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There are many exotic scenarios where the Lorenz number of the Wiedemann-Franz law is known to deviate
from expected values. However, in conventional semiconductor systems, it is assumed to vary between the
values of ~1.49 x 10~ W Q K2 for nondegenerate semiconductors and ~2.45 x 1078 W Q K2 for degenerate
semiconductors or metals. Knowledge of the Lorenz number is important in many situations, such as in
the design of thermoelectric materials and in the experimental determination of the lattice thermal conductivity.
Here, we show that, even in the simple case of two- and three-band semiconductors, it is possible to obtain
substantial deviations of a factor of 2 (or in the case of a bipolar system with a Fermi level near the midgap, even
orders of magnitude) from expectation. In addition to identifying the sources of deviation in unipolar and bipolar
two-band systems, a number of analytical expressions useful for quantifying the size of the effect are derived.
As representative case studies, a three-band model of the materials of lead telluride (PbTe) and tin sellenide
(SnSe), which are important thermoelectric materials, is also developed and the size of possible Lorenz number
variations in these materials explored. Thus, the consequence of multiband effects on the Lorenz number of real

systems is demonstrated.
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The Wiedemann-Franz law connects the electronic part
of the thermal conductivity (x.) to the electronic conduc-
tivity o through the relation «, = Lo T, where L is the
Lorenz number. For metals and degenerate semiconductors, L
reaches the Sommerfeld value L, = 72 /3(kp /q)2 =245 x
1078 W QK2 where kp and ¢ are the Boltzmann constant
and charge of an electron, respectively. This value drops
to Lo =2kg/q)* =1.49 x 1078 WQK™? for nondegener-
ate, single parabolic band materials and acoustic scattering
conditions [1,2].

The Lorenz number plays an important role in the ex-
perimental determination of the phonon, or lattice part of
the thermal conductivity (k) from thermal conductivity
measurements, which is done by computing and subtracting
the electronic part (k.) from the experimentally measured
value of the total thermal conductivity (k). Thus, deviations
in its value result in incorrect determination of the relative
contributions of charge and phonons to heat flow in real
materials.

An example of a case where this issue plays an impor-
tant role is in thermoelectric (TE) materials engineered to
harvest renewable energy from waste heat. Thermoelectric
efficiency is optimized by lowering the thermal conductivity
as low as possible while keeping electrical conductivity high.
Through this lense, one can interpret the Lorenz number as
a quantification of the reality that one cannot raise electrical
conductivity without proportionately increasing the electronic
thermal conductivity as well. Thus, an understanding of
deviations from expected Lorenz values allows (i) a direct
means of enhancing TE performance by finding cases of lower
Lorenz number [3], and (ii) a more accurate estimate of the
lattice thermal conductivity. The second point is especially
important as there have been extensive efforts [2,4-8] towards
improving TE performance by nanostructuring materials to
lower their thermal conductivity (in addition to potentially
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enhancing their electrical performance) [9-11] and several
claims of phonon thermal conductivities below the amorphous
limit of 1-2 W/mK have been reported. These next-generation
TE materials exhibit a degree of complexity in their electronic
structure and dominant scattering mechanisms. Therefore,
there is no reason to expect that the Sommerfeld value holds
for them, nor that the Lorenz number’s value can only fall
intermediately between the two limiting values [3].

In fact, deviations in the Lorenz number are nothing new
and occur in various cases: confined dimensions [12,13]
such as nanowires [14—16], quasi-one-dimensional (quasi-1D)
systems [17-19], and effective zero-dimensional (0D) systems
such as quantum dots [20-22], single-molecule [23-25]
and single-atom [26] systems; under conditions of quantum
criticality [27-31]; in superconductors [16,32—38]; in super-
lattices and granular metals [39-43]; and in the presence
of disorder [44,45]. However, here we consider a far more
common, but yet to be explored, situation: the case of
multiband semiconductors, which are the most relevant case
for next-generation thermoelectric materials with complex
band structures [46—49].

In this work, we explore the issue of variations in the
Lorenz number in materials that contain more than one band,
different types of scattering, and different band effective
masses. Such materials with complex band structures, such
as SnSe [46,47], SnS [48], PbTe [49], etc., are currently
receiving large attention for TE applications [4,5]. We employ
the Boltzmann transport method, expressed in the Landauer
form to examine a number of different cases: (i) a system of
two conduction bands in the absence of interband scattering;
(ii) a bipolar system of one conduction band and one valence
band, which was shown in Ref. [50] to accurately model
BiTe; (iii) a three-band model (one conduction and two
valence bands) of the common thermoelectric material lead
telluride (PbTe), without interband scattering; (iv) a case of
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a two-conduction-band system, in the presence of interband
scattering; and (v) a three-band model (one conduction and
two valence bands) of tin selenide (SnSe), with interband
scattering. In all cases, we show that significant variations
are observed from the interval between 1.49 (nondegenerate
limit) to 2.44 (degenerate limit) W € K~2 with some being as
high as 100% deviation in unipolar materials. In the case of
bipolar materials, it is well understood that the Lorenz number
deviates from either limit. Here, we show that this deviation
can reach orders of magnitude when the Fermi level is close
to the midgap and also provide simple analytical formulas to
quantify these deviations.
Crucially, we show that the simplified formula

[~ 2iLiGi

Zi G’

where L; and G; are the Lorenz number and conductance

of the ith bands, respectively, which has seen some use in

the literature [7,8,49] as an approximation of the Lorenz

number, omits a crucial term that couples the multiple bands,

even in the absence of interband scattering. This missing

term is significant, especially in bipolar systems where the
well-known bipolar effect occurs.

