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The spin-orbit interaction of two-dimensional electrons in quantum wells grown from the III-V semiconductors
consists of two parts with different symmetry: the Bychkov-Rashba and the Dresselhaus terms. The last term is
usually attributed to the bulk spin-orbit Hamiltonian which reflects the Td symmetry of the zincblende lattice.
While it is known that the quantum well interfaces may also contribute to the Dresselhaus term, the exact structure
and relative importance of the interface and bulk contributions are not well understood. To deal with this problem,
we perform tight-binding calculations of the spin splittings of the electron levels in [100] GaAs/AlGaAs quantum
wells. We show that the obtained spin splittings can be adequately described within the one-band electron
Hamiltonian containing, together with the bulk contribution, the two interface contributions to the Dresselhaus
term. The magnitude of the interface contribution to the spin-orbit interaction for sufficiently narrow quantum
wells is of the same order as the bulk contribution.
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I. INTRODUCTION

The spin-orbit interaction of two-dimensional (2D) elec-
trons in the heterostructures based on the noncentrosymmetric
cubic semiconductors has been extensively investigated during
the last three decades [1–3]. However, there is still no
complete understanding of the physical nature and magnitude
of different contributions to the spin-orbit interaction even in
the conventional GaAs/AlGaAs heterostructure systems.

For the bulk III-V semiconductors the general form of
the one-band effective mass electron Hamiltonian with the
spin-orbit terms and the effective-mass anisotropy terms
was established from a symmetry consideration [4,5]. The
magnitudes of these terms can be derived from the many-band
Kane k·p models [5–7] or obtained in microscopic calculations
[8,9].

The spin-orbit interaction of 2D electrons in the het-
erostructures grown from the III-V semiconductors consists
of two parts with different symmetry: the Bychkov-Rashba
and Dresselhaus terms. The isotropic part of the spin-orbit
interaction (the Bychkov-Rashba contribution) is induced by
the electric field along the growth direction. It consists of
two contributions: the bulk contribution, associated with the
smooth part of the electric field along the normal, and the
interface contribution, associated with the strong atomic field
at the well interfaces [10]. Analogously, the anisotropic part
of the spin-orbit interaction of 2D electrons (the Dresselhaus
term) contains the bulk contribution, related to the spin-orbit
interaction in the zincblende lattice, and the interface contri-
bution, determined by the atomic structure of the interfaces.

For the first time, the effect of sharp interfaces on the
electron and hole states in the III-V semiconductor heterostruc-
tures was noticed in tight-binding calculations in the 1980s in
Refs. [11–13]. It was shown that the low C2v symmetry of
the interface produces heavy-light hole mixing in [001] grown
heterostructures. However, for some time this phenomenon
has been neglected in the literature. Later, the interface
anisotropic terms in the effective mass Hamiltonian for holes
were proposed in Refs. [14,15] to explain the nature of the
anisotropic exchange splitting of excitonic levels in type II
GaAs/AlAs superlattices. The magnitudes of the interface

anisotropic terms were estimated in the tight-binding model
[16], from the experimental data [17], and in pseudopotential
calculations [18].

In Refs. [19,20] it was shown that the mixing of heavy and
light holes at the interfaces also leads to a spin-orbit interface
anisotropic term in the one-band electron Hamiltonian. This
term induces a contribution to the electron spin splitting, in
addition to the bulk contribution. Later, it was noticed [21]
and confirmed by tight-binding calculations [22,23] that the
interface-induced spin splitting can be observed alone, without
the admixture of the bulk contribution, in the heterostructures
grown from diamond lattice semiconductors. More recently,
two interface anisotropic spin-dependent terms, one of which
coincides with the term proposed in Refs. [19,20], were intro-
duced in the electron effective Hamiltonian in Refs. [24,25]
in an attempt to describe the lateral anisotropy of 2D electron
g factors recently observed in the [100] GaAs quantum wells
[26–28]. Similar interface terms were derived in Ref. [29]
from the k·p Hamiltonian containing infinite number of bands.
The analysis of the experimental data from Refs. [26–28]
shows that the contributions to the g-factor anisotropy from the
quantum well interfaces and from the bulk regions are of the
same order of magnitude [24]. Recently, it was demonstrated
within the framework of the 14-band Kane model that the
interface spin-orbit terms are substantial in the Luttinger 4 × 4
Hamiltonian for 2D holes in GaAs quantum wells [30].

