tensors provide highly specific signatures that probe not
only the defect itself, but also very sensitively the lateral strain
and the structural and chemical environment of the nearest
and next-nearest atoms. The deviation of the g tensor from the
free-electron ge value is essentially determined by spin-orbit
coupling effects. Zeeman kinetic energy and spin-other orbit
corrections are more than one and two magnitudes smaller,
respectively, for the systems considered here.

The comparison of the calculated g tensors with experi-
mental values from microcrystalline silicon (μc Si:H) suggests
that in particular hydrogen abstracted from monohydride and
dihydride (001)-oriented terraces dominate the measurements:
Specific defects known from the Si(001):H surface can be also
identified on many other surfaces with different orientations.

TABLE VI. Calculated g tensor of the H vacancies at Si(112̄):H schematically shown in Fig. 12 ϑ of g3 is given with respect to the surface
normal [112̄]; see text for further details.

ḡ g1 g2 g3 ϑ

H3 vac. 2.007 96 2.012 31 2.010 57 2.000 98 20.9 ◦

H1 vac. 2.007 86 2.011 58 2.010 71 2.001 29 21.8 ◦

H2 vac. monohy. 2.006 20 2.009 50 2.006 67 2.002 44 39.8 ◦

H2 vac. dihy./dimer. 2.005 69 2.009 28 2.005 65 2.002 15 39.7 ◦

H2 vac. monohy. 2.004 89 2.009 26 2.003 64 2.001 78 27.9 ◦

H2∗ ad H monohy. 2.004 22 2.004 57 2.004 28 2.003 80 20.2 ◦

H2 vac. dihy. 2.004 13 2.006 21 2.003 51 2.002 68 44.3 ◦

H2 vac. dihy. 2.003 86 2.005 23 2.004 44 2.001 90 31.6 ◦
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TABLE VII. Calculated hyperfine tensors for H-related db defects
for various surface orientations (principal values Ai given in MHz).
� is the angle between A3 and the direction of the dimers [11̄0]. Only
the largest HF splitting are shown, not necessarily due to the H next
to the db. For comparison, the experimentally derived signature from
Ref. [10] is also given.

A1 A2 A3 �

Si(001)9 DH with H vac. 34.7 34.3 36.7 12.1 ◦

Si(001)9∗ DH with H vac. −87.0 −86.1 −23.8 0.9 ◦

Si(114)H2 25.0 36.4 22.9 47.5 ◦

Si(114)H2∗ −84.2 −83.3 −22.6 0.5 ◦

Si(114)H6 29.4 27.0 41.3 22.2 ◦

Si(114)H6∗ −83.8 −84.5 −21.5 2.6 ◦

Si(112̄)H2 ad. H monohy. 21.6 22.0 23.9 5.3 ◦

Si(112̄)H2∗ ad. H monohy. −95.2 −94.2 −31.1 0.1 ◦

Si(112̄)H2 vac. dihy. 44.1 45.4 47.3 15.4 ◦

Si(112̄)H2∗ vac. dihy. −85.1 −84.2 −23.4 0.0 ◦

exp. hfs(B) 49.1 49.1 8.4

Thereby, they provide similar ḡ values which are shown
to reproduce the measured resonances at ḡ = 2.0043 and
ḡ = 2.0052 [11,12]. This scenario is consistent (i) with the
theoretical findings of Stekolnikov and Bechstedt that the
(001) plane contributes considerably to the Si equilibrium
crystal shape [49], (ii) with the suggestion that single H atoms
evaporate easily from monohydride dimers, and (iii) with the
observation that dihydride surfaces are in reality a disordered
mixture of mono- and dihydride, where the composition and
the surface morphology depend on the preparation details [31].

More specifically, the larger value at ḡ = 2.0052 is expected
for regions with low hydrogen coverage, resulting in a Si-
Si-H hemihydride motif. Here, the essentially sp3-hybridized
dangling bond is tilted against the (001) surface or terrace
normal, such that its magnetization density is reduced to a
bipod, cf. Fig. 9 (structure 6). The resonance at ḡ = 2.0043,
in contrast, is shown to appear in positions with dihydride

local environment. Here, two configurations are conceivable:
(i) a quite floppy structure with a sp2-like hybridized db Si
atom bound to two Si atoms and one H atom, and (ii) a
more symmetric structure, with one adjacent H atom in a
bond-bridging position. Surface reconstructions with dimers
in end-to-end fashion, as present, e.g., at Si(001), Si(114)
(H2/H6), or Si(112̄) (H2), may lead to configurations where
the H atom is symmetrically placed between two Si atoms
for H rich environments [50,51]. Based on the present data,
both configurations are expected to contribute considerably to
the resonance measured at ḡ = 2.0043. The bond-bridging
configuration provides, moreover, exceptionally large H-
related hf splittings which are in nice agreement with those
of the ‘hfs(B)’ signal in a-Si:H material. This suggests surface
related Si-H-Si states to be responsible for this EPR signal. A
third group of EPR signals with considerably larger ḡ values
between 2.006 and 2.009 is predicted for highly symmetric
dangling bonds resembling single dangling-bonds defects in
silicon bulk material. As the exact value depends strongly on
local strain, this type of defect can explain the less intense
signal with large g strain between 2.006 and 2.008 observed
in μc-Si:H as well as in a-Si:H [10].

Besides a better understanding of the magnetic resonances
in μc Si:H and a-Si:H, the present work provides a valuable
data base for the future identification of specific dangling-bond
defects at perfectly oriented Si surfaces. This is expected to
be of particular relevance in the context of the development
of electrically detected magnetic resonance in ultra-high
vacuum environment (UHV-EDMR) promising sensitive in
situ analysis of single crystalline surfaces [52].
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