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Magnetic description of the Fermi arc in type-I and type-II Weyl semimetals
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We consider finite-sized interfaces of a Weyl semimetal and show that the corresponding confinement potential
is similar to the application of a magnetic field. Among the numerous states, which can be labeled by indices
n like in Landau levels, the n = 0 surface state describes the Weyl semimetal Fermi arc at a given chemical
potential. Moreover, the analogy with a magnetic field shows that an external in-plane magnetic field can be used
to distort the Fermi arc and would explain some features of magnetotransport in Weyl semimetals. We derive the
Fermi arc for type-I and type-II Weyl semimetals where we deal with the tilt anisotropy by the use of Lorentz
boosts. In the case of type-II Weyl semimetals, this leads to many additional topologically trivial surface states
at low energy. Finally, we extend the Aharonov-Casher argument and demonstrate the stability of the Fermi arc
over fluctuations of the surface potential.
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I. INTRODUCTION

One key feature of the interface of a topological insulator
put into contact with a normal insulator is the presence of stable
surface states [1]. This stability is related to the topological
Chern number which is based on the existence of a band gap.
Surface states can play a crucial role since their metallicity
can radically affect the transport properties of the topological
insulator. There are however topological materials, Dirac
semimetals (DSMs) and Weyl semimetals (WSMs), where the
band gap is exactly zero and they can be described as a critical
phase lying between normal and topological insulators [2,3].

In recent measurements [4–6] on materials of the (Ta,Nb)-
(As,P) family of three-dimensional (3D) WSMs, surface
states with surprising properties were observed and related
to the Fermi arc, as described in numerous theoretical studies
[7–11]. In particular, the Fermi arc surface states have an open
Fermi surface that connects the projected bulk Weyl nodes
and, furthermore, they are spin polarized. These properties are
used to characterize genuine WSMs [3,5]. Therefore, a better
understanding of the Fermi arc properties has been sought in
many theoretical investigations. Recently similarities between
Fermi arcs and Landau bands [11,12] have been pointed out,
although the latter typically arise in the presence of a magnetic
field.

In various theoretical studies, the crystal potential at the
surface of the WSM is sharp because it simplifies the derivation
of the wave-function boundary conditions [7–10]. In this
approach one considers that the width of the interface � is
shorter than any other length scale, such as the magnetic
or the band bending lengths. In some situations, however,
this description is not sufficient. For example, in Ref. [13],
in order to describe the effect of a magnetic domain wall
on Majorana bound states of a superconducting chain, it
was necessary to introduce a smooth gap inversion at the
interface.

In the present paper, we extend the description of a smoothly
varying interface to the WSM in order to describe the coupling
to external electromagnetic fields. We consider that two bulk
materials are put into contact with an interface of width �

(see Fig. 1). In agreement with recent semiclassical [11]
and numerical [12] studies, we show, within a constructive

quantum-mechanical approach, that the Hamiltonian describ-
ing the interface is similar to one in the presence of a
magnetic field within a particular gauge. This leads to a set
of two-dimensional (2D) Landau bands indexed by an integer
number n. In the case of WSMs, these states have open Fermi
surfaces as a consequence of the localization of Landau orbits
inside the region of size �, which is similar to the derivation of
the degeneracy of Landau bands within the Landau gauge
[14]. This yields a Fermi surface with an odd number of
Fermi arcs with only the n = 0 Landau band having a single
Fermi arc. This state is the most relevant at low energy and
is the main subject of our investigation. The analogy with
the magnetic field allows us to explore various aspects of the
n = 0 Fermi arc. In particular, we show that the effect of an
external magnetic field is to modify the shape of the Fermi
arc and that the combination of tilt and magnetic field can
break the arc into two separate pieces. This is investigated
in the case of type-I and type-II WSMs [15]. Moreover, in
spite of the reduced dimension of the surface compared to
the bulk, we show that the transport properties are widely
affected by the surface states. Indeed, the n = 0 surface state
acts as a Faraday cage and localizes the electric field at the
surface. We finally prove the topological stability of the n = 0
Fermi arc, based on a generalization of the Aharonov-Casher
argument [16].

The paper is organized as follows: In Sec. II we explicitly
model the interface of a bulk Weyl semimetal with an insulating
bulk. Section III is devoted to a detailed discussion of the
surface and bulk screening. In Sec. IV we describe the effect
of the tilt anisotropy on the Fermi-arc structure and relate it to
the effect of an electric field which is canceled with a proper use
of Lorentz boosts. We extend the Aharonov-Casher argument
in Sec. V, originally established to prove the stability of the
n = 0 Landau level of 2D DSMs in a spatially inhomogeneous
magnetic field, to the surface states of 3D WSMs in the
presence of a fluctuating surface potential. We extend the use
of chirality to three-dimensional systems and relate the long-
range behavior to surface states derived using boundary condi-
tions. We present a detailed discussion of our results in Sec. VI,
discussing possible consequences on magnetotransport
experiments.
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FIG. 1. Sketch of the smoothly varying interface between two
bulk materials, a Weyl semimetal with two Weyl cones separated by
a saddle point at energy � (in yellow, on the left) and an insulator
with gap �′ (in white, on the right). Within the interface of width
�, the electrons behave as if they were immersed into an in-plane
magnetic field Bp .

II. MAGNETIC DESCRIPTION OF THE SURFACE STATES

Let us first consider a general case of a left and a right
bulk, each of which is modeled by a set of parameters (see
Fig. 1). These parameters vary smoothly across an interface
of size �, and here we choose to linearly interpolate them
between the two bulk Hamiltonians: ĤL = hL(k) · σ̂ in the
material on the left side (x < 0) and ĤR = hR(k) · σ̂ in the
material on the right side (x > �), where σ̂ = (σ̂x,σ̂y,σ̂z) is
a vector combining the three Pauli matrices. The interface
region x ∈ [0,�] between the two bulk materials can also model
a surface in the case where one of the two materials is a
trivial bulk insulator. The discussion of the general model in
Sec. II A allows us to investigate the emergence of Fermi arcs
on the surface, while we discuss more explicit examples in the
following two subsections. In Sec. II B, we discuss a pair of
Weyl points that merge in the interface region opening a gap.
Finally in Sec. II C we analyze a simplified model of single
Weyl cones.

A. Interface Hamiltonian

We consider a Hamiltonian Ĥs describing the region of the
interface, x ∈ [0,�], the linear interpolation between the two
bulk Hamiltonians ĤL and ĤR ,

Ĥs = [hL + δhx/�] · σ̂ , (1)

where we introduce δh(k) = hR(k) − hL(k), such that Ĥs(x =
0) = ĤL and Ĥs(x = �) = ĤR . We discuss the validity of this
linear interpolation in Sec. V, where we show that deviations
in the form of a fluctuating interface potential do not alter the
main conclusions drawn from the present model. Notice that
the wave-vector component kx perpendicular to the interface
needs to be treated as a quantum-mechanical operator such
that [x,kx] = i (here, and in the remaining parts of this
paper, we use a system of units with h̄ = 1). We consider
situations with a linear kx component in the Hamiltonian that is
unchanged across the interface, such that ĤL(kx) − ĤL(kx =
0) = ĤR(kx) − ĤR(kx = 0) = vxkxσ̂x and δh = δh(k‖) with
the in-plane momentum k‖ = (0,ky,kz). In order to describe
the opposite interface one has to permute hL ↔ hR . This
corresponds to replacing (hL,δh,�) in Eq. (1) by (hR, − δh,�)
or equivalently by (hR,δh, − �) in all the derived expressions.

We rotate the Hamiltonian Ĥs with angle θ along the x axis
with tan(θ ) = δhz/δhy in order to simplify the treatment of
the noncommuting variables, [x,kx] �= 0. In the new basis, the
interface Hamiltonian reads

Ĥ (θ)
s = eiθσ̂x/2Ĥse

−iθ σ̂x/2

= vx

[(
kx+x/�2

x

)
σ̂x + sgn(vx�)

x − 〈x〉
�2

S

σ̂y

]
+ M(k‖)σ̂z,

(2)

and we introduce the notation δh‖(k‖) = (0,δhy,δhz) for the
in-plane components of δh and

〈x〉/� = −δh‖ · hL/δh2
‖ = 1 − δh‖ · hR/δh2

‖,

�x =
√

|vx�|/|δhx |, �S = √|vx�|/|δh‖|, (3)

M(k‖) = b · hL/|b| = b · hR/|b|,
where b = ∇ × (δhx/�) = ex × δh/� plays a role similar to
the magnetic field as we show below. Hamiltonian (2) can then
be rewritten with the help of the following ladder operators

â = �S√
2

[
kx + x/�2

x − isgn(vx�)(x − 〈x〉)/�2
S

]
,

(4)

â† = �S√
2

[
kx + x/�2

x + isgn(vx�)(x − 〈x〉)/�2
S

]
,

such that [â,â†] = sgn(vx�), and the interface Hamiltonian in
the rotated basis thus becomes

Ĥ (θ)
s =

(
M(k‖)

√
2|vx |â/�S√

2|vx |â†/�S −M(k‖)

)
. (5)

In the case vx� > 0, the eigenstates can be written in the form

|�〉 =
(

αn|n − 1〉
βn|n〉

)
, (6)

where |n〉 are the eigenstates of the number operator n̂ = â†â
of eigenvalue n. In the other case where vx� < 0, the spinor
components are interchanged. These states are located around
〈x〉 = −δh‖ · h�/δh2

‖ ∼ �, oscillating in the x direction with a
wavelength λx = 2π/〈kx〉 = 2π�2

x/〈x〉 ∼ �, and they spread
over the typical size �x = √

2n�S ∼ √
�.