Our results will allow for better estimates and understanding
of the lattice thermal conductivity, especially in materials
relevant to thermoelectricity such as SnSe, SnS, PbTe, and
BiTe [5,48], but also how the Lorenz number behaves in
general in materials with complex band structures.

ey

I. METHODS
A. Landauer formalism

In this work we exclusively consider parabolic effective
mass systems in the linear response regime. Transport is
described by the Boltzmann transport equation expressed
in the Landauer form in terms of an effective transmission
and number of transmitting channels [50-54]. As we explore
below, the Landauer method can be formulated such that it
maps to the BTE even in the diffusive regime, so alternatively
we can call such an approach simply “the Landauer formalism
within the diffusive regime,” and that terminology will be used
regularly. Within this formalism it is possible to define analytic
expressions for the important thermoelectric parameters in
terms of integrals of the form

o P
I; = /m n’pT(n)(— airf)dn, 2

where n and np are the reduced band energy and reduced
Fermi level, respectively:

_E-E, _Er—E
= Tt = T

with E, being the band energy (i.e., Ec,, Evy, etc.), be it
conduction (E¢) or valence (Ey), kg being the Boltzmann
constant, and T being the temperature. fj represents the Fermi-
Dirac distribution and T(E) is the effective transmission.
Within the Landauer formalism in the diffusive limit the
effective transmission is given by

T(E)=T(E)M(E), )

3
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where T(E) is the transmission and M(E) is the density of
modes [52], which in three dimensions for parabolic bands
(excluding spin degeneracy) is

.
Mip(E) = AZ2M(E — Ey) 5)
2nth
with mjj, being the density-of-modes effective mass [52],
A being the cross-section area of transport, and 7 being the
reduced Planck constant. In this work, we are only concerned
with conductances rather than conductivities and thus size
dependencies introduced by areas, such as A, and length ¢, are
removed.

Although the Landauer formalism allows one to treat both
diffusive and ballistic systems, here we focus on the diffusive
regime, which is representative of room-temperature transport.
In that case, the transmission function 7'(E) can be assumed
to be

I(E) = LE) (6)

14

where A(E) is the mean-free-path for backscattering [50,52]
and ¢ is the system length, which we again remove. The
relationship between the mean-free-path for backscattering
and the more conventional scattering time is given by the
simple expression (in three dimensions, under the assumption
of isotropic energy bands)

ME) = Ju(E)t(E), @)

where v(E) is the velocity of carriers and 7(E) is the scattering
time.

We emphasize that the Landauer formalism, with a trans-
mission function defined by a semiclassical power-law relation
used here, ends up being mathematically equivalent, though
conceptually distinct, from the more common Boltzmann
transport approach. Specifically, the effective transmission
in the Landauer approach is related to the transport distri-
bution function of Boltzmann transport through the simple
expression

_ e ¢
E(E) = ZT(E) = ];/\(E)M(E) 3

in this limit. However, as the Landauer approach allows one
to capture ballistic transport through a different choice of the
transmission and as it is framed not in terms of more classical
notions of carrier velocity, but rather quantum modes, we find
it to be a more natural language for the field of thermoelectrics
in general, which is lately dominated by considerations of
low-dimensional structures and nanostructures.

B. Scattering

In this work we assume that A(E) has the simple, commonly
employed, form

ME) = 2(T’, €))

where r is an integer exponent (» = 0 for acoustic phonons
in three dimensions) and )‘6 is a constant. In this work, for
conceptual simplicity, all bands are assumed to be parabolic.
This is equivalent to, although easier to justify than [50], the
common assumption in Boltzmann transport theory that the
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scattering time is of the form
T = 'L'()T)S.

For the case of acoustic phonon scattering, Boltzmann
theory dictates that T is given by

Bar 1

T E) =
ars(E) ksT(m)*?D3, , VE — Ep

; (10)

where Djp; is the deformation potential of the acoustic
phonons of band b, m} is the density-of-states effective mass
of band b and B4p, given by

p _ htpct
AP 75

which encapsulates all material properties and constants that
do not depend on the specific band: p the mass density and
¢s, the sound velocity. Using Eq. (7), one can rewrite this as a
mean-free-path to get

Y

Aapa(E) = 2 Y2Par (12)
’ 3ksT(my2 D%, ,
A
Ar 7", (13)

 ksTmp)*Dyp,

where A4 p collects all the constants associated with the
electron-phonon scattering behavior of the material, A4p =
\/ﬁﬁ 4p/3 and can either be treated as a tunable parameter, to
match experiment, or explicitly calculated based on knowledge
of the constants in Eq. (11).

Generalizing these results to the case of any scattering
mechanism defined by a power law of exponent r, we define
the mean-free-path for backscattering in a band b as

Ao

Ap(E) =
o5 (kgT)'="(m}»*Dp.,

n, (14)

where A is both material and scattering mechanism dependent
and all quantities with a subscript b are band dependent.
In this way, the diffusive BTE is transformed into the
diffusive Landauer form, and by assigning a mean-free-path
a more physical understanding is provided in comparison to
relaxation times. Throughout this work, unless a particular
material is being considered, Ao/D3 p., 18 arbitrarily chosen
for all bands such that the resulting mean-free-path for
backscattering at 300 K of a band with effective mass of my is
20nm [i.e., )LO/D%P » = 20nm x k(300 K)mg]. Such a value
is consistent with inany common semiconductors, such as
silicon.