It should be mentioned that, at present, there is strong
controversy concerning the value of the bulk spin-orbit
constant γ in various semiconductors [7,31–34]. For example,
it was concluded in Ref. [31] from measurements of the spin
splittings of electron dispersion in GaAs quantum wells that the
bulk spin-orbit constant γ in GaAs is approximately half of the
value which was previously accepted in the literature [7,32].
However, in the interpretation of the experimental data in
Ref. [31], the presence of anisotropic spin-orbit terms localized
at the interfaces was not taken into account. Recent discovery
of a giant linear spin splitting of 2D holes [35] shows that one
should be extremely careful when transferring spin physics of
the bulk semiconductors to low-dimensional systems. Some
novel ways to determine the bulk spin-orbit Dresselhaus
parameter from the experiments on bulk semiconductors
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subjected in homogeneous and inhomogeneous magnetic field
were discussed in Refs. [36–39].

The tight-binding approach is the method which is able to
take into account both the bulk and the interface contributions
to the spin-orbit interaction of 2D electrons by a rigorous
uniform way. Tight-binding calculations of the spin splittings
of 2D electrons in [110] quantum wells grown from III-V
semiconductors were recently performed in Refs. [40,41].

In this paper we perform tight-binding calculations of spin
splittings of the electron energy spectrum in [100] GaAs
quantum wells subjected to an electric field along the growth
direction. We compare the obtained dependencies of the spin
splittings on the quantum well width and the electric field
with the analytic expressions derived within the one-band
electron Hamiltonian containing the bulk [4] and the two
interface [24,25] spin-orbit terms. From the comparison, we
extract the values of the bulk and interface parameters in
the one-band electron Hamiltonian. The analytical one-band
calculations perfectly reproduce the tight-binding numerical
calculations for different quantum wells. As a result, we
estimate the magnitudes of the two interface terms and prove
the importance of the interface contributions to the spin
splitting of the 2D electron spectrum in GaAs quantum wells.

II. TIGHT-BINDING CALCULATIONS

We use the standard spds∗ tight-binding model which is
explained in detail in Ref. [42]. In this method, the electron
wave function ψ(r) is written as a linear combination

ψ(r) =
∑
i,α

Ciα�α(r − r i) (1)

of localized atomic-like functions �α , which are assumed to
be orthogonal [43], at atoms i with coordinates r i .

Since we are interested in the in-plane dispersion of
free electrons in a heterostructure, we impose periodical
boundary conditions in the interface plane (001). Because
of the periodicity in the [100] and [010] directions, we can
introduce the in-plane wave vector k and, for a given value
of k, construct the tight-binding Hamiltonian with a discrete
spectrum. For the sake of numerical simplicity and to avoid
spurious solutions at the boundaries, we also use periodic
boundary conditions along the growth direction [001] taking
the barrier layers thick enough to exclude the influence of their
thickness on the calculated energies.

The Hamiltonian in this basis is a matrix of the
size 10 × 2 × n, where 10 stands for basis functions α =
s,s∗,px,py,pz,dyz,dzx,dxy,dx2−y2 ,d3z2−r2 , 2 stands for the spin
index, and n is the number of atoms in elementary cells
for periodic structures. The explicit form of matrix elements
of the Hamiltonian may be found in [44] or [45]. In the
empirical variant of the method, the parameters are fitted to
reproduce the band structure of the bulk materials, we use
the standard parametrization of Jancu et al. [42]. The matrix
of the Hamiltonian is the sparse matrix with blocks 20 × 20
corresponding to atoms and chemical bonds between them.
Iterative methods allow [46,47] the fast and efficient solution
of eigenproblems even for very large systems.

We consider a GaAs quantum well between Ga0.7Al0.3As
barriers. The alloy is treated in the virtual crystal approxi-

mation: the tight-binding parameters are taken as a weighted
linear combination of the corresponding GaAs and AlAs
parameters

κ(Ga0.7Al0.3As) = 0.7κ(GaAs) + 0.3κ(AlAs) , (2)

where κ stands for the tight-binding parameters of the
corresponding material (in brackets). This approximation does
not include the possible effects of bowing, which is almost
absent in the AlGaAs ternary alloy, and disorder, which is
averaged out in optical and transport properties. For other
ternary alloys a more sophisticated approximation might be
necessary [48].