We find that the n � 1 bands are gapped with eigenstates
in the original basis |�λ,n〉 and eigenenergies Eλ,n (λ = ±1)
such that

|�λ,n〉 = eiθσ̂x/2

([
1 + λ

M(k‖)
En

]|n − 1〉
λ
[
1 − λ

M(k‖)
En

]|n〉

)
,

Eλ,n(k‖) = λEn = λ

√
M(k‖)2 + 2v2

xn/�2
S. (7)

These solutions are similar to Landau bands of a Weyl
semimetal in a pseudomagnetic field Bp along b and of
magnetic length �S . The gaps between the bands are on the
order of

√
2|vx |/�S ∼ 1/

√
� → ∞; i.e., they diverge with

� → 0 and are thus usually neglected in the discussion of
sharp interfaces [7]. In the case � �= 0, the n � 1 states should
be observed at higher energies and in Sec. IV we show that a
tilt in the band structure can reduce their gaps.
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The n = 0 Landau band which we are interested in here
is special, in that it survives in the limit of sharp interfaces
(� → 0), and one finds either

|�+
0 〉 = eiθσ̂x/2

(
0

|0〉
)

,

(8)
E+

0 (k‖) = −M(k‖),

for vx� > 0, or

|�−
0 〉 = eiθσ̂x/2

(|0〉
0

)
,

(9)
E−

0 (k‖) = M(k‖),

for vx� < 0. If one takes into account the rotation of the
Hamiltonian in Eq. (2), one finds that the isospin points
along e0 = −sgn(vx�)(δhyez + δhzey)/

√
δh2

y + δh2
z , and the

eigenenergy can be rewritten in a concise manner as E0(k‖) =
−sgn(vx�)M(k‖). Written explicitly, the n = 0 surface states
are given by the wave functions (apart from a normalization
constant)

ψ+
0 (x,y,z) ∝

(
cos θ

2

i sin θ
2

)
e−(x−〈x〉)2/2�2

S e−ix2/2�2
x ei(kyy+kzz),

(10)

ψ−
0 (x,y,z) ∝

(
i sin θ

2

cos θ
2

)
e−(x−〈x〉)2/2�2

S e−ix2/2�2
x ei(kyy+kzz),

where the sign in the superscript is sgn(vx�). The wave
functions consist therefore of the usual harmonic-oscillator
wave functions confined in the x direction, centered around
〈x〉, multiplied by plane-wave functions in the y and z

directions. Furthermore, one notices an additional phase
exp(−ix2/2�2

x) that is due to the x dependence of the real
part of the harmonic-oscillator ladder operators (4).

The surface states must be localized in the interfacial region.
As in the treatment of the degeneracy of Landau bands [14],
this condition implies that the mean position 〈x〉 of the surface
states is such that 〈x〉 ∈ [0,�]. In Sec. V we show that this
same condition holds for the n = 0 surface state using another
argument. This leads to the following localization condition

−1 < δh‖ · hL/δh2
‖ < 0. (11)

This condition is of utmost importance in the understanding of
the Fermi-arc structure. In the following section, we illustrate
this condition for the surface states of a Weyl semimetal.

B. Fermi arc, merging of Weyl nodes

After these general considerations, we now treat the
situation with two Weyl nodes in the material on the left
(x < 0) that merge at the interface and lead to an insulating
state for x > �. This can be taken into account within the
following merging model:

Ĥ4 =
(

vF (k + �k0ez/2) · σ̂ κ1

κ1 −vF (k − �k0ez/2) · σ̂

)
,

(12)

where two Weyl nodes of opposite chirality are located at
kz = ±�k/2 with

�k = �k0

√
1 −

(
2κ

vF �k0

)2

. (13)

The two nodes merge at κ = vF �k0/2 and then form a gapped
phase for κ > vF �k0/2. In Appendix A we show that in
the limit of strong coupling |κ + vF �k0

2 | � |κ − vF �k0
2 |, i.e.,

precisely in the vicinity of the merging transition we are
interested in, this model can be reduced to the following
two-band Hamiltonian:

Ĥ2L = vF (kxσ̂x + kyσ̂y) + (
k2
z /2m − �

)
σ̂z, (14)

with m = (κ + vF �k0/2)/2v2
F . One obtains either two Weyl

nodes located at kz = ±�k/2 = ±√
2m� if � > 0 or a

gapped phase if � < 0, such that � now triggers the
merging transition. Then the two bulk Hamiltonians are
Ĥ2L = vF (kxσ̂x + kyσ̂y) + (k2

z /2m − �)σ̂z,� > 0, for x < 0
and Ĥ2R = vF (kxσ̂x + kyσ̂y) + (k2

z /2m + �′)σ̂z,�
′ > 0, for

x > �. We represent the two models by dashed lines in Fig. 2,
where we consider a continuous variation of the parameter δhz,
which is indeed given by � + �′, as we discuss below. On the
left side, one has the phase with two Weyl nodes separated by
�k, and on the right side one finds the insulating state with

FIG. 2. (a) Evolution of the phase of the model in Eq. (16) for
various values of δhz, which varies linearly in x in the interface. One
finds an insulator for δhz > 0 and a Weyl semimetal for δhz < 0.
The orange line indicates the location of the Weyl nodes along the
z axis. (b) and (c) Superposition of the bulk WSM band structure at
kx = 0 (transparent green for the conduction and transparent blue for
the valence band), the n = 0 surface-state band structure for states
that fulfill 〈x〉 ∈ [0,�] (in orange), and the plane of constant energy
μ (chosen in the conduction band, in transparent red). The section
at kx = 0 of the bulk Fermi surface is represented by the thick black
circles and the Fermi arc connecting the bulk Fermi surfaces by the
thick red line. In (b) we consider no in-plane magnetic field B � Bp

(large gap insulator �′) and recover the Fermi arc band structure
found in other studies. In (c) the Fermi arc becomes curved for strong
magnetic fields B ∼ Bp (small-gap insulator �′).
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gap �′. Notice that, for kx = 0 (or ky = 0), this model reduces
to that used in the study of Dirac point merging in 2D [17].

We now assume that the parameter � varies linearly over the
interface. In the notations introduced in the previous section,
the bulk models are described by the following components:

h2L(k) = (
vF kx,vF ky,k

2
z /(2m) − �

)
,

(15)
h2R(k) = (vF kx,vF ky,k

2
z /(2m) + �′),

and, for x ∈ [0,�], the interface Hamiltonian is

Ĥ2s = vF (kxσ̂x + kyσ̂y)

+
(

k2
z /2m − � + � + �′

�
x

)
σ̂z; (16)

i.e., δh reduces to δh = (0,0,� + �′). At this stage we can
already introduce the effect of an external magnetic field,
B = Bez, along the direction separating the two cones. In
the Landau gauge, the Peierls substitution leads to ky →
ky + sgn(B)x/�2

B with �B = 1/
√

eB the magnetic length. This
is similar to the introduction of δhyσ̂y = sgn(B)vF �/�2

Bσ̂y

in Eq. (16), which corresponds to a displacement of the
Weyl nodes over the interface from ky = 0 to ky = δky ≡
−sgn(B)�/�2

B . This displacement can be introduced right from
the beginning with a shift of h2R,y by a constant δh0

y and
the same could be done with respect to h2R,x . We consider a
magnetic field along z only for two reasons: (i) a component
along x would quantize the surface states, and (ii) for κ �= 0 in
Eq. (12), a component along y is not along the principal axis
of symmetry and thus difficult to solve; we only treat it in the
case κ = 0 in Sec. II C.

As in the general case (2), we perform a rotation of angle θ

of Hamiltonian (16) along the x axis and obtain a Hamiltonian
similar to Eq. (5),

Ĥ
(θ)
2s = ei θ

2 σ̂x Ĥ2se
−i θ

2 σ̂x (17)

=
(

M(k‖)
√

2vF â2/�S√
2vF â

†
2/�S −M(k‖)

)
, (18)

for tan(θ ) = �2
B/�2

Bp
where �Bp

= 1/
√

eBp is the magnetic
length associated with the pseudomagnetic field Bp = (� +
�′)/(evF �) and �S = 1/

√
eBT is the magnetic length associ-

ated to the total (effective) magnetic field BT =
√

B2
p + B2,

combining both Bp and B. In the same manner as in Eq. (3) we
find the mass term M(k‖) = [B(k2

z /2m − �) − BpvF ky]/BT

and the ladder operators â2,â
†
2, which define the number states

|n〉 of mean position

〈x〉
�

= −Bp

[
Bp

( k2
z

2m
− �

) + BvF ky

]
B2

T (� + �′)
, (19)

and extension �S . The consistency condition 〈x〉 ∈ [0,�] leads
to

0 > Bp

(
k2
z /2m − �

) + BvF ky > −B2
T (� + �′)/Bp. (20)

The eigenstates are similar to the ones defined in (7) and (8).
Notice that the n = 0 state for vanishing magnetic field on the
top surface has the same band dispersion as the Fermi arc found
in [7] for a sharp edge, E0 = vF ky . This is important insofar
as the model used here is quite different with its continuous

FIG. 3. Fermi-arc structure of an undoped Weyl semimetal, i.e.,
μ = 0, for different values of the in-plane magnetic field B = Bez.
Dashed lines are the Fermi arc for independent Weyl cones (κ = 0)
in Eq. (26), the portions of Fermi arc, while the continuous lines are
for coupled Weyl cones (κ �= 0), full Fermi arcs.

variation over the step. The band dispersion found in [7] is
actually of opposite sign; this is because of different sign
conventions on vx and their results correspond to ours by
switching top and bottom surfaces. Notice that beyond this
n = 0 band, we also find many other gapped (n � 1) solutions
for finite values of the interface width � that correspond to
higher Landau bands. These do however play no role here in
the formation of the Fermi arc, which arises solely from the
n = 0 band. We take into account the consistency condition
and obtain the following equation for the Fermi surface of the
n = 0 state at a given chemical potential μ:

−1 <

k2
z

2m
− �

� + �′ + B

BT

μ

� + �′ = ky

δky

− Bp

BT

μ

vF δky

< 0.

(21)

We represent the resulting Fermi arc in Fig. 2(b) without
and 2(c) with magnetic field. The external magnetic field bends
the Fermi arc which connects the two bulk Fermi surfaces
only if

√
1 + (Bp/B)2�′ > sgn(B)μ >

√
1 + (Bp/B)2� and

we discuss this in Sec. VI.
At zero chemical potential, the effect of the magnetic field

B is represented by the continuous lines in Fig. 3 for different
values of B. We observe that the Fermi arc has the equation of a
parabola 2pky = k2

z − (�k/2)2 of parameter p = vF m�2
B/�2

S

determined by the magnetic field. This bending can be present
without an external magnetic field if we had started with
δhy �= 0 which corresponds to a displacement of the bands
along ky from one material to the other. A nonzero value of δhy

corresponds to a rotation of the line connecting the Weyl nodes
while δhz is responsible for its shortening as described above.
Since the coupling of this “rotation” δhy is precisely that of
the applied magnetic field, we can use the expressions derived
above simply by replacing �B = √

vx�/δhy , such that the
rotation leads to the same Fermi-arc bending as the magnetic
field in Fig. 3.

Notice finally that the deformation of the Fermi arc is also
accompanied by a change in the group velocity that should
impact transport properties. Indeed, from Eqs. (8) and (9) one
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finds for the dispersion of the n = 0 surface band

E0 = vF ky

Bp

BT

−
(

k2
z

2m
− �

)
B

BT

, (22)

which yields the group velocity

vg(B) =
(

0,vF

Bp

BT

, − kz

m

B

BT

)
, (23)

whose orientation depends on the applied magnetic field. In
particular, the component along the magnetic field is increased
and this may influence magnetotransport as discussed in
Ref. [18] for various metals. The reason is that from the
Einstein relation [19] for the conductivity

σ = e2τv2
g,E

2
g(μ), (24)

with τ the electrons scattering time, g(μ) the density of states,
and vg,E = vg · E/E the group velocity along the electric field
E , the magnetotransport should depend on the magnetic field.
The dependence of magnetotransport on the density of states
g(ω) is discussed in the following section, where we derive the
Fermi arc of a single Weyl node which, being isotropic, allows
us to study the effect of the magnetic field in any direction.