This definition of the mean-free-path for backscattering is
important. Although it is common when applying the Landauer
formalism to simply quote a value for A(E) directly, looking
at Eq. (14) it is clear that the mean-free-path of the carriers
associated with a given band scales as the effective mass is
changed. Thus, in working in multiband systems with different
band effective masses, in order to be more accurate, one must
consider how the mean-free-path of each of the bands scales
accordingly.
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C. Transport coefficients

Using the integrals I; [Eq. (2)], the various electronic
transport coefficients can be defined as

G=Qq /Ml 11/l (15)
SG = —(kg/q)1, [VQ 'Kl (16)
$S=8G/G [V/K], (17)

ko = (T2ky/h) L [W/K], (18)
ke = ko — T'S*G [W/K], (19)

L =1«,/(TG) [WQK™]. (20)

We refer to these quantities as the electrical conductance (G),
the Soret coefficient for electrothermal diffusion (SG), the
Seebeck coefficient (S), the short-circuit electronic thermal
conductance (kg), the electronic thermal conductance for zero
electric current (x,), and the Lorenz number, respectively.

In the absence of interband scattering, a multiband system
can be modeled within the Landauer formalism by simply
treating each band’s density of modes separately [i.e., M(E) =
M(E) + M,(E) + ...]. In this way, we find for a two-band
system that

Gtot = Gl + GZ» (21)
SG1+SG, S1G| + 5G
St = 1+ 2 _ 0161 + 52 2’ (22)
Gtot Gtol

where the second line results from the fact that SG; =
Ei(Gi /G;) = S;G;. Looking at these two expressions gives
the impression that in a system where carriers in one band
do not scatter into the other, there is no coupling between
bands and each thermodynamic quantity can be treated as
a sum weighted by each band’s relative contribution to the
conductance. In this way, one might assume the multiband
Lorenz number takes the plausible form

I~ LG+ LG,
Gi+Gy
However, these first two quantities create an erroneous

impression as can be seen when one attempts to calculate
k. for a two-band system:

(23)

Ketot = Ko,1 + K02 — TStzothov (24)

The crucial aspect here is the term Sfot, which, by looking at
Eq. (22), we can clearly see that it must contain terms o S; 5.
As aresult of this, the electronic thermal conductance («.) and
thus the Lorenz number (L) cannot be treated according to
Eq. (1); even if a multiband system has no explicit interband

scattering, bands are still coupled to one another.

II. RESULTS AND DISCUSSION

Below we explore the quantitative and qualitative devia-
tions from expected values of the Lorenz number in a number
of different cases of multiband systems with substantial
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deviations and unexpected behavior found in all cases. In
addition, the size of these deviations will be quantified in
the real thermoelectric materials of lead telluride (PbTe) and
tin selenide (SnSe). We will also highlight the quantitative
discrepancies which result from the application of an expres-
sion like Eq. (1), which completely ignores multiband effects,
versus a more correct treatment of «, and describe the error
this will cause in interpreting experimental results.

In Sec. IT A we consider the case of multiple bands in the
absence of interband scattering (i.e., only intraband acoustic
phonon scattering), as well as a case study of the TE material
PbTe. Deviations in the presence of interband scattering is the
topic of Sec. I B as well as the real material SnSe.

A. Two bands: Intraband scattering only

In order to understand the possible deviations of the Lorenz
number that can occur in systems, we initially consider
only intraband scattering, with two separate cases: (i) that
of a two-conduction band system and (ii) that of a bipolar
conducting (i.e., one conduction band, one valence band)
system. We will find that in both cases there are important
deviations from the expected nondegenerate values. In the
case of bipolar materials this is expected, but for both cases
we derive analytical expressions for the deviations based on
simple band structure features. Finally, we will consider the
case of a real material. For this we pick p-type lead telluride
(PbTe), which is an important TE material and whose band
structure we model with two valence bands and a conduction
band. We compute the quantitative effect these deviations can
have on predictions of the Lorenz number and, by extension,
estimates of the lattice thermal conductivity (k). We also
show that the Lorenz number can deviate as much as an order
of magnitude. As aresult, comparatively large overestimations
of k, are possible.

1. Two bands of the same type: The Lorenz number
in the nondegenerate limit

As a first example of the effect of multiple bands on the
Lorenz number, we consider a system of two conduction bands
of differing band edge energies, with intraband scattering but
no interband scattering between them, and compute the devia-
tions that occur from the expected nondegenerate Lorenz value
of 1.49 x 10~8 W Q K~2. The Lorenz number in such a system
can be seen in Fig. 1(e), which shows its value as a function of
the Fermi level for different permutations of the upper band’s
effective mass and band separation. The lower band’s effective
mass is fixed at m} = my. For Figs. 1(a)-1(c) the two bands are
separated by an energy of kg7 ~ 26 meV (T = 300 K) with
Fig. 1(a) showing the case where both bands have the same
mass, Fig. 1(b) showing the case where the upper band is sub-
stantially heavier (by a factor of 10x), and Fig. 1(c) showing
the case where it is substantially lighter (by a factor of 10x).