To calculate the spin splitting we choose small wave vector
k and change its direction in the (001) plane. At finite k, the
(double) degeneracy of quantum-confined electron states is
lifted, with the splitting proportional to |k|. For each lateral
direction of k, we calculate the splitting �(k) and the vector s
of the mean value of the electron spin for the lower spin branch
as explained in Ref. [40].

The electric field Ez, applied along the growth direction and
causing the quantum well asymmetry, is taken into account in
the framework of the standard procedure [49] by shifting the
diagonal energies due to the local potential at atomic sites. The
electrostatic potential is chosen in the form

UT B(z) =

∣∣∣∣∣∣∣
−eEza/2, z < −a/2,

eEzz, −a/2 < z < a/2

eEza/2 , z > a/2,

, (3)

where Ez is the electric field, e > 0 is the absolute value of the
electron charge, and a is the quantum well width.

The spin-orbit part of the effective Hamiltonian for an
electron in quantum well can be written as

ĤSO(k) = β(kxσ̂x − kyσ̂y) + α(kyσ̂x − kxσ̂y). (4)

The solution of this one-band Hamiltonian gives us the energy
splitting between the two states:

�(k) = 2
√

(β2 + α2)k2 + 4αβkxky, (5)

and the mean values of the spin projections for the lower energy
state:

sx = −βkx + αky

�(k)
, sy = βky + αkx

�(k)
. (6)

The splittings and the spin direction as functions of the
lateral wave vector angle are extracted from tight-binding
calculations and fitted with Eqs. (5) and (6). The fit is shown
in Fig. 1. This allows us to extract the Dresselhaus and
Rashba constants β and α directly from the tight-binding
calculations.

With the help of the tight-binding approach, we have
calculated the absolute values of the spin splitting constants
as functions of the well width in the range from 1 to 20 nm,
and the electric fields Ez in the range from 0 to 105 V/cm.
The results of this calculation as well as their analysis are
presented in Sec. IV. Here we only mention that, in accordance
with symmetry consideration, the parameter α vanishes at
zero electric field, when the quantum well is symmetric, and
then increases linearly with Ez. The Dresselhaus parameter β

depends on the electric field Ez in a weaker manner: it starts
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FIG. 1. 2D electron spin splittings and direction of the spin as a
function of the angle of the lateral wave vector k for the quantum
well width equal to 30 atomic layers and |k| = 5 × 10−3 Å−1. The
direct results of the tight-binding calculations (blue arrows) are shown
together with the results of fitting of the tight-binding calculations by
Eqs. (5) and (6) (red dashed curve for the spin splitting and red arrows
for the spin directions). Left and right panels show the results for the
electric fields Ez = 0 and Ez = 1 × 105 eV/cm, respectively.

to deviate significantly from the zero-field value only when
the variation of electrostatic potential −eEzz from the electric
field Ez in the interface region is comparable with the quantum
confinement energy E0.

III. ONE-BAND HAMILTONIAN APPROACH TO SPIN
SPLITTINGS OF 2D ELECTRONS

For a quantum well grown along the [001] direction from
the zincblende semiconductors, the bulk cubic spin-orbit
term in the one-band electron Hamiltonian [7] takes the
form

ĤBIA = d

dz
γ (z)

d

dz
(kxσ̂x − kyσ̂y). (7)

This term corresponds to the linear approximation in the
electron lateral wave vector k = ( kx, ky ). Here γ (z) is the bulk
spin-orbit parameter, which depends on the layer material.

In addition to the bulk contribution (7), the spin-orbit
interaction of an electron in a quantum well with abrupt
interfaces also has interface contributions [20–25,29]. They
have the same symmetry as the bulk term (7), but contain,
instead of the operator d2/dz2, the δ function and its derivative
localized at the well interfaces [24,25]:

Ĥint =
∑
ν=l,r

(Ĥint,0,ν + Ĥint,1,ν),

Ĥint,0,ν = ζνδ(z − zν)(kxσ̂x − kyσ̂y),

Ĥint,1,ν = ξνδ
′(z − zν)(kxσ̂x − kyσ̂y). (8)

The parameters ζl,r and ξl,r are determined by the structure of
the chemical bonds of the atoms on the interface. Equations
(8) assume continuity of the wave-function derivative at the
interfaces of the quantum well.