C. Fraction of a Fermi arc

In the previous section we have derived the equation of the
Fermi arc (21) in a magnetic field. In the simplified situation
where B = 0, one finds ky = μ/vF and −2m�′ < k2

z <

(�k/2)2 (�′ > 0) which leads to the Fermi arc equation with
kz ∈ [−�k/2,�k/2]. However, one could have considered
�′ < 0 and then the Fermi surface would be cut into two
parts kz ∈ [−�k/2, − √

2m|�′|] ∪ [
√

2m|�′|,�k/2] that we
call the fraction of a Fermi arc. This situation describes
the interface between two WSM with Weyl nodes located
at different momenta in reciprocal space and was observed
numerically in Ref. [11]. This observation indicates that in the
absence of a magnetic field, the Fermi arc only depends on
the existence of the insulating gap �′ and not on its size. In
the case of nonzero in-plane magnetic field, this is still valid
at μ = 0.

In order to obtain additional insight into the Fermi-arc
structure and its B-field dependence, we now turn to the
simplified case of a single Weyl node that shifts in reciprocal
space when trespassing the interface. The cones on the left
and right sides are described by the Hamiltonians Ĥ1L =∑

i∈{x,y,z} viki σ̂i and Ĥ1R = ∑
i∈{x,y,z} vi(ki − δki)σ̂i . In the

notations introduced in Sec. II A, these models are described
by the following components:

h1L(k) = vF (kx,ky,kz),
h1R(k) = vF (kx + δkx,ky + δky,kz + δkz),

(25)

and, for x ∈ [0,�], the interface Hamiltonian is

Ĥ1s = vF

∑
i=x,y,z

(ki − δkix/ l)σ̂i . (26)

The spatial dependence of this Hamiltonian is similar to
what is obtained in a pseudomagnetic field, Bp = ∇ × Ap,
since then the spatial dependence of the Weyl Hamiltonian is

Ĥel = ∑
i eviAp,i σ̂i after a Peierls substitution. In the present

situation the pseudomagnetic field is

Bp = δk × ex/(e�), (27)

where ex is the unit vector pointing along the x axis. However,
the introduced pseudopotential vector Ap is not gauge-
invariant and ∇ · Ap = δkx , and it is at the origin of the addi-
tional x-dependent phase exp(−ix2/2�2

x) = exp(−ix2δkx/2�)
of the surface states already encountered in Eq. (10).

We perform again a rotation of angle θ of Ĥ1s along the x

axis and obtain a Hamiltonian similar to Eq. (5)

Ĥ
(θ)
1s = ei θ

2 σ̂x Ĥ1se
−i θ

2 σ̂x (28)

=
(

M(k‖)
√

2vxvpâ/�S√
2evxvpâ†/�S −M(k‖)

)
, (29)

for tan(θ ) = vzδkz/(vyδky). We introduce the in-plane velocity
vp perpendicular to Bp

vp =
√

(vyδky)2 + (vzδkz)2

δk2
y + δk2

z

, (30)

and �S = √
�/|δk‖| the effective magnetic length that depends

on both the width � of the interface and the projection of Weyl
node spacing δk‖. The mass term M(k‖) is

M(k‖) = vyvz

vp

(δkykz − δkzky)√
δk2

y + δk2
z

. (31)

The ladder operators are associated with the number states |n〉
of extension vx�s/vp, mean position 〈x〉, and spatial frequency
λx defined by

〈x〉
�

= v2
yδkyky + v2

z δkzkz

v2
p

(
δk2

y + δk2
z

) , (32)

λx = 2π

δkx

�

〈x〉 . (33)

As we argued in Sec. II A, in the limit of small � one can focus
only on the n = 0 Landau band defined in Eq. (8). The Fermi
surface at chemical potential μ is then described by

0 <
ky

δky

− vzδkz

vyδky

μ

vp|δk‖| = kz

δkz

+ vyδky

vzδkz

μ

vp|δk‖| < 1,

(34)

which reproduces the behavior of a Fermi arc for a single Weyl
node. We represent this solution for μ = 0 by the (green)
dashed lines in Fig. 3. For a better comparison with this
case, we double the Fermi arc fractions such as to model
two independent Weyl points, one situated at δk = (0,0,δkz)
and one at −δk, related by mirror symmetry around kz = 0.
One clearly sees that the model of independent Weyl points
reproduces well the Fermi arcs in the vicinity of the two
Weyl nodes. Because of the lack of coupling between the
Weyl nodes, the Fermi arcs are broken into two parts, one
for each Weyl node, in order to respect the constraint (34) on
the positions of the surface states. This situation has not yet
been reported experimentally but was noticed numerically in
Ref. [11]. We expect that such displacement of Weyl nodes
can be observed in the bulk material because of a deformation
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gradient [11,20,21], and the appearance of the previously
described metallic states can have a strong influence on bulk
dynamics.

We finish this section with a short discussion of the density
of states in the Fermi arcs. From the dispersion E0(ky,kz) =
−M(ky,kz) given by Eq. (31), where we have replaced
δky → δky − sgn(B)�/�2

B to account for the magnetic field,
one obtains the B-field-dependent density of states per unit
area

gB(μ) = 1

(2π )2|vyvz|

√
v2

y

[
δky − sgn(B)

�

�2
B

]2

+ (vzδkz)2,

(35)

which is independent of the chemical potential μ,gB (μ) = gB .
In contrast, the bulk Weyl fermion density of states varies
quadratically with the chemical potential gW (μ) ∼ μ2 and in
the limit μ → 0 it vanishes, while gB remains finite. Moreover,
one notices from Eq. (35) that the magnetic field modifies the
surface density of states. Indeed, an expansion around the
B = 0 density of states g0 = gB=0 yields

gB ≈ g0 − 1

(2π )2

|vy |
|vz|

δkysgn(B)�/�2
B√

(vyδky)2 + (vzδkz)2
, (36)

i.e., a linear dependence on the magnetic field since �B ∝
1/

√
B. More saliently, depending on the sign of the magnetic

field and δky , the density of states can be increased as well
as lowered. This should influence the magnetoconductivity
derived from the Einstein relation (24), which is asymmetric
under inversion B → −B if δky �= 0. This corresponds to
opposite changes in the curvature in the Fermi arc.

Moreover, one can manipulate the displacement of the Weyl
nodes with an applied in-plane magnetic field B of arbitrary
direction since the model is isotropic, for example B = Bez.
In the Landau gauge, after Peierls substitution, the applied
magnetic field can be described by switching δky → δk′

y =
δky − sgn(B)�/�2

B which translates the Weyl nodes along y in
reciprocal space proportionally to the magnetic field B. This
is plotted in Fig. 3 for the same values of the magnetic field as
for the previous model with two (merging) Weyl points. Again
the linear dispersion of the Fermi-arc fractions is due to the
absence of coupling between the Weyl nodes, but one notices
that, in the vicinity of these nodes, the slope of the Fermi arcs is
well reproduced within our simplified model. More generally,
this deformation of the Fermi arc by a magnetic field is along
δk = e�ex × B for each node, independently of its chirality.

In this section, the surface of a Weyl semimetal was
modeled with the help of linearly varying model parameters
over a finite extension �. When this size is comparable to the
magnetic length �B of an in-plane magnetic field the Fermi
arc is deformed. This deformation can be described for any
direction of the magnetic field if one considers an isotropic
model, which necessarily involves only a single Weyl node and
for which we have derived the corresponding Fermi arc. We
discussed possible consequences of this finite-sized interface
on the contribution of surface states to magnetotransport.
In the next section we show that this contribution may not
be negligible compared to the bulk response because of the
screening of the electric field.

In Sec. IV we extend the description of the surface
Hamiltonian to tilted Weyl semimetals and study the surface
states of type-I and type-II WSMs.

III. SCREENING OF AN EXTERNAL ELECTRIC FIELD
IN A WEYL SEMIMETAL

In the previous section we discussed possible consequences
of a magnetic field on the transport properties of the n = 0
surface states. From scaling arguments, one can argue that the
bulk states dominate transport since σbulk/σsurface ∼ L/�x �
1 with σ the conductivity, L the sample size, and �x the
surface states extension. In the present section, we show that
the screening of both the n = 0 surface state and the bulk states
occurs on a length �scr � �x so that σbulk/σsurface ∼ 1 for a
WSM as opposed to the above scaling argument.

In semiconductor physics the electric field at the interface
is changed due to charge transfer. We use the results described
in [8] to provide an order of magnitude of the typical depth
at which the electric field penetrates in a Weyl semimetal. We
consider an electric field along the y axis, then according to
the Poisson equation, one has

U ′′(x) = − e

ε0
n(x), (37)

where U (x) is the electric potential, e is the electron charge,
and n(x) is the density of electrons.

A. Screening by surface states

We consider that the Weyl semimetal is located at x < 0
and in order to describe the Fermi-arc surface states we use
the same model as in Sec. II B,

ĤL =
(

k2
z

2m
− �

)
σ̂z + vF (kxσ̂x + kyσ̂y). (38)

In the following we consider the long-range solution of the
n = 0 Fermi arc, which corresponds to the behavior for x � �.
This solution was derived in Ref. [7] and we derive it for the
finite-sized interface in Sec. V, in Eq. (100). The long-range
solution is such that, for kz ∈ [−�k/2,�k/2],

ε(ky,kz) = vF ky, (39)

|�s〉 =
√

(�k/2)2 − k2
z

mvF

(
0
1

)
e

k2
z −(�k/2)2

2mvF
x
. (40)

The density of electrons is then

∂ns

∂μ
= gs(μ,x) (41)

= 1

(2π )2vF

∫ �k
2

− �k
2

dkz

(�k/2)2 − k2
z

mvF

e
k2
z −(�k/2)2

mvF
x
, (42)

where gs(μ,x) is the local density of states along x per unit
of surface. We rescale x → s = (�k/2)2

mvF
x; this way the Poisson

equation is

U ′′(s) = g

(∫ 1

−1
du(1 − u2)es(u2−1)

)
U (s), (43)
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FIG. 4. Numerical simulation of the decrease in the electric field
at the surface of the Weyl semimetal Na3Bi (blue). We also show the
local density of states profile (orange) to compare the length scales.
One observes the electric field is strongly reduced on the characteristic
depth of the Fermi arc surface states.

with g = 2αmvF /π�k ≈ 4.6, where α = e2/4πεrε0vF is
the fine-structure constant of the material, in terms of the
dielectric constant εr of the material. Here we use the orders
of magnitude for Na3Bi [22]: �k = 2

√
2m� = 0.1 Å, vF =

2.5 eV Å, and 1/2m = 10 eVÅ
2
. We observe two characteristic

scales:
(1) The characteristic depth of surface states �scr =

mvF /(�k/2)2. Since the gap � between Weyl cones is � =
(�k/2)2/2m ≈ vF �k/2 one can approximate vF m/�k ≈ 1
and �scr ≈ 2/�k.