The expected nondegenerate limit in Fig. 1(e) is shown by
the dark red dashed line. It is clear in the case of a lighter or
similar upper band (the green or blue curves, respectively) that
the Lorenz number can saturate in the nondegenerate limit
at a higher value than expected. The size of this increase
appears to grow as the band separation increases, which can be
seen in Fig. 1(d) where m} = 0.1m} and the energy separation
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FIG. 1. Lorenz number vs Fermi level for two conduction bands,
with only intraband scattering. Panels (a)-(d) show the energy
dispersion of the two-band system with a second band of differing
effective mass. In all panels, the lowest conduction band has an
effective mass of m( and the second band an effective mass of m,,
10myg, 0.1mg, 0.1m, for panels (a)—(d), respectively, and the energy
separation between the first and second bands is kg7 for all panels
except for (d), where it is 2kz 7. Panel (e) shows the Lorenz number
as a function of Fermi level with each curve corresponding to the
setup shown in panels (a)—(d) [i.e., the blue solid line is the system
shown in panel (a), red solid line is (b), dashed green is (c), and
solid green is (d)]. Also shown are the degenerate (dashed blue)
and nondegenerate (dashed red) limiting values of the Lorenz factor.
The inset shows the Lorenz number versus the reduced band offset
A = (E¢c, — E¢,)/kgT, as described by Eq. (33).

is 2kpT [corresponding to the solid green line in Fig. 1(e)].
In that case, the difference from the expected nondegenerate
limit of 1.49 x 108 W QK2 is as large as 50%, with the
nondegenerate saturation value nearing the degenerate value of
2.44 x 107 WQK™? instead. Note that this can provide
substantial deviations in the extraction of the lattice thermal
conductance k; from experimental data of the total thermal
conductance (kyy = k. + k7). As L is larger than thought to
be, one could, for example, erroneously assume that «, is not
yet at the amorphous limit and can still be further lowered,
when in reality it is already there.

These deviations can be understood using a very simple
model of two noninteracting parabolic bands. Such a model
is all that is necessary to qualitatively demonstrate the effect
and the analytical predictions it makes can be expected to be
accurate in the limit of weak interband scattering which is
discussed further on.
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First, we introduce the simplifying constants

2 2
and y = hi (25)

o = msz(E)kBT = 5

myDapp
where the values are the same as in Eq. (14). These constants
effectively divide all material- and temperature- dependent
properties into the constant «y. Using these constants, the
conductance of a single parabolic band b with reduced Fermi

level np = (Ep — Ep)/kpT is given by
Gy =yIl(r + DapFr(nF,), (26)

where T is the gamma function, r is the scattering exponent
of Eq. (9), and F, is the Fermi-Dirac integral:

1 o n/
Fon = o |
! FG+DJo expn—nr)+1
In the case of two conduction (or two valence) bands, with
a reduced conduction band energy offset of A = (E¢, —
Ec,))/kgT, we can say that ng, = np and ng, = nr + A.
In the nondegenerate limit where nr <0, F.(np) —
exp(nr,). Under this approximation, the expression for the
conductance simplifies to

Gy ~ yT(r + 2)ape . (28)

dn. (@27

For independent bands, the values of the integrals /; of Eq. (2)
can simply be added to one another to obtain the full integral
for the two-band system. Thus, the total conductance for the
two-band system is

G=G1+G,=yI'(r+2)e"y, (29)
where
V= o) + ae’. (30)

From here the final expressions, whose derivation is given in
the Appendix, can be obtained:

A

Aoye
, 31
v > (31

k
Sw——3<<r+2>—nF—
q
2
kp
ke " T|— ) yI'(r +2)e" ¢
q

Aaye® ( AO{2€A>:|
2 A — . 32
X |:(V +2)+ v v (32)

Finally, by dividing Eq. (32) by Eq. (29) (times the temperature
T) we get, by Eq. (20), the final expression for the Lorenz

number:
kB 2 A 20(1 A
L~L — — ) —e 7, 33
o+ () (aes) e @

where L is the typical nondegenerate value of (r + 2)(kz/q)>,
which is ~1.44 x 1078 W QK=2 for the case of acoustic
phonons in three dimensions where r = 0. Note that, as the
nondegenerate limit was invoked in the derivation of these
expressions, the exponent r, which relates the energy to
the scattering strength, does not matter. Thus, this result is
considered general for any value of r, be it acoustic phonons
or weakly or strongly screened impurities.
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FIG. 2. Lorenz number vs temperature for the band structures
in Figs. 1(a)-1(d). Squares represent numerical results and lines
represent the results from the analytical expression in Eq. (33). Color
and line conventions match those of Fig. 1 with solid and dashed
green representing an upper band effective mass 0.1x that of the
lower, with an energy separation of kzT for the dashed line and
2kpT for the solid line. Blue and red solid lines represent upper band
effective masses of 1x and 10x that of the lower, respectively (both
at kpT energy separation).

Looking at Eq. (33), we can see that the existence of a
second band, regardless of an assumption of explicit interband
scattering or not (as in this example), produces a deviation
from the expected nondegenerate value of the Lorenz number.
The accuracy of Eq. (33) is demonstrated in Fig. 2, where
that expression (solid lines) is plotted alongside those from
numerical calculation (squares). The band configurations and
line color schemes we employ are the same as with those of
Fig. 1. The analytical expression matches numerics with great
precision.

The fact that this occurs can be understood straightfor-
wardly. Given that in the nondegenerate limit, where the
difference between Fermi-Dirac integrals of different type
(i.e., F, for different r) disappears, we still find that in
a single-band system the ratio of x, and TG is a fixed
constant. In a two-band system, you have an additional term
of —T 81 S,G o arising from the —T 52, G term in Eq. (19).
Given that the term dependent on A in Eq. (31) is negative,
and only occurs in S, (if we assume the second band is the
offset band), then the A-dependent portion of the —7' S} 5> G ot
term will contribute positively to «, and thus increase the
Lorenz number from the single-band case. Thus, this A offset
increases the Lorenz number from the expected nondegenerate
limit. Intuitively, this reflects the fact that «, weights higher
energy contributions more compared to the conductance and
thus having an increased density of states at higher energies
(i.e., a second band) improves x, more than G. The inset of
Fig. 1(e) shows how the value of the Lorenz number changes
as a function of the reduced band separation A. It can be
seen for the case of a higher band whose effective mass is
10 times smaller than the lower band, that the enhancement
above expectation can be over ~100% for a maximum value of
~4kpT. For larger band offsets, the second band is out of the
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relevant transport energy range and its influence disappears.
Note that the effect of the second light band on the Lorenz
number is significant, despite the fact that its occupation is
minor (due to its low mass and its higher energy) compared to
the occupation of the lower band. The light mass allows high
velocities which make the upper band similarly conductive to
the lower band. Ultimately, however, the effect on the Lorenz
number originates from the coupled S;S; term as explained
above.