Also note that the definition of the bulk contribu-
tion (7) is not completely unambiguous: e.g., one might

use terms proportional to [γ (z) d2/dz2 + d2/dz2γ (z)]/2 or
[γ (z)]1/2d2/dz2[γ (z)]1/2, this would lead to the renormaliza-
tion of interface parameters in Eq. (8). Our choice is based on
the simplicity of Eq. (7).

Let u(z) be the electron wave function of the ground
level E0 of space quantization within the one-band electron
Hamiltonian. Projection of the operators (7) and (8) onto the
first subband leads to the anisotropic spin-orbit interaction of
2D electrons [the first term in Eq. (4)]:

ĤD = β (kxσ̂x − kyσ̂y), β = 〈u|β̂|u〉 ≡ 〈β̂〉,

β̂ = d

dz
γ (z)

d

dz
+

∑
ν=l,r

[ζνδ(z − zν) + ξνδ
′(z − zν)]. (9)

We consider a rectangular quantum well. The function γ (z)
in this structure is a step-like function with the two different
values in the well and in the barrier layers:

γ (z) =
∣∣∣∣γb, z < 0 , z > a,

γw, 0 < z < a.

In zero electric field the symmetry of the quantum well D2d

leads to the relations between the coefficients ζν and ξν for
the left and right interfaces: ζl = ζr , ξl = −ξr . If an electric
field Ez is applied along the normal to the quantum well, the
relations ζl = ζr , ξl = −ξr are retained, but the wave function
u(z) is not symmetric with respect to the quantum well center.
The result is

β = βb + βint,0 + βint,1,

βb = −
∫ ∞

−∞
dz γ (z)[u′(z)]2,

βint,0 = ζ [u(zl)
2 + u(zr )2],

βint,1 = ξ {[u(zl)
2]′ − [u(zr )2]′}. (10)

The potential energy of an electron in an empty rectangular
quantum well in zero electric field, Ez = 0, is

U (z) =
∣∣∣∣0, −a/2 < z < a/2,

U0, z < −a/2, z > a/2.
(11)

For a nonzero electric field Ez the electron potential energy is
the sum of the quantum well potential (11) and the potential
(3) due to the applied electric field: Ũ (z) = U (z) + UT B(z).

The wave function u(z) of the ground state corresponding
to the potential Ũ (z) is expressed via the Airy functions in the
well region:

u(z) = cAAi

(
z − E0/eEz

d

)
+ cBBi

(
z − E0/eEz

d

)
, (12)

and the exponents in the barriers:

u(z) =
∣∣∣∣cle

κlz, z < −a/2,

cre
−κr z, z > a/2.

(13)

Here d = (2meEz/h̄
2)−1/3 is the characteristic

localization length due to the electric field, κl,r =√
2m(U0 ∓ eEza/2 − E0)/h̄. The coefficients cA, cB , cl ,

cr , and the eigenenergy E0 were calculated as the functions of

125303-3



P. S. ALEKSEEV AND M. O. NESTOKLON PHYSICAL REVIEW B 95, 125303 (2017)

the quantum well width a and the electric field Ez by use of
the standard methods.

IV. RESULTS

In this section we present, compare, and discuss the
results of the tight-binding and the one-band calculations
of spin splittings of 2D electrons in GaAs quantum wells.
We consider quantum wells in the typical heterostructures
Ga0.7Al0.3As/GaAs/Ga0.7Al0.3 with the following k·p pa-
rameters: U0 =300 meV and m = 0.067m0. In Fig. 2 we
present the results of calculations of the bulk and the interface
spin-orbit parameters in the one-band 2D electron Hamiltonian
according to Eqs. (10)–(13).

In Fig. 2(a) we show the magnitudes of the bulk and
interface contributions to the spin-orbit interaction as functions
of the quantum well width a for a zero electric field Ez = 0.
The dependencies βi(a), i = b,(int,0),(int,1), are nonmono-
tonic. The origin of this fact is most transparent for the bulk
contribution βb. Indeed, if we neglect the difference between
γb and γw, the value βb is proportional to 〈k2

z 〉 [see Eq. (10)].
It is easily seen that the value 〈k2

z 〉 tends to zero as 1/a2

for the thick quantum wells and as a2 for the thin quantum
wells. In between, the coefficient βb(a) has a maximum
at quantum well widths a 
 1/κ0 
 2 nm when E0 ∼ U0