(2) The characteristic damping amplitude g =
2αmvF /π�k ≈ 2α/π = (2α0/π )(c/vF )εr , in terms of
the bare fine-structure constant α0 = 1/137; for g > 1 the
damping at the surface is strong and for g < 1 the damping at
the surface is small.

In the case of Na3Bi, g ≈ 4.6 and �scr ≈ 5 nm and thus we
observe a strong decrease of the electric field due to the n = 0
Fermi arc on a length scale of the order of 5 nm as can be seen
from numerical calculations Fig. 4.

Notice that, here, we have considered the long-range
behavior where the interface can be considered sharp with
� < 1/�k ∼ �scr . In this case, the electric field is screened
over a small region of depth �scr in the WSM. For a wide
interface, � � 1/�k, the screening takes place in the interface
region and the screening length is then naturally given by the
width of the Gaussian wave function �scr ∼ �S (10), which, for
a wide interface, is smaller than the interface width �. In this
latter situation, the electric field leads to a renormalization
of the surface-state band structure as in the presence of
a tilt anisotropy. We discuss this point in more detail in
Sec. IV.

B. Screening by bulk states

In the case of g degenerate Weyl cones, with band
dispersion E(k) = ±vF |k|, one has the density of states

(compressibility)

∂n

∂μ
= g

μ2

π2v3
F

. (44)

For an undoped crystal, the electrochemical potential with
respect to the Weyl point is μ(x) + eU (x) = 0 and we deduce
that

U ′′(x) = − 4gαe2

3π2v2
F

U 3(x). (45)

We consider the characteristic length to be λ and the electric
field to be of the order E ∼ U/λ; then one finds

λ =
(

3π2v2
F

4gαe2E2

)1/4

. (46)

This characteristic length needs to be compared to that, �scr ,
intervening in the surface-electron screening. If �scr/λ < 1, the
screening is mainly due to the electrons forming the Fermi arcs,
while �scr/λ > 1 indicates screening primarily due to bulk
electrons. One notices that this ratio increases monotonically
with the electric field,

�scr

λ
=

√
E
E0

, (47)

in terms of the material-dependent characteristic electric field
E0 ≈ √

3/gαπ��k/16e. One therefore notices that at small
electric fields E < E0 screening is dominated by electrons in
the Fermi arcs, while the bulk electrons only contribute to
screening at larger values of E . This effect can be understood
simply in terms of the density of states; in spite of their reduced
dimension, surface electrons in the Fermi arcs have a nonzero
density of states [see Eq. (35)], while that of the Weyl fermions
is strongly reduced (∼μ2) in the vicinity of the Weyl nodes. A
large electric field is therefore required to induce a sufficient
number of bulk carriers such as to have the necessary density
of states to provide a significant contribution to screening.

If we use the same values as for surface states in Na3Bi,
one obtains a critical field of E0 ≈ 106 V/m, corresponding to
a length scale of λ ∼ �scr ∼ 10 nm.

IV. SURFACE STATES OF TILTED WEYL SEMIMETALS

In Sec. II, we derived the Fermi-arc structure of type-I
WSMs with straight cones. This situation of straight cones
is, however, rarely encountered in materials displaying WSM
phases, where the cones are generically tilted. While a moder-
ate tilt barely affects the electronic structure since the isoenergy
lines remain closed curves (type-I WSMs), the situation is
dramatically changed when the cones are overtilted. Parts of
the original conical conduction band are then shifted below
the Fermi level, while parts of the original valance band float
above the Fermi level, leading to open hyperbolic trajectories.
First discussed in the framework of 2D organic materials [23]
and within a field-theoretical approach for 3D materials [24],
these systems are now called type-II WSMs [15] and have
been identified experimentally in ARPES [25,26]. The tilt
and the transition between type-I and type-II WSMs have
been predicted to have consequences on the Landau bands
spectrum [27–31], namely in magneto-optical spectroscopy.
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In the present section, we discuss the influence of the tilt on
the Fermi arc.

We first discuss the low-energy model we use for type-I and
type-II WSMs and the corresponding surface Hamiltonian.
The surface Hamiltonian appears to be similar to that of
electrons in crossed electric and magnetic fields and can
therefore be solved with the use of Lorentz boosts. This change
in the frame of reference can only be performed if the tilt is
smaller than a critical value, and above this critical value, the
spectrum of surface states collapses.

A. Surface of type-I and type-II WSMs

We model the surface of type-I and type-II WSMs with the
same procedure as the one we introduced in Sec. II. The bulk
material on the left side (x < 0) of the interface has two tilted
Weyl nodes and is in contact with a gapped material (x >

�). We consider that each bulk respects either time-reversal
or inversion symmetry such that the two Weyl nodes have
opposite tilts [32]. We describe this situation with the following
four-band model:

Ĥ4t =
(

vF k · (σ̂+t1)+�k0/2σ̂x κ1
κ1 −vF k · (σ̂+t1)+�k0/2σ̂x

)
,

(48)

where t is the tilt vector. This model is similar to Eq. (12) with
Weyl nodes located at kz = ±�k/2 but with opposites tilts. It
can describe both types of WSMs: one obtains a type-I WSM
for |t| < 1 and a type-II WSM for |t| > 1 in the case of zero
coupling between the Weyl nodes, κ = 0. In Appendix A we
show that in the limit |κ + vF �k0/2| � |κ − vF �k0/2|, this
model can be reduced to the following two-band Hamiltonian:

Ĥ2t (t,�) = tz

(
k2
z

2m
− �

)
+ 2vF kz

�k
(txkx + tyky)

+
(

k2
z

2m
− � vF (kx − iky)

vF (kx + iky) −( k2
z

2m
− �

)
)

. (49)

Strictly speaking, the derivation of this two-band model is valid
only for small tilts, |t| � 1. However, we use the two-band
model as an effective model here, and lift this constraint in
order to also describe type-II WSMs for any value of tx,ty ,
and tz. Furthermore, one should keep in mind that this model
cannot be used to describe the behavior at larger values of
kz; in particular we choose kz to be on the order of �k/2.
In the case � > 0, one has two Weyl nodes located at kz =
±�k/2 = ±√

2m� with tilts ±t = ±(tx,ty,tz) (see Fig. 5). In
the case � < 0 one finds a gapped phase that is insulating if
|t| < 1 and if one keeps kz in the region of size �k.

One notices that, as in the absence of a tilt of the Weyl
cones, the gap parameter � can be used to trigger the transition
from a WSM to an insulating phase and thus to model the
interface between the two phases. The Hamiltonian for the
type-I or type-II WSM on the left side of the interface (x < 0) is
ĤL = Ĥ (t,�) with � > 0 and the vacuum (x > �) is modeled
by an insulator of Hamiltonian ĤR = Ĥ (t′, − �′) with a gap
�′ > 0 and |t′| < 1. Within the scheme of linear interpolation
between the two bulk Hamiltonians, one obtains the interface

FIG. 5. Band dispersion of a type-II WSM obtained from the
two-band model in Eq. (49) at fixed ky = 0.

Hamiltonian for x ∈ [0,�]

Ĥts =
[
eEpx + tz

(
k2
z

2m
− �

)
+ 2vF kz

�k
(txkx + tyky)

]
1

+
(

k2
z

2m
− � + evF Bpx vF (kx − iky)

vF (kx + iky) −( k2
z

2m
− � + evF Bpx

)
)

,

(50)

with the pseudomagnetic and pseudoelectric fields

Bp = � + �′

evF �
, (51)

Ep(kx,ky,kz) = 1

e�

{
(t ′z − tz)

k2
z

2m
+ tz� + t ′z�

′

+ 2vF kz

�k
[(t ′x − tx)kx + (t ′y − ty)ky]

}
. (52)

The pseudomagnetic field Bp was discussed in the framework
of Hamiltonian (17) but now it competes with the pseudoelec-
tric field Ep that has two origins: one, (tz� + t ′z�

′)/e�, is due
to the change in the gap over the interface and is similar to
what happens when one introduces the magnetic field with
a Peierls substitution for a tilted Weyl node [31], and the
other one is due to the variation of the tilt in the interface.
In the case of a surface, where the Hamiltonian ĤR describes
the vacuum, it seems somewhat artificial to have a tilt, and
one naturally chooses t′ = 0. For formal reasons, we consider
nevertheless a surface over which the tilt in the x direction
does not change, t′ = (tx,0,0); indeed, the pseudoelectric field
depends on momenta and in particular on the out-of-plane
momentum kx . This leads to crossed terms in x and kx that
are difficult to study since [x,kx] = i, and in the following we
thus consider a pseudoelectric field of the form

Ep(ky,kz) = − 1

e�

[
tz

(
k2
z

2m
− �

)
+ ty

2kz

�k
vF ky

]
. (53)

Notice that, in the presence of a surface gate voltage V (�),
one can also take into account the voltage drop at the interface
by adding a constant E0 ≈ [V (�) − V (0)]/� to the previous
expression of Ep. This external electric field E0 is strong for
wide interfaces � > 1/�k, since in this regime voltage drop
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mostly happens within the interface, as we have argued in
Sec. III. The pseudoelectric field is oriented along the x axis
and competes with the pseudomagnetic field in the plane of
the interface. In this situation, an electron performs a drifted
cyclotron motion with drift velocity vD = Ep/Bp. One can use
a Lorentz boost to eliminate either Ep or Bp depending on the
ratio β = vD/vF . In the magnetic regime where vD < vF , the
(pseudo)magnetic field is dominant, and one can find a frame of
reference where the pseudoelectric field vanishes. This regime
is characterized by the existence of bound (Landau) states
and thus by the presence of surface states. In contrast to this,
one obtains an electric regime for vD > vF , where only the
mapping to a frame of reference without pseudomagnetic field
can be performed. Due to the absence of Landau quantization
in this frame of reference, one expects no particular bound
states at the interface. If we recall the behavior at t = 0 in
Eq. (21), we expect from the amplitude of the electric field
(53) that (i), as a consequence of tz, strong effects are observed
in the central part of the Fermi arc (kz ≈ 0), and (ii), as a
consequence of ty , strong effects are observed at kz � ±�k/2
and for nonzero chemical potential μ. In the following we
explore this change in frame of reference and show that it also
depends on the out-of-plane drift velocity vD,⊥ = 2txvF kz/�k

generated by the constant tilt normal to the interface. We would
like to stress that the effect of an applied electric field was
studied in the context of correlated electrons in [33] where
screening leads to a renormalization that deforms the Fermi
arc.