2. Two bands of opposite types: Lorenz number in bipolar systems

There is an even larger deviation in the Lorenz number that
occurs in bands with intraband (but no interband) scattering
in the case where one band is a conduction band and the
other a valence when the band gap is small (i.e., bipolar
materials). Typical TE materials where this is true are BiTe,
with a band gap of 0.162 eV, and PbTe, with a band gap of
0.3 eV at T = 300 K. In this scenario, the fact that the Lorenz
number deviates from the two single-band limits is already
well known [2]. Therefore, in this section, we aim to derive
a series of simple analytical expressions to estimate the size
of deviation in this region based on simply band-structure
parameters and to demonstrate that the size of deviation can be
quite substantial. This increase in the midgap region is shown
in Fig. 3 in a similar paneled form to Fig. 1 with the valence
band being the second, adjusted, band. Effective masses of
the second band are the same as in that figure, except for
Fig. 3(d) which has a valence band effective mass 10x that
of the conduction band [as in Fig. 3(b)]. The band gaps in the
figure are 0.2 eV for all panels except (d) where it is twice
as large (0.4 eV). The values of the band gap were chosen to
be simple and yet representative of those found in BiTe and
PbTe.

Looking at the Lorenz number plotted in Fig. 3(e), it is clear
that there is an extremely drastic increase. A zoom-in can be
seen in the insets and it is clear that the degenerate limit is
recovered at the left (VB) and right (CB) sides. Saturation at the
nondegenerate limit of course never occurs and, in fact, the real
Lorenz value may be orders of magnitude larger. Furthermore,
it can be seen that the Fermi level of the peak depends on the
relative effective masses of the valence and conduction bands,
only being in the midgap in the case of equal masses (solid
blue line). The heavier the effective mass of one band relative
to the other, the closer the peak appears towards that band.
Furthermore, looking at the case of the two curves of the same
corresponding masses (the solid red and dashed red lines), but
for different energy separations, it appears that the height of
the peak is greatly affected by this separation.

It is important to note that all curves are plotted such that
the midgap is chosen to be at Er = 0, and that the band profile
described by the dashed red line actually has a different band
gap (0.4 eV instead of 0.2 eV) than the other curves. Thus,
although the peaks of the dashed and solid red lines (i.e., same
effective masses, but different band gaps) appear to coincide,
suggesting that the peak location is not dependent on energy
separation, this is merely a coincidence and we will discover
the true relationship shortly.

The reason for this peak is intuitively simple. The Seebeck
coefficient is proportional to I; [see Eq. (2)], in which values

PHYSICAL REVIEW B 95, 125206 (2017)

%1 0.2 (a)\/ % 0.2 (b)\/
— 0 — 0
_ Y P
ol N
-2 0 2 -2 0 2
k [2m/a ] k [2m/a,]

02D N

FIG. 3. Lorenz number vs Fermi level for a two-band bipolar
system in the absence of interband scattering; one valence and one
conduction band. The arrangement of this figure is identical to that of
Fig. 1. The effective mass of the conduction band in all cases is my and
the effective mass of the valence band is taken to be m, 10m,, 0.1m,,
10my for panels (a)—(d), respectively. The band gap is 0.2 eV in all
panels except (d) where it is 0.4 (i.e., twice as large). Panel (e¢) shows
a very significant peak in the Lorenz number forming in the band gap,
which becomes large with increased band gap and effective mass of
the valence band. The insets show zoomed-in regions, showing, by
horizontal lines, both the degenerate (dashed blue) and nondegenerate
(dashed red) limits.

at energies below the Fermi level contribute negatively and
act to cancel the values at energies higher than it. Thus, when
the Fermi level is close to, or inside, a valence band, the sign
of the Seebeck coefficient is opposite to when it is near or
inside a conduction band. As a result of this sign change, the
Seebeck coefficient must be zero somewhere in the midgap.
As the Seebeck coefficient is subtracted off the value of k¢ [see
Eq. (18)], then «, is enhanced in a situation where it becomes
zero. Thus, the Lorenz number is also enhanced.

As this peak lies in neither limit of the Fermi-Dirac
integrals, it is difficult to completely model such behavior
with an analytical expression. However, given that this peak
is strongly related to the Seebeck coefficient becoming zero,
one can estimate the Lorenz number at this zero point. At this
point, it is possible to develop an analytical expression. The
task in doing so is twofold: one must first determine for what
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value of the Fermi level the S becomes zero and then determine
the value of L at that value of the Fermi level.

The second task can be accomplished fairly straight-
forwardly by using the results of Eq. (A4) for the A
value of

E
App = ——5 _ 2. 34
BP iaT nF 34

where E, is the band gap and the subscript BP notes that this
is the A for a bipolar system. With this Agp we have that

(Ec—E;)—Er Ey—Ep
kgT kgT

nr + App =

Substituting this into Eq. (A4) and dividing by temperature
times Eq. (29), one can obtain the following expressions for
the maximum Lorenz number:

k 2
Luax ~ Lo+ (f) [(r 202 — 20 4 2) + (i)

A
[ 2 +2) + ABP]}, (35)

14+ Ye—Apr
o

where Lo is the nondegenerate limit. It is important to
note that this expression was derived under the assumption
of the nondegenerate limit for the Fermi-Dirac integrals,
such that F,.(nr) — exp(nr). This approximation may seem
questionable in a narrow band-gap system, but we will find
in Fig. 4 that its predictions are quantitatively accurate for the
band gap here of 0.2 eV, which is comparable to that of the
narrow band-gap semiconductors used in thermoelectrics (i.e.,
BiTe and PbTe).