(here κ0 = √
mU0/h̄). One can show from Eqs. (10) that the

dependencies of the interface contributions to the magnitude
of spin splittings, βint,0(a) and βint,1(a), also exhibit the power
behavior in the region of large and small widths a. So, for the
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FIG. 2. Different contributions βi , i = b, (int,0), (int,1), to the
anisotropic part of the 2D electron spin-orbit interaction (a) as
functions of the quantum well width for zero electric field and (b) as
functions of electric field for the infinitely large quantum well width.
Red solid lines correspond to the bulk contribution βb, blue dash-dot
and green dash lines correspond to the interface contributions βint,0

and βint,1.

case Ez = 0 we have1

βb ∼ a−2, βint,0 ∼ a−3, βint,1 ∼ a−3 (14)

at a → ∞, and

βb ∼ a2, βint,0 ∼ a, βint,1 ∼ a2 (15)

at a → 0.
Now let us discuss the case of a nonzero electric field.

The bulk contribution βb is proportional to 〈k2
z 〉, and the value

1/
√〈k2

z 〉 is of the order of the electron localization length. The
last value is defined by the minimum of the two values: the
quantum well width a and the length of localization due to
the electric field d. In the case of small electric fields we have
a 
 d, while for enough large well widths we arrive at the
opposite inequality a � d. The transition between these two
regimes occurs at the electric fields E0(Ez = 0) ∼ eEza.

In Fig. 2(b) we show the bulk and the interface contributions
to the spin-orbit parameter β as a function of the electric field
Ez for the infinitely wide quantum well, a → ∞. The absolute
values of βb and βint,0,1 increase with the electric field Ez in
the region from Ez = 0 up to Ez ∼ U0κ0/e. At small electric
fields, the contributions to β depend on the electric field Ez > 0
as2

βb ∼ (Ez)
2/3, βint,0 ∼ Ez, βint,1 ∼ Ez. (16)

In large electric fields, Ez > U0κ/e, the energy level E0

becomes resonant. This is illustrated in Fig. 2(b) by blurring
and broadening of the graphic lines.

To extract the interface parameters in the one-band Hamil-
tonian (8), we fit the dependence β(a) obtained in the tight-
binding calculations for the electric field Ez = 105 V/cm with
the analytical dependence (10) using the least-squares method.
We take into account that the bulk spin-orbit Dresselhaus
parameter γ is different in the well and in the barrier regions
of the heterostructure, thereby fixing the ratio of the spin-orbit
bulk parameters in the well and in the barrier: γb/γw = 0.7.
From Fig. 3(a) it is seen that as calculated in the tight-binding
approximation, dependence β(a) is very well reproduced by
the analytical formula (10) with the three fitting parameters
γ = γw, ξ , and ζ . From the fitting procedure we obtain
the following values of the bulk and interface parameters:
γ = γ (GaAs) = −23 eV Å3, ξ = −1.5 eV Å3, ζ = 6.5 ×
10−6 eV Å2. This result for the coefficient ξ corresponds by the
order of magnitude to the estimations of ξ within the multiband
k·p Hamiltonians performed in Refs. [20,50]. The obtained
value of γ (GaAs) is consistent with the value usually accepted
in the literature [7,32]. Existence of the terms Ĥint,0,ν and the
magnitude of ζ appear to be pertinent to the discussion of
GaAs quantum wells.

1The asymptotic behavior βb ∼ 〈k2
z 〉 ∼ a2 at a → 0 may be hardly

seen in tight-binding calculations, as the dependence 〈k2
z 〉(a) starts to

deviate from a2 at widths ∼ 3 Å and for thicker quantum wells the
dependence is close to linear.

2Note that the electric field in infinitely wide quantum wells cannot
be treated perturbatively as long as the perturbation approach relies
on the inequality eEza 
 U0, which is not satisfied for very wide
quantum wells.
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FIG. 3. 2D electron spin splitting parameter β as a function of
the quantum well width. Panel (a) presents β for the electric field
Ez = 105 V/cm, while panel (b) corresponds to Ez = 0. Red and blue
lines demonstrate the results of calculations within the tight-binding
approach and the one-band approach, respectively. Green curves show
the bulk contributions βb to the one-band result for β. Insets present
the ratios βb/βint,0 (brown curve) and βb/βint,1 (green curve).