B. Changing the frame of reference

The surface Hamiltonian (50) is easier to solve within
a convenient frame of reference. We consider no in-plane
magnetic field or any shift of the band structure along ky (i.e.,
δhy = 0) and rotate the Hamiltonian by an angle π/2 along
the x axis,

Ĥ ′
ts = eiπσ̂x/4Ĥtse

−iπσ̂x/4 (54)

=
[
eEpx + tz

(
k2
z

2m
− �

)
+ 2vF kz

�k
(txkx + tyky)

]
1

+
( −vF ky vF kx−ievF Bp(x−〈x〉0)
vF kx+ievF Bp(x−〈x〉0) vF ky

)
,

(55)

where 〈x〉0/� = (� − k2
z /2m)/(� + �′) is similar to Eq. (19)

for B = 0. This Hamiltonian has a kx and a x dependence on
the diagonal that we eliminate with two successive Lorentz
boosts (see Appendix B). The first Lorentz boost of rapidity
η1 along the x axis absorbs 2txvF kzkx/�k and the second
Lorentz boost of rapidity η2 along the y axis absorbs the
pseudoelectric potential eEpx. The combination of these two
operations does not correspond to a single Lorentz boost and
is accompanied by a rotation, the so-called Thomas-Wigner
rotation of relativistic quantum mechanics [34]. We derive an
expression of the rotation angle in Appendix B 3.

The Schrödinger equation (Ĥ ′
ts − E1)|�〉 = 0 becomes(

e
η2
2 σ̂y e

η1
2 σ̂x Ĥ ′

tse
η1
2 σ̂x e

η2
2 σ̂y − Ee

η2
2 σ̂y eη1σ̂x e

η2
2 σ̂y

)|�̄〉 = 0,

(56)

where |�̄〉 = N e− η2
2 σ̂y e− η1

2 σ̂x |�〉 and N is a normalization
constant required since hyperbolic transformations do not
preserve the norm of the wave functions. This equation can
be written in the form Ĥ

η
st |�̄〉 = E|�̄〉 with

Ĥ
η
st =

[
2ty

kz

�k
vF ky + [

tz − Tz(k‖)
]( k2

z

2m
− �

)]
1

+ 1

γ3

{
vF kx

γ1
+ γ1β1eEp(k‖)[x − x1(E,k‖)]

}
σ̂x

+ 1

γ3

evF Bp

γ2

{
x − [〈x〉0 + γ 2

3 T 2
z (k‖)x1(E,k‖)

]}
σ̂y

− 1

γ3
vF kyσ̂z, (57)

with x0 defined in Eq. (55), x1(E,k‖) = {E − 2tykz

�k
vF ky −

[tz − Tz(k‖)]( k2
z

2m
−�)}/eEp(k‖),Tz(k‖)=Ep(k‖)/(vF Bp),β1=

tanh(η1) = −txkz/�k,β2 = tanh(η2) = −γ1Tz(k‖), and γi =
1/

√
1 − β2

i . Though this Hamiltonian has a lengthy
expression, one notices that the term proportional to 1 no
longer depends on x or kx , i.e., this term does not need to
be considered in the diagonalization, while the remaining
terms can be diagonalized by the introduction of the usual
ladder operators, as we discuss in more detail in the following
subsection. Notice, at this stage, that the transformation
involving the two Lorentz boosts is only possible if

β2
3 =

(
2tx

kz

�k

)2

+ Tz(k‖)2 < 1, (58)

to which corresponds γ3 = γ1γ2 = 1/
√

1 − β2
3 = 1/λ3. This

condition states precisely that we are in the magnetic regime,
which we mentioned above and which is dominated by the
pseudomagnetic field. If for a particular k‖ the condition (58)
is not met, there is no corresponding bound surface state. In
the following we solve the surface Hamiltonian for states that
fulfill the condition (58).

C. Surface states of type-I and type-II WSMs

In order to solve Eq. (57), we introduce the ladder operators

b̂ = �S√
2λ

3/2
3 vF

Tr

[
Ĥ

η
st

σ̂x − iσ̂y

2

]
, (59)

b̂† = �S√
2λ

3/2
3 vF

Tr

[
Ĥ

η
st

σ̂x + iσ̂y

2

]
, (60)

which satisfy [b̂,b̂†] = sgn(vF �), and �S = 1/
√

eBp is the
magnetic length introduced in Eq. (17) for t = 0 and B = 0.
We use the ladder operators to rewrite the Hamiltonian (57),

Ĥ
η
st =

{
ty

2kz

�k
vF ky + [tz − Tz(k‖)]

(
k2
z

2m
− �

)}
1

+
(

−λ3vF ky

√
2λ

3/2
3 vF b̂/�S√

2λ
3/2
3 vF b̂†/�S λ3vF ky

)
. (61)

The eigenvalues of this Hamiltonian are again similar to Lan-
dau bands. In the case vx� > 0,[b̂,b̂†] = 1 and the eigenstates
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can be written in the form

|�〉 =
(

αn|n − 1〉
βn|n〉

)
, (62)

where |n〉 are the eigenstates of the number operator n̂ = b̂†b̂
of eigenvalue n ∈ N. The |n〉 states explicitly depend on the
energy and, in particular, we find that the mean position is

〈x〉 = 〈x〉0 + γ 2
3 T 2

z (k‖)x1(E,k‖), (63)

which must again be located in the interval [0,�].
Since the average position depends on the energy, the

consistency condition (20) now also depends on the quantum
number n. The n � 1 bands are still gapped with eigenstates
in the original basis |�σ,n〉 and eigenenergies Eσ,n (σ = ±1)
such that

|�σ,n〉 = R̂

((
1 − σ

λ3vF ky

En

)|n − 1〉
σ
(
1 + σ

λ3vF ky

En

)|n〉

)
,

(64)

Eσ,n(k‖) = ty
2kz

�k
vF ky + [tz − Tz(k‖)]

(
k2
z

2m
− �

)
+ σEn,

with R̂ = N e−η2σ̂y/2e−η1σ̂x/2eiπσ̂x/4 and En =√
λ2

3v
2
F k2

y + 2λ3
3v

2
F n/�2

S . These solutions are similar to

those obtained in Eq. (7) but with a renormalization of the
n � 1 gaps by a factor (1 − β2

3 )3/4, due to the above-mentioned
succession of two hyperbolic transformations. Because of
this renormalization, which can be further enhanced by
the application of a true electric field perpendicular to the
surface, we expect that the n � 1 surface states can be seen
experimentally for some surface orientations, since β3 is
roughly the tilt component transverse to the pseudomagnetic
field whose orientation depends on the surface cut.

The more interesting n = 0 surface state is also present,
and it is still observable in the limit � → 0 where the n � 1
gaps become infinitely large,

|�0〉 = N e−η2σ̂y/2e−η1σ̂x/2eiπσ̂x/4

(
0
|0〉

)
,

E0(k‖) = ty
2kz

�k
vF ky + [tz − Tz(k‖)]

(
k2
z

2m
− �

)
− λ3vF ky.

(65)

This solution leads to the n = 0 Fermi arc that we represent
in Fig. 6 for two different tilts. While the panels (a) and (c) on
the left-hand side represent the situation of a type-I WSM with
a moderate tilt, the panels (b) and (d) on the right-hand side
correspond to a type-II WSM. In order to obtain further insight
into the Fermi-arc structure, we show the case of a surface
(with �′ � �) in the upper panels (a) and (b), in comparison
with an interface between a WSM and a small-gap insulator
(�′ � �) in the lower panels (c) and (d).

We stress that for tilted WSMs the existence of bound states
is subject to two conditions: (i) the condition on localization
〈x〉 ∈ [0,�] we discussed in Eq. (11), and (ii) the maximal-
boost condition for being in the magnetic regime |β3| < 1
we derived in Eq. (58). In the limit �′ � �, we recover the
localization condition (21) as for the case of no tilt because
tx < 1 and Tz(k‖) � 1, and one obtains a full Fermi arc unless

FIG. 6. Superposition, similar to Figs. 2(b) and 2(c), of the bulk
WSM band structure at kx = 0 (transparent green and blue), the band
dispersion of n = 0 surface states (orange), and the constant-energy
surface μ (transparent red). In (a) and (b) the insulating gap is large
�′ � � while in (c) and (d) it is �′ ∼ �. Apart from the insulating
gap, (a) and (c) correspond to a type-I WSM with t1 = (0.1,0.1,−0.4)
(|t1| = 0.18 < 1) while (b) and (d) correspond to the a type-II WSM
with t2 = (0.1,0.75, − 0.75) (|t2| = 1.13 > 1). In the limit of a large-
gap insulator (�′ � �), the Fermi arc is always connecting the two
Fermi pockets. However, for a smaller insulating gap (�′ ∼ �), while
the type-I WSM still has the Fermi arc connecting the two pockets, in
the type-II WSM one part of the Fermi arc can be dangling between
the two nodes.

a very strong magnetic field (or a component δhy) is applied
to the system, �B � �S , and for strong doping, μ ∼ � as in
Fig. 2. In this rather theoretical case, the Fermi arc can be
covered by the bulk Fermi sea (not shown here). In the case of
an interface between a WSM and a small-gap insulator, i.e.,
�′ � �, the two cones are well separated from each other, and
the maximal-boost condition (58) may then be approximated
by(

2tx
kz

�k

)2

+
(

tz
[
k2
z − (�k/2)2

] + ty(2kz/�k)2mvF ky

(�k/2)2

)2

< 1.

(66)

Furthermore, the localization condition for the n = 0 Landau
band is

−2m�′ <

(
1 − s

vF ky

λ3(� + �′)
tz

)
k2
z

+ s
vF ky

λ3(� + �′)

(
tz(�k/2)2 − ty

2kz

�k
2mvF ky

)
< �k2,

(67)

with s = sgn(vx�). In order to understand in more detail these
two conditions, consider the simplified case ty = 0. If ty = 0,
one obtains from Eq. (66) and Eq. (67), with E0(k‖) = μ, the
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inequalities

t2
x q2

z + t2
z

[
q2

z − 1
]2 = β2

3 < 1, (68)

− 1 − t2
x q2

z + tz
[
tz
(
q2

z − 1
) − μ

�

]
1 − t2

x q2
z − tz

[
tz(2q2

z − 1)
(
q2

z − 1
) − μ

�

] < q2
z < 1,

(69)

respectively, where qz = 2kz/�k. These two conditions show
that the effect of tz is to cut the Fermi arc, even at μ = 0 for tz >

1 (type-II WSMs) and the arc totally disappears once t2
x (1 −

t2
x /4t2

z ) > 1. This is shown in Fig. 6(d), where one notices a
shortening of the Fermi arc that no longer connects the electron
pockets. Moreover, for large doping (of the order �/|t|) the
tilt destroys the n = 0 Fermi arc. Through these observations
we would like to stress that, contrary to type-I WSMs, for
type-II WSMs one can encounter a situation where the Fermi
arc does not connect the bulk Fermi pockets for finite values
of the insulating gap �′. One also notices that, for a tilt in
the x direction with ty = 0, the disappearance of the Fermi
arc depends on the surface orientation. Had we considered
a surface with a normal vector along y, we would have to
interchange tx ↔ ty , and the corresponding condition is never
satisfied. Therefore, the Fermi arc could be visible on one
surface but not on another one with a different orientation.