The value of np™* is that for which the Seebeck is zero. This
must be determined numerically by finding the point where the
expression in brackets in Eq. (31) is zero (specifically, the zero

100— - - - - 0.02
90f
1-0.03
80|
< 1-0.04
S %
. 60f -—{105“’§
= ©
= s0f [
: 1-0.06
_° 40t
ol 1-0.07
20 0.08

300 400 500 600 700 800
T [K]

FIG. 4. Maximum Lorenz number of the midgap peak (left axis,
red line and squares) and Fermi level location of said peak (right
axis, blue line and triangles) as a function of temperature. In this plot,
the effective mass of the valence band is 10x that of the conduction
(whose m, = my) and the band gap was 0.4 eV. Symbols represent the
results for full numerical calculation and lines represent the simplified
expressions (35) and (36).
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root closest to the midgap):

max App
O=(r+2)—nFa —W. (36)
The reason why n7®* must be solved numerically is because
App is also a function of np, as is shown in Eq. (34).

Using expression (35), evaluated at the point determined
by solving Eq. (36), it is possibly to obtain an estimate of the
size of the Lorenz number deviation at its largest. Figure 4
shows a comparison of the maximum height (right y axis, red
line and squares) of the Lorenz number found in numerical
calculation (squares) versus the predictions of the analytical
expression (35) (solid line) as a function of temperature. It
also shows the Fermi level of the peak using both complete
numerics (blue triangles) or by numerically solving the much
simpler expression (36) (blue line). It can be seen that the
simpler expressions are still highly accurate. The following
expression can be considered valid for any value of » and
thus can be said to model not just acoustic phonons, but also
strongly screened impurities (r = 0), weakly screened ionized
impurities (r = 2), and optical phonons, provided the phonon
energy is substantially smaller than the gap.

3. Real bipolar material: The case of PbTe

As an example of the significant effect that multiband
Lorenz number deviations can have in real materials, even
in the absence of interband scattering, we consider the case
of the common thermoelectric material lead telluride (PbTe).
This material has a fairly complex band structure which nicely
encapsulates the effects that have already been discussed.
In Ref. [49] it was shown that PbTe could be quantitatively
matched to experimental data using a multiband model with
all interband scattering being ignored (i.e., only intraband
acoustic phonon scattering). In this section, we will show that
for a set of material parameters that describe the band structure
(adapted from Ref. [49]), the discrepancy between predictions
made with Eq. (1), which ignores multiband effects, and a more
correct treatment can have a great effect on calculated Lorenz
values and thus the error in the experimental determination of
the lattice thermal conductivity.

Here, we consider a simplified band structure of PbTe
consisting of two valence bands (L and X) and a single
conduction band (C). We take the energy of the conduction
band and the ¥ band to be fixed with the valuesof E- = 0.0eV
and E¢c — Exy = Ec_y = 0.36 eV. Conversely, we assume
that the L-band energy changes with temperature according
to the function (as used in Ref. [49])

AT

Ec.p = 0.09
L * 10000

ev. (37)

Thus, for low temperatures, the L band is the highest energy
valence band but at high temperatures there is a crossover and
for T 2 450 K, the X band becomes higher in energy. The
effective mass of the various bands is taken to be temperature
dependent with the form

(38)

m*<1 e 17300 K)
T 9
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where mj = 0.36mg, my, =2my, and m{ = 0.3mg and
Amj =0.5, Amy = 0.0 (i.e., no change), and Amg = 0.5
(as in Ref. [49]). Intervalley scattering is ignored and only
intravalley acoustic phonon scattering is considered. The
strength of this is most easily calculated using the expression
for the scattering time from Boltzmann transport theory [55]:

lipc?

Tap = s 39

7 D3 p
where p is taken to be 8.164 g/cm3, D,p is taken to be 19 eV
for the L and C bands, and 9.5 eV for the X band and ¢, is
taken to be 3600 m/s (as in Ref. [49]). After calculating tp,
the value is converted into a mean-free-path for backscattering
using Eq. (7), and the Landauer formalism is the approach
used for final calculation.

All the values used here were adapted from Ref. [49],
however, it is important to note that in that work, the L and
C bands were also assumed to be nonparabolic Kane bands.
Although such an assumption would surely improve matches
to experimental data, it is also an unnecessary complexity
and a divergence from the analytical expressions and simple
effective mass discussion considered in this work. Thus, all
bands are treated as parabolic in our model. However, Fig. 5(a)
shows experimental results for the Seebeck coefficient and

p [m-Qcm]
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FIG. 5. Panel (a) shows the Seebeck coefficient and resistivity vs
temperature in PbTe with comparison to experimental data extracted
from Ref. [49]. Panel (b) shows the Lorenz number vs Fermi level. The
multiple lines represent a sample of curves at different temperature
with the thinnest, darkest line being a temperature of 300 K and
the thickest bluest line being 850 K. Dotted versions of those same
lines, which show no peak, represent the result of calculating L
using Eq. (1), which ignores multiband effects. The Fermi levels
indicated by dotted blue, black, and red vertical lines reflect positive
carrier concentrations of 2.5 x 10%° cm™, 2.0 x 10®® cm™3, and
1.5 x 10% ¢cm™3, respectively, and are used in Fig. 6. Panel (c) is
an enhanced plot of the left side of panel (b).
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resistivity taken from experiments in Ref. [49] on undoped
polycrystalline PbTe (squares). It is clear that this assumption
of parabolicity (lines) still produces results that are accurate
enough to motivate a discussion of the Lorenz number in real
systems.