We also check that for the obtained parameters γ , ξ , and
ζ the analytical one-band dependencies β(a) for the electric
field Ez in the interval from 0 up to 105 V/cm reproduce the
results of the tight-binding calculations of β(a). In Fig. 3(b)
we compare the results of the tight-binding calculations with
the analytical one-band results for Ez = 0. The agreement
is perfect, without changing the parameters γ , ξ , and ζ . This
proves that the description of the electron spin-orbit interaction
in GaAs quantum wells with abrupt interfaces within the
one-band Hamiltonians (7) and (8) is adequate. It is clear
from Fig. 3 that the bulk contribution dominates for the wide
wells, while for the narrow wells the bulk and the interface
contributions have the same order.

The functional dependencies of the bulk and the interface
contributions are quite similar. Thus, below we discuss in
details the possibility to distinguish them.

To this end, we draw the parametric plots (βb,βint,j) as a
function of quantum well parameters. The regions in these
plots where the parametric curve may be approximated with
the straight line starting at the origin indicate the intervals of the
parameters where it is hard to distinguish the bulk and interface
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FIG. 4. Parametric plots of the bulk βb and the interface βint,j,
j = 0,1, contributions to the anisotropic part of the 2D electron spin-
orbit interaction. Panels (a) and (b) demonstrate the positions of the
points (βb,βint,j) at zero electric field using quantum well width a as
a parameter. Panels (c) and (d) show the positions of (βb,βint,j) for
the infinitely large quantum well width using electric field Ez as a
parameter.

contributions as long as they are approximately proportional
each other. In contrast, the regions where this curve is directed
perpendicular to the straight line starting at the origin are
most favorable for the measurement of the relative strength of
different contributions.

In Figs. 4(a) and 4(b) we show parametric plots (βb,βint,0)
and (βb,βint,1) at zero electric field Ez = 0 using the quantum
well width a as a parameter. We see that all contributions
βint,0(a), βint,1(a), and βb(a) are almost proportional in the
wide intervals of the values of quantum well width a. There
is relatively small region of quantum well widths a where
the contributions are easy to distinguish, around the position
of maximum for the bulk contribution βb. This implies that
if we have in hand the experimental or the numeric (e.g.,
tight-binding) dependence β(a) of the total spin splitting,
which has some uncertainty δβ(a), we can establish the relative
magnitudes of the bulk βb(a) and the interface βint,0,1(a)
contributions in this dependence β(a) only for rather small
values of the uncertainty, δβ(a) 
 β(a).

In Figs. 4(c) and 4(d) we present the parametric plots
(βb,βint,0) and (βb,βint,1) for the infinitely wide quantum well
using the value of the electric field Ez as a parameter varying
from zero to ∼ U0κ/e. It is clear from the plot, that the
functions βb(Ez), βint,0(Ez), and βint,1(Ez) are almost linearly
dependent.

V. CONCLUSION

In conclusion, we show that the results of atomistic
calculations of spin splittings of the 2D electron spectrum
in GaAs quantum wells can be perfectly described in the
framework of a one-band effective-mass model by adding the
two interface spin-orbit terms in the one-band Hamiltonian.
The developed one-band description allows us to conclude
that the interface-induced anisotropy contributes significantly
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to the value of the spin-orbit Dresselhaus parameter β in the
2D electron Hamiltonian.

Our calculations are made within the one-electron picture
which is suitable for low densities of 2D electrons. We
demonstrated that separation of the bulk and the interface
contributions to the spin splittings in experiments is com-
plicated by the fact that all these contributions have very
similar functional dependencies on the quantum well width
and the applied electric field. However, based on qualitative
arguments, we expect that this is not the case for the quantum
wells with high electron densities in which the 2D electron
charge significantly affects the profile of the heterostructure
potential U (z). Due to the Coulomb repulsion, electrons are
“pushed” from the center of quantum well to the regions
near the interfaces (see, for example, Ref. [24]). Therefore
the significance of the interface effects substantially increases
and depends on the 2D electron density.

In quantum wells with nonzero electron densities there
also exists a contribution to the observed magnitude of the
spin-orbit interaction from the electron-electron interaction
[51]. The strength of the corresponding renormalization of
the constant β depends on the geometry of the quantum well
and the electron density. This fact further complicates the
interpretation of the experimental data on the absolute value
of the spin-orbit coupling in quantum wells.
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