Notice that the n = 0 Fermi arc depends on the surface
orientation defined by sgn(vx�). For arbitrary sgn(vx�), the
isospin of the n = 0 state points along the direction

vt (k‖) = −γ1β1ex − γ2[γ1β2 + sgn(vx�)]ey (70)

and is of eigenenergy E0(k‖) = 2ty(kz/�k)vF ky + [tz −
Tz(k‖)](k2

z /2m − �) + sgn(vx�)λ3vF ky . At a fixed k‖ one
observes that opposite surface cuts have different orientation
of the isospin vt . However for time-reversal-invariant materials
there is no net magnetization since opposite points ±k‖ in the
reciprocal space have opposite tilts [32]. We finally emphasize
that in the limit �′ � �, no features are expected from
Landau bands with n �= 0 if their energy spacing

√
�/vF �

is larger than �′. If we consider for instance a characteristic
gap �′ = 100 meV and a Fermi velocity vF = 2.5 eV Å (as
for Na3 Bi), one finds that for � < vF /�′ ∼ 2.5 nm, the n �= 0
Landau bands overlap in energy with the bulk states of the
insulator.

V. TOPOLOGICAL STABILITY

The Fermi-arc stability is sometimes related to the Chern
number of a 2D topological insulator with the kz dependence
playing the role of a mass term [35]. In this section we
use the analogy of surface states with Landau bands to
discuss their stability. This can be achieved with the help
of an adapted Aharonov-Casher argument [16]. The original
argument demonstrates that the n = 0 Landau band of the
Dirac equation is independent of fluctuations in the magnetic
field. This argument is related to the existence of a chirality
operator and was also demonstrated for tilted 2D Dirac systems
in Ref. [36]. In the following we discuss the notion of
chirality for 3D tilted band structures. This chirality is used to
demonstrate the topological stability of the Fermi arc for both
type-I and type-II WSMs.

A. Generalized chirality

The concept of chirality as a matrix that anticommutes
with the Hamiltonian is of fundamental importance when
discussing localization in a space-dependent potential [36].
On general grounds, one can consider a Hamiltonian of the
form

Ĥh0,h = h01 + h · Ĵ, (71)

where Ĵ are Hermitian matrices and one can write h0 = t · h
for a tilted dispersion relation with the tilt parameters t.
If one considers a spatial variation of (h0,h), for example
(h0(x),h(x)) = (h0 + δh0(x),h + δh(x)) for a planar inter-
face, one can separate the Schrödinger equation (Ĥh0,h −
E1)|�〉 = 0 into a part that explicitly depends on position
and one part that does not. In the previous example, one can
separate an operator depending on kx and x from one that
depends on E,ky , and kz,

Ĥx |�〉 = ĤE,yz|�〉, (72)

where Ĥh0,h − E1 = Ĥx − ĤE,yz.
Let us consider for a moment that we already know a

Hermitian chirality operator κ̂ such that κ̂2 = 1 and that it
anticommutes with Ĥx ,

{κ̂,Ĥx} = 0. (73)

We explicitly construct an example of κ̂ at the end of this
subsection. We project Eq. (72) on the basis of eigenstates |±〉
of κ̂ and write as in [36,37][〈+|Ĥx |+〉 〈+|Ĥx |−〉

〈−|Ĥx |+〉 〈−|Ĥx |−〉
][

�+
�−

]

=
[〈+|ĤE,yz|+〉 〈+|ĤE,yz|−〉
〈−|ĤE,yz|+〉 〈−|ĤE,yz|−〉

] [
�+
�−

]
. (74)

Since Ĥx is of chiral form in the |±〉 basis, 〈+|Ĥx |+〉 = 0 =
〈−|Ĥx |−〉, one obtains the generic form[

0 α̂−
α̂+ 0

][
�+
�−

]

=
[〈+|ĤE,yz|+〉 〈+|ĤE,yz|−〉
〈−|ĤE,yz|+〉 〈−|ĤE,yz|−〉

][
�+
�−

]
, (75)

where α̂−(x,kx),α̂+(x,kx) play the role of ladder operators in
our calculations. One can search for solutions of the form �1 =
(0,�−) and �2 = (�+,0) and then find the corresponding zero-
state equations [36]

�1 :

{
α̂−�− = 〈+|ĤE,yz|−〉�−,

〈−|ĤE,yz|−〉 = 0,
(76)

�2 :

{
α̂+�+ = 〈−|ĤE,yz|+〉�+,

〈+|ĤE,yz|+〉 = 0.
(77)

These states have topological properties that we discuss in
the next section, using an argument similar to the Aharonov-
Casher argument as in Refs. [16,36,38].

In the case of a tilted Hamiltonian relation Eq. (73) cannot
be satisfied because then δh0 �= 0 or h0 has an explicit kx

dependence, and some terms proportional to the identity, 1,
appear in Ĥx . However, as in Refs. [32,36,38] a generalized
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chirality operator can be defined under certain circumstances
with the help of hyperbolic transformations. The matrix κ̂ does
not need to be Hermitian and instead of the anticommutation
relation Eq. (73) one needs [36,37]

κ̂†Ĥx κ̂ = −Ĥx, (78)

where κ̂ should be diagonalizable and such that κ̂2 = 1 (i.e.,
κ̂ is an involutory matrix).

The use of hyperbolic transformations introduced in Ap-
pendix (B1) allows us to find a generalized chirality, κ̂θ , for
Eq. (71). We consider that Ĥ for a given h0 and δh0(x) can
be related to a Ĥ ′ = eθ�̂Ĥ eθ�̂ with a known chirality κ̂ as
in Eq. (73) using a hyperbolic transformation. Typically Ĥ ′ is
such that h′

0 = h0(kx = 0) and δh′
0(x) = 0. The transformation

is of the generic form

|� ′〉 = Ne−θ�̂|�〉, (79)

where N is a normalization constant. Then Eq. (72) becomes

eθ�̂Ĥxe
θ�̂|�〉 = eθ�̂ĤE,yze

θ�̂|�〉 (80)

and since the chirality operator associated with Ĥ ′
x =

eθ�̂Ĥxe
θ�̂ is κ̂ , one finds

{κ̂,eθ�̂Ĥxe
θ�̂} = 0 (81)

⇒ κ
†
θ Ĥxκθ = −Ĥx (82)

with κθ = eθ�̂κ̂e−θ�̂ the chirality operator for the Hamiltonian
Ĥx .

We can illustrate these general considerations with the
model (16), which describes the interface between two Weyl
nodes and an insulator,

Ĥ2(tz) = vF (kxσ̂x + kyσ̂y)

+
(

k2
z

2m
− �

)
(tz1 + σ̂z), (83)

with δh(x) = (0,0,2�x/�). The chiral part of the Hamiltonian
depending on x and kx then reads

Ĥ2x(t) = vF kxσ̂x + �(2x/� − 1)(tz1 + σ̂z). (84)

In the case tz = 0, the corresponding chirality is κ̂ = σ̂y and
Eq. (84) is linked to this operator simply by the hyperbolic
transformation exp(ησ̂x/2)

Ĥ2x(tz = 0) = e
η

2 σ̂x Ĥ2x(t)e
η

2 σ̂x , (85)

with tanh(η) = β = −tz ∈ [−1,1]. The chirality operator cor-
responding to Ĥ2x(tz) is thus

κ̂t = e
η

2 σ̂x σ̂ye
− η

2 σ̂x (86)

= γ (σ̂y − iβσ̂x) (87)

with γ = (1 − β2)−1/2. The use of hyperbolic rotations allows
us to express the chirality matrix for a broader class of systems
as in Ref. [32]. It also shows that for an overtilted band
dispersion in the z direction (|tz| > 1), it is not possible to
define a chirality operator. Notice, however, that the argument
still holds in the case of a type-II WSM with a prominent tilt in
a direction perpendicular to the interface and to the direction
connecting the Weyl cones. Indeed, if we had replaced in

FIG. 7. The interface potential can be inhomogeneous over the
size � as pictured on this figure. In the short-range limit, the
wave function �SR(x) (in red) strongly depends on the interface
potential (in green) and in the case of a linear profile it is a
Gaussian of characteristic length �xS = 1/

√
eB ′

p ∼ √
�. The long-

range solution �LR(x) (in blue) consists of decaying exponentials
with a characteristic length �xL = 1/(eB ′

p�) ∼ �0 = 1.

Eq. (83) σ̂y by ty11 + σ̂y , one could still find a Lorentz boost
to a frame of reference where the x- and kx-dependent part
of the Hamiltonian is cast into a chiral form, and one would
then obtain stable Fermi arcs as long as |tz| < 1. This also
shows, as we have already mentioned above, that the presence
or absence of a Fermi arc in a type-II WSM depends on the
surface orientation.

B. The Aharonov-Casher argument for surface states

In the previous sections, we have introduced simplified
models of surface Hamiltonians that linearly interpolate
between the two bulk Hamiltonians ĤL, at x < 0, and ĤR ,
at x > �, for x ∈ [0,�]. This corresponds to a uniform in-plane
magnetic field and one can wonder whether the surface states
are robust to inhomogeneities in the surface potential as
illustrated schematically in Fig. 7.