Figure 5(b) shows the Lorenz number versus Fermi level
for the temperatures 300 to 850 K (lower temperatures being
thinner, blacker lines; higher temperatures being thicker,
bluer lines). It also shows the result of using the more
accurate approach towards calculating the Lorenz number
(solid curves), which results in a substantial peak, and, as a
reference, by using Eq. (1) (dotted lines of the same color). The
difference between the two methods can be seen more clearly
in the zoomed-in Fig. 5(c). In that figure, it is found that both
methods agree in the degenerate limit (i.e., to the left), but in
the middle of the band gap the method of Eq. (1), which ignores
coupling terms such as those proportional to S;5,, shows no
peak at all. The vertical blue, black, and red lines indicate
carrier concentrations of 2.5 x 102 cm—3, 2.0 x 102 ¢m—3,
and 1.5 x 10*° cm™3, respectively, corresponding to typical
doping values for this material found in TE applications. These
points are shown here as they are used later on in Fig. 6 below.

Looking at Figs. 5(b) and 5(c) it is clear that the effect of the
peak in the Lorenz number in the midgap region is substantial
at all temperatures, with the height of the peak being less
at higher temperatures but its width being greater. Note that
the Eq. (1) curves suggest that the entire midgap region has
a Lorenz number corresponding to the nondegenerate limit,
when in reality the Lorenz number differs from this value
by orders of magnitude throughout the entire range of Fermi
energy levels that reside in the band gap.

Figure 6 shows the Lorenz numbers as a function of
temperature for the three carrier concentrations marked in
Figs. 5(b) and 5(c). These carrier concentrations are found to
be a reasonable range for p-doped PbTe [49]. The dotted lines
represent the Lorenz number as calculated using Eq. (1), where

300 400 500 600 700 800 900

FIG. 6. Lorenz number vs temperature for different carrier con-
centrations for a two-band bipolar system. The dotted lines represent
the Lorenz number as calculated using Eq. (1), where the solid lines
represent calculations which correctly include cross terms that occur
even if there is no explicit coupling between bands.
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the solid lines represent its value when the interband cross
terms, which appear even in bands not connected by interband
scattering, are taken into account. Although the discrepancy
is small at room temperature, and Eq. (1) seems to provide
an accurate estimate of the Lorenz number, the difference is
as large as a factor of 80% for the case of p = 2.5 x 102 at
T = 850 K (the maximum of the blue line, occurring outside
the figure range, is L ~ 2.9 x 1078 W Q K~2). It is noted that
PbTe is a TE material which is optimal for high-temperature
applications. Thus, care needs to be taken when extracting the
lattice thermal conductivity using the Lorenz number at these
temperatures.

As was previously discussed, these results suggest that
the Lorenz number can be substantially underestimated in
a material like PbTe. As a result, since the lattice thermal
conductivity is often extracted from experimental measure-
ments of ki and the assumption of a Lorenz number in
the nondegenerate or degenerate limit, the recorded values
of k; would correspondingly be overestimated. As a result,
this may mean that nanostructuring attempts to lower lattice
thermal conductivity may indeed by more successful than is
recorded, but also that introducing further phonon scattering
mechanisms to further reduce x; may not result in lower
thermal conductivities as k; may already reach at, or below,
the amorphous limit, for example.

B. Bands interacting through interband scattering

In addition to the deviations discussed for the case of
noninteracting bands (i.e., where only intraband scattering is
allowed), there are also additional Lorenz number deviations
that occur once the multiple bands in a system are coupled by
interband scattering. A panel figure similar to that of Fig. 1 is
shown in Fig. 7 for the case of a two-conduction-band system
within the presence of interband scattering (at 7 = 300 K). For
the sake of simplicity, the strength of interband scattering was
taken to be the same as that for acoustic phonon scattering
(i.e., A;p = Aap) and the final effective mean-free-path for
backscattering is given by the alternate Matthiessen’s rule (in
terms of mean-free-paths rather than relaxation times):

1 1 1
= + , (40)
Mot(E)  Aap(E) — Ap(E)
which follows straightforwardly from the regular

Matthiessen’s rule in terms of scattering times and Eq. (7).

The key features of Fig. 7 are (i) the deviation from expec-
tation in the nondegenerate limit, and (ii) the nonmonotonic
peak at intermediate Fermi levels between the two limits. In
both cases, the amount of deviation increases with both the
effective mass of the upper band relative to the lower band and
the size of the energy separation between the two conduction
bands, with the largest deviations being found for the case of
Fig. 7(d) with an upper band effective mass of 10m( and an
energy separation of 2kgT .