In the following, we consider an interface Hamiltonian of
the form (71) that interpolates between ĤL and ĤR with a
fixed orientation [�h0,�h] = [ 1

2 Tr{(ĤR − ĤL)}, 1
2 Tr{(ĤR −

ĤL)σ̂ }] but with an arbitrary profile

Ĥs = ĤL + δh0(x)1 + δh(x) · σ̂ , (88)

with (δh0(x),δh(x)) = f (x)(�h0,�h)/� and where the func-
tion f (x) is chosen such that f (x = 0) = 0 and f (x = �) = �.
One can associate pseudoelectric and pseudomagnetic fields
ep and bp such that

ep = ∂xδh0(x)ex, (89)

bp = ∇ × δh(x) = ex × ∂xδh(x), (90)

for which the associated one-dimensional flux is∫ ∞

−∞
bp × exdx =

∫ ∞

−∞
∂xδh‖dx = �h‖. (91)

In order to prove that the interface has a unique zero-mode
eigenstate (76) with spin orientation dependent on �h‖, we
consider that the only kx dependence is in h0 = txhx,hx =
vxkx . Then we perform (i) a rotation eiθσ̂x/2 to transform
(δhx,δhy,δhz) → (δhx,δh̃y,0) as in Eq. (55) with tan(θ ) =
δhz/δhy , and (ii) two Lorentz boosts eη1σ̂x/2,eη2σ̂y/2 to absorb
the kx and x dependence in h0 + δh0(x) as in Eq. (56) with
tanh(η1) = β1 and tanh(η2) = β2. The transformations are still
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position-independent because each term scales with the same
f (x). The Hamiltonian after the transformation is of the form

Ĥ ′
s = h′

01 + h′(x) · σ̂ , (92)

with h′
x = v′

F kx + eE′
p[f (x) − x0],h′

y = ev′
F B ′

p[f (x) − x1],
and h′

z(x) = h′
z as in Eq. (57). Here, the primes on the

pseudoelectric E′
p and the pseudomagnetic fields B ′

p indicate
their respective values in the Lorentz-transformed frame of
reference and in particular

ev′
F B ′

p =
√

�h2
y + �h2

z

/
γ3γ2. (93)

Furthermore, the parameters x0 and x1 correspond to the shifts
introduced in Eq. (57). We omit the precise form of x0 which
is not relevant here, and find for x1

x1/� =−�h‖ · hL

�h2
‖

+ γ 2
3

(
�h0

�h‖

)2[
E − h0(kx = 0) + �h0

�h‖
h3

]
,

(94)

which is similar to the expression for the mean position in
Eq. (63). The x-position-dependent part is then

Ĥ ′
sx ={v′

F kx + V [f (x) − x0]}σ̂x

+ ev′
F B ′

p[f (x) − x1]σ̂y, (95)

with an associated chirality operator κ = σ̂z, zero modes
�σ ,σ = ± such that �σ = ψσ |σ 〉z [as in Eq. (76)], and

{v′
F ∂x + ieE′

p[f (x) − x0] + σev′
F B ′

p[f (x) − x1]}ψσ = 0,

Eσ = h′
0 + σh′

z. (96)

Its solutions are of the form ψσ = eχσ with

χσ =χ (0)
σ − eσB ′

p

∫ x

0
dx ′[f (x) − x1]

− i
eE′

p

vF

∫ x

0
dx ′[f (x) − x0], (97)

where one can show with the help of an integration by parts
that∫ x

0
dx ′g(x ′) = xg(x = 0) +

∫ x

0
dx ′(x − x ′)∂x ′g(x ′). (98)

We consider that δh(x) is mostly varying in the interface x ∈
[0,�] and that we are only interested in the long-range behavior
of the solution, far away from the interface where ∂xf (x) � 1.
Then far away from the interface one can write∫ x

0
dx ′(x − x ′)∂x ′f (x ′) ≈�(x)x

∫ �

0
dx ′∂x ′f (x ′)

≈�(x)x�, (99)

and one finds, with f (x = 0) = 0,

χσ ≈ χ (0)
σ −eσB ′

p�[�(x) − x1/�]x−i
eE′

p�

vF

[�(x) − x0/�]x.

(100)

The derived state is bounded if eχσ (x) → 0 for x → ±∞ and
this implies that

σeB ′
p� > σeB ′

px1 > 0, (101)

thus (i) σ = sgn(B ′
p�) = sgn(vF �), and (ii) 1 > x1/� > 0.

These conditions are obtained for a nonuniform potential and
are similar to what we have derived for the uniform magnetic
field. We find respectively (i) the existence of a unique n = 0
mode with isospin polarization (70) and (ii) a condition for
localized states, as in Eq. (63). In that respect we find the same
description of the n = 0 Fermi arc as for the strictly linear
interface potential discussed in the previous sections such that
this surface state is indeed topologically stable with respect to
potential fluctuations.

Moreover we find that the long-range behavior is of
characteristic length �xL = 1/eB ′

p� while in the short-range
regime we have found �xS = �S = 1/

√
eB ′

p. The two length
scales are represented in Fig. 7. Within our linear interpolation,
we have obtained the characteristic Gaussian wave functions of
Landau quantization in the interface, and �xS = �S represents
precisely their average width. On the contrary, we obtain an
exponential decay of the surface states in the regions x < 0
and x > �, as one expects from alternative treatments of sharp
interfaces [7–10]. Because B ′

p ∼ 1/�, this long-range behavior
is then, also in the present model, independent of the surface
width �, as one may have expected. The ratio

r = �xS/� = 1/

√
eBp�2 =

√
vF /(� + �′)� (102)

quantifies the dominance of the long-range over the short-
range regime. The use of a boundary condition is valid in the
long-range limit, which is defined by r � 1, and in the best
case scenario (�′ = 0) one needs � � 1/�k ≈ 1 nm.

In this section we have derived the Aharonov-Casher
argument for a generic surface Hamiltonian and we have used
it in order to argue the stability of the n = 0 Fermi arc of type-I
and type-II WSMs. This was also the opportunity to discuss
the range of validity of boundary conditions. In the following
we shall discuss the experimental relevance of all these results.

VI. DISCUSSION AND CONCLUSION

In the present paper, we have investigated the surface
states, i.e., the Fermi arcs, of Weyl semimetals within a model
of “soft” interfaces between the semimetallic phase and an
insulating phase. The main ingredient in our model is a set
of parameters that characterize the different phases and that
change linearly through the interface x ∈ [0,�]. This yields
an interface (or surface) Hamiltonian that displays pseudo-
magnetic and, in the case of tilted Weyl cones, pseudoelectric
fields. From a formal point of view, the pseudomagnetic field
can be treated within Landau quantization, and the surface
states can thus be viewed as Landau bands arising from
this quantization. While the massive surface states, which
correspond to Landau-band indices n �= 0, are shifted to high
energies for abrupt surfaces (� → 0) or very large insulating
gaps (�′ � �), the n = 0 Landau band is special in that it
survives even in these limits. Furthermore, it remains stable
also in the presence of fluctuations in the interface, i.e., when
the confinement potential is not linear as supposed within
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FIG. 8. Evolution of B-field deformed Fermi arcs when changing
the chemical potential. The subpanels represent the section at kx = 0
of the bulk Fermi surface of the WSM (in black) and the Fermi arc (in
red) for a fixed external in-plane magnetic field B = Bez,B > 0, and
various values of the chemical potential μ. The Fermi arc bends in the
same orientation for positive and negative chemical potentials. For
the chosen orientation of B, this bending can be such that it penetrates
into the bulk Fermi surface, for values of the chemical potential below
the Lifshitz transition, μ < −√

1 + (Bp/B)2�.

our basic model. This topological stability of the n = 0 is
proven here with the help of generalization to 3D of the
Aharonov-Casher argument [16].

The intersection between the n = 0 topological surface
state and the Fermi level yields the Fermi arcs characteristic
of Weyl semimetals. More saliently, our model of a linear
confinement at the interface and its treatment within Landau
quantization allows us to understand in more detail the form
and the manipulation of the Fermi arcs connecting the Weyl
nodes. Indeed, the Fermi arc is a straight line if the line
connecting the two Weyl nodes is simply shortened in the
interface within a merging scenario. If, however, the line
connecting the nodes is also rotated over the interface before
the Weyl-point merging, the Fermi arcs are parabolically
deformed as shown in Fig. 3. We have shown that this parabolic
deformation can also be achieved by the application of a
magnetic field that we have chosen to be oriented in the z

direction connecting the Weyl nodes. Interestingly, the Fermi
arc survives even when the chemical potential |μ| > �, above
the saddle point S (see Fig. 1). The corresponding Fermi
surfaces are displayed on the rightmost side of Fig. 8 in the
case B > 0 for positive values of μ. Notice that the Fermi arc is
always bent in the same direction for any chemical potential.
Below a certain value of the chemical potential, the Fermi

arc can be absorbed in the bulk Fermi sea and disappear, as
sketched on the leftmost side of Fig. 8.

Notice, however, that the possibility to manipulate the
Fermi arcs with the help of a magnetic field is limited
by the effective interface size �S = √

�/�k, where �k is
the reciprocal-space distance between the Weyl nodes. This
size must be of the order of the magnetic length �B �
25 nm/

√
B[T]; i.e., for an effective interface size in the 10

nm range, magnetic fields of the order of 10 T are required.
We expect nevertheless a prominent effect of the magnetic field
on the density of states of the Fermi arcs. Since the magnetic
field can shorten or lengthen the Fermi arcs, the density of
states is decreased or increased, respectively [see Eq. (36)]. We
expect this variation of the density of states gB(μ) to influence
the conductivity, σ ∝ gB(μ), such that one may obtain both a
negative and a positive magnetoconductivity from the carriers
in the Fermi arcs. Moreover, the magnetic field directly affects
the group velocities vg of the electrons in the Fermi arcs and
thus the conductivity, σ ∝ v2

g . As these effects are relevant in
the limit of a magnetic length �B comparable to the interface
length �, they can be used to experimentally evaluate �.

We have furthermore investigated the influence of the Weyl-
cone tilt on the Fermi arcs. As shown in previous studies
[32,36,39] moderate tilts can be absorbed by a Lorentz boost,
preserving the Fermi-arc structure. This is always the case
for type-I WSMs. However, in the case of type-II WSMs, the
effective tilt can be treated with the help of the Lorentz boosts
only for some surface orientations. Notice that in the case of
a finite-sized insulating gap �′ > 0, if the tilt |t| > 1 (type-II
WSMs), we can obtain a broken Fermi arc at any chemical
potential. In any case the resulting n = 0 Fermi arc remains
stable against fluctuations of the surface potential. We prove
this fact using a generalized Aharonov-Casher argument.
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APPENDIX A: TWO-BAND HAMILTONIAN OF WEYL
NODES CLOSE TO THE MERGING TRANSITION

We consider the following four-band model of two coupled
Weyl nodes with opposite chirality and opposite tilts t:

Ĥc,4 =
(

vF k · (σ̂ + t1) + vF �k0/2σ̂x κ1
κ1 −vF k · (σ̂ + t1) + vF �k0/2σ̂x

)
. (A1)

One can perform the following change of basis:

Ĥ ′
c,4 = ÛĤc,4Û

† (A2)

=

⎛
⎜⎜⎜⎝

−(
κ + vF �k0

2

)
vF (kx − t · k) 0 vF (kz − iky)

vF (kx − t · k)
(
κ − vF �k0

2

)
vF (kz − iky) 0

0 vF (kz + iky) −(
κ − vF �k0

2

) −vF (kx + t · k)

vF (kz + iky) 0 −vF (kx + t · k)
(
κ + vF �k0

2

)

⎞
⎟⎟⎟⎠ (A3)
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with the new basis (�++,�+−,�−+,�−−) defined such as

Û = 1

2

⎛
⎜⎝

1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

1 1 1 1

⎞
⎟⎠. (A4)

In the limit |κ + vF �k0/2| � |κ − vF �k0/2|, one can project (see Fig. 9) the Hamiltonian on the reduced (�+−,�−+) basis

Ĥ ′
c,4

⎛
⎜⎝

�++
�+−
�−+
�−−

⎞
⎟⎠ ≈ E

⎛
⎜⎝

0
�+−
�−+

0

⎞
⎟⎠, (A5)

where we neglect the terms of the form E�++ and E�−− since
these are products of energy E ≈ 0 and a small component
�++ or �−−. We develop the effective Hamiltonian up to first
order in ky and kz and up to the second order in kx in order to
describe the shift of the Weyl nodes along the x axis. We then
obtain the following Schrödinger equation

Ĥ eff(k)

(
�+−
�−+

)
= E

(
�+−
�−+

)
(A6)

in terms of the effective two-band Hamiltonian

Ĥ eff(k) = tx(�k/2)2 − kxt · k
2m0

+
(

k2
x−(�k/2)2

2m1
vF (kz − iky)

vF (kz + iky) − k2
x−(�k/2)2

2m1

)
, (A7)

where m0 = (κ + vF �k0/2)/4v2
F ,m1 = 2m0/(1 + t2

x ), and
�k = �k0

√
1 − (2κ/vF �k0)2/

√
1 + t2

x . We have shifted the

spectrum by �E = tx�̄k
2
/8m0 to have cones at E = 0.

We can then adapt notations by permuting kx ↔ kz and we
obtain the following effective Hamiltonian:

Ĥeff =tz

(
k2
z

2m
− �

)
+ vF kz

�k
(txkx + tyky)

+
(

k2
z

2m
− � vF (kx − iky)

vF (kx + iky) −( k2
z

2m
− �

)
)

, (A8)

where �k = √
2m�.

FIG. 9. Sketch of the four-band model of two coupled Weyl
cones. The inset shows the low-energy projection we perform in
order to describe Weyl cones near fusion.

APPENDIX B: ON HYPERBOLIC TRANSFORMATIONS

In this article we refer to hyperbolic transformations which
are known in relativistic quantum mechanics [34] but which
have rarely been used in condensed matter [40]. In this
appendix we describe their representation on spinors and their
relation to unitary transformation.

1. Matrix representation

We introduce a transformation described by a generator �̂

such that for two matrices Â and B̂ one has

eθ�̂Âeθ�̂ = cosh(θ )Â + sinh(θ )B̂,

eθ�̂B̂eθ�̂ = sinh(θ )Â + cosh(θ )B̂. (B1)

Such kind of transformation allows for the following transfor-
mation:

eθ�̂(ωÂ + vB̂)eθ�̂ = [cosh(θ )ω + sinh(θ )v]Â (B2)

+ [cosh(θ )v + sinh(θ )ω]B̂,

and one can find a frame of reference where the dependence
on matrix B̂ vanishes if tanh(θ ) = −v/ω, i.e., for |v/ω| < 1.
Similarly, if tanh(θ ) = −ω/v, with |ω/v| < 1, there exists a
frame of references with no dependence on the matrix Â.
These two limits are similar to the space- and time-like limits
of special relativity and are related to the sign of v2 − ω2 which
is a conserved quantity under hyperbolic transformations. We
sketch the idea behind the two limits in Fig. 10.

We now express the properties of the generator �̂ by
differentiating Eq. (B1) with respect to θ . We then obtain the
following anticommutation rules for the generator �̂:

{�̂,Â} = B̂,

{�̂,B̂} = Â. (B3)

In the previous section we have discussed the way to absorb
any position-dependent term on Â = 1 into a traceless matrix
B̂. In this case Eq. (B3) becomes

�̂ = B̂/2,

B̂2 = 1. (B4)

We observe that this transformation necessitates B̂2 = 1 so
that B̂ can have only two real eigenvalues and this limits the
matrices on which this method can be used.
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FIG. 10. The set of parameters (ω,v) can be represented as a
2D plane on which the hyperbolic transformation links any set of
parameters to any other on hyperbolic trajectories. One can get rid of
one or the other parameter depending on their relative amplitude; this
leads to the ω-like and the v-like limits, similarly to the Minkowski
space-time diagram of special relativity.

2. Spinor representation

In the main text we consider two-dimensional Hilbert
spaces and perform hyperbolic transformations of the form
|�〉 → |� ′〉 = N eησ̂u/2|�〉 with σ̂u = σ̂ · u,u a unit vector.
Any state |n〉 can be written in terms of angles (θ,φ) in the
Bloch sphere

|n〉 =
(

cos(θ/2)
sin(θ/2)eiφ

)
, (B5)

and it fulfills 〈n|σ̂ |n〉 = n. Under the hyperbolic transforma-
tion one finds |n′〉 = N eησ̂u/2|n〉 with

n′ = 〈n′|σ̂ |n′〉
〈n′|n′〉 = 〈n|eησ̂u/2σ̂eησ̂u/2|n〉

〈n|eησ̂u |n〉 (B6)

= n⊥ + γ (n · u + β)u√
(n⊥)2 + γ 2(n · u + β)2

, (B7)

with n⊥ the component of n perpendicular to u,γ = cosh(η),
and β = tanh(η).

We consider the simplified case where n · u = 0 and n =
n⊥, such that

n′ = n
γ

+ βu, (B8)

and one observes that the Lorentz boost does not correspond
to a simple rotation but a translation on the Bloch sphere. We
express some useful results (see Fig. 11):

N e−η1σ̂x/2| ± ez〉 = e±iθ1σ̂y/2| ± ez〉, (B9)

N e−η2σ̂y/2e−η1σ̂x/2| ± ez〉 = e±iθs σ̂s /2| ± ez〉, (B10)

with tan(θ1/2) = sinh(η1), tan(θs/2) =√
sinh2(η1) + cosh2(η1) sinh2(η2) and σ̂s = σ̂ · es ,es =

[− sinh(η2)ex + tanh(η1)ey]/
√

tanh(η1)2 + sinh(η2)2.

3. The Thomas-Wigner rotation

We consider two Lorentz boosts L̂1 and L̂2 defined by
L̂i = eηi σ̂ ·ni /2 where n2

i = 1,i ∈ {1,2}. These operators are

FIG. 11. Representation of the states’ deformation | ± ez〉 on the
Bloch sphere due to the hyperbolic transformation eησ̂x /2. In the insets,
we picture the deformation of a homogeneous spin distribution over
the Lorentz boost. The polarization effect is a combined effect of
tilt and pseudomagnetic field, as explained in the main text. Above
a critical tilt, the polarization is strong enough to lose the hedgehog
texture and the corresponding topological properties.

Hermitian, i.e., L̂
†
i = L̂i , but their product is not:

L̂1L̂2 = ch1ch2(1 + th1σ̂ · n1)(1 + th2σ̂ · n2) (B11)

= ch1ch2[(1 + th1th2n1 · n2)1

+ (th1n1 + th2n2 + ith1th2n1 × n2) · σ̂ ], (B12)

where we use that σ̂i σ̂j = iεijkσ̂k + δij1 and write
cosh(ηi/2) = chi and tanh(ηi/2) = thi . Since the product of
two Lorentz boosts is not Hermitian, it cannot be a Lorentz
boost but is actually the combination of a rotation, R̂θ =
eiθσ̂ ·u/2, and a Lorentz boost, L̂3 = eη3σ̂ ·n3/2, where u2 = 1
and n2

3 = 1. One can compute L̂3R̂θ :

L̂3R̂θ = ch3c(1 + th3σ̂ · n3)(1 + it σ̂ · u) (B13)

= ch3c[(1 + it th3u · n3)1

+ (th3n3 + itu + t th3u × n3) · σ̂ ] (B14)

with cos(θ/2) = c and tan(θ/2) = t . We then identify L̂1L̂2 =
L̂3R̂θ and apply the projection operator P̂i• = Tr(σ̂i•) for i =
0,1,2,3 on this equation. We identify the real and imaginary
parts and find

ch1ch2(1 + th1th2n1 · n2) = ch3c,

u · n3 = 0,

ch1ch2(th1n1 + th2n2) = ch3th3c(n3 + tu × n3),

ch1ch2th1th2n1 × n2 = ch3ctu. (B15)

We combine these equations and find

tu = th1th2

1 + th1th2n1 · n2
n1 × n2,

(B16)

th3n3 =
(
1 + th2

2 + 2th1th2n1 · n2
)
th1n1 + (

1 − th1
2
)
th2n2

1 + (th1th2)2 + 2th1th2n1 · n2
,

125306-16



MAGNETIC DESCRIPTION OF THE FERMI ARC IN . . . PHYSICAL REVIEW B 95, 125306 (2017)

which express the corresponding rotation angle θ and boost
η3. In the limit n1 ≡ n2 we find no rotation, t = 0, and

tanh(η3/2) = tanh(η1/2) + tanh(η2/2)

1 + tanh(η1/2) tanh(η2/2)
(B17)

= tanh[(η1 + η2)/2], (B18)

which implies η3 = η1 + η2 as expected from geometrical
arguments in special relativity. In general, one finds that two
consecutive boosts involve a rotation, the Thomas-Wigner
rotation. For example, in (56) one has n1 = ex and n2 = ey

and one observes a rotation along ex × ey = ez with an angle
θ such that

tan(θ/2) = tanh(η1/2) tanh(η2/2). (B19)
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Goerbig, F. Piéchon, and G. Montambaux, Physica B Condens.
Matter 407, 1948 (2012).

[18] P. Goswami, J. H. Pixley, and S. Das Sarma, Phys. Rev. B 92,
075205 (2015).

[19] G. F. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, UK, 2005).

[20] A. Akrap, M. Hakl, S. Tchoumakov, I. Crassee, J. Kuba, M.
O. Goerbig, C. C. Homes, O. Caha, J. Novak, F. Teppe, S.
Koohpayeh, L. Wu, N. P. Armitage, A. Nateprov, E. Arushanov,
Q. D. Gibson, R. J. Cava, D. van der Marel, C. Faugeras, G.

Martinez, M. Potemski, and M. Orlita, Phys. Rev. Lett. 117,
086401 (2016).

[21] J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, and D. Xing,
Nat. Commun. 7, 11136 (2016).

[22] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X.
Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

[23] M. O. Goerbig, J.-N. Fuchs, G. Montambaux, and F. Piéchon,
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