1. Reduction of L

An extremely interesting feature of the Lorenz deviations
in this case is that L can, in fact, be less than expectation by as
much as a factor of 3 [Fig. 7(d)] and thus this is the only case
considered in this work where the x; may be overestimated
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FIG. 7. Lorenz number vs Fermi level for two conduction
bands interacting through interband scattering at 7 = 300 K. The
arrangement of this figure is identical to that of Figs. 1 and 3. The
effective mass of the lower conduction band in all cases is m( and the
effective mass of the upper conduction band is taken to be mg, 10my,
0.1myg, 10m, for panels (a)—(d), respectively. The band separation is
kT in all panels except (d) where it is 2kgT (i.e., twice as large).
Panel (e) shows clear nonmonotonic behavior in the Lorenz number
in the intermediate regions between the degenerate (dashed blue)
and nondegenerate (dashed red) limits. In addition, strong deviations
from the expected nondegenerate limit can be seen for large band
separation energies and effective masses.

by a fair margin. With respect to TE materials, one could
imagine a case where x; has not yet reached its amorphous
limit value, and yet nonconsideration of this type of Lorenz
number deviation leads to the incorrect conclusion that no
further lattice thermal conductivity reductions are possible.
The deviations in the nondegenerate limit are the result of
the same effect discussed previously in Eq. (33). Specifically,
an ultimate result of the fact that «, is more strongly weighted
by higher-energy contributions than G. Thus, interband scat-
tering into the upper band hinders «, more than G and thus
decreases L. However, due to the scattering between the bands,
the energy spectrum of the mean-free-path for backscattering
(or scattering time) no longer has a simple power-law form and
thus a simple analytical result is not possible. Furthermore,
looking at the size of the deviations from the nondegenerate
limit, it is clear that the effect is much larger when the bands

125206-9



MISCHA THESBERG, HANS KOSINA, AND NEOPHYTOS NEOPHYTOU

scatter between one another and thus Eq. (33) is not valid
and must only be considered as a special case of no or weak
interband scattering.

The nonmonotonic peak in the Lorenz number is another
new feature that deserves further discussion.

2. Nonmonotonic behavior

Unlike Lorenz number deviations occurring in the nonde-
generate limit, the nonmonotonic behavior seen in Fig. 7(e)
is entirely attributable to the effect of interband scattering
and does not occur in a system of independent bands. The
key parameter in understanding this behavior is the effective
transmission given in Eq. (4). The source of the effect
can ultimately be traced to two crucial facts: (i) that the
presence of interband scattering produces a sharp dip in the
effective transmission function, and (ii) that the electronic
thermal conductance, dictated by I, [from Eq. (2)], differs
from the electronic conductance G (which is o Iy) by a
weighting factor of n?> = (E — Er/kpT)?, which weights
higher energies more.

Figure 8 shows the effective transmission [T(E) =
T(E)M(E)] (black line), energy-resolved conductance [G(E)]
(blue line), and energy-resolved electronic thermal conduc-
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FIG. 8. The effective transmission [T(E)= T(E)M(E)],

energy-resolved conductance [G(E)], and energy-resolved electron
thermal conductivity for two different Fermi levels: the first, shown
in panel (a), being a Fermi level well into the degenerate limit
(Er = 0.25 eV) and the second, shown in panel (b), being the Fermi
level value corresponding to the peak of the dashed red line in
Fig. 7(e) (Er = 0.11 eV). The effective mass and energy separation
are those of panel (e) of Fig. 7 (i.e., my; = 10m, and a separation
of 2kpT). All quantities are plotted in arbitrary units chosen so that
all curves can be clearly seen on the same graph, and qualitative
comparisons made.
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tivity («.) (red line) for the Fermi levels of Er = 0.25 and
0.11 eV. The first case shown is that where the peak forms
in Fig. 7(e), i.e., where the nonmonotonic behavior of the
Lorenz number is most pronounced and specifically where
the upper band has an energy offset of 2k 7 and an effective
mass that is 10x larger than that of the lower band. The sharp
feature in the effective transmission at an energy of 2kpT is a
result of interband scattering into the second band. Scattering
is proportional to the density of states available to scatter into.
Thus, when a second band, especially one with a very large
effective mass (and thus large density of states), enters the
energy window around the Fermi level, scattering increases
vigorously and the mean-free-path for backscattering [and thus
T (E)] decreases.

This sharp feature in the effective transmission that results
from intervalley scattering is the reason for the nonmonotonic
behavior in the Lorenz number. Figure 8(a) shows the behavior
of T(E) and G(E) deep into the band (Er = 0.25 eV), where
the Lorenz number is saturated at its degenerate limit. The
conductance G(E) is peaked near the Fermi level, whereas the
electronic thermal conductance x.(E) has two peaks lying
some distance to either side. Conversely, Fig. 8(b) shows
a Fermi level of 0.11 eV, which corresponds to the peak
of the nonmonotonic behavior in Fig. 7(e). Looking at the
figure, one can clearly see the reason for the enhancement:
the conductance peaks at the pronounced dip in the effective
transmission, whereas «, straddles this dip, with the leftmost
(i.e., lower in energy) of its two peaks lying right at the top of
the sharp transmission feature. Thus, ./ G is enhanced.

Thus, the degree of nonmonotonicity in interacting multi-
band systems is driven by the sharpness of the jagged feature
in the effective transmission. The sharpness of this feature
is, in turn, dependent on how much greater the density of
states of the upper band is and how easy it is for carriers to
scatter from one band to the other. Therefore, as the interband
scattering amplitude, the ratio of effective masses (i.e., m} /m?)
and the size of the energy separation between the bands
increases, this nonmonotonic deviation of the Lorenz number
becomes a greater effect. This is also why such nonmonotonic
features do not appear in band systems without interband
scattering, as they are dependent on the sharp dip in the the
effective transmission, which only occurs when this scattering
is considered.

C. Multiband materials: The example of SnSe

As a final synthesis of all aspects considered in this work,
we consider a three-band model (two valence bands plus
one conduction band) of the promising new thermoelectric
material, p-type tin selenide (SnSe) [46,47]. In this three-band
model we include interband scattering between the two valence
bands and, thus, the model includes all three aspects previously
discussed (i.e., midgap deviations, as well as scattering and
nonscattering driven two-band deviations). Despite SnSe’s
complex band structure, we will show that this simpler
three-band model can adequately match experimental results
for p-doped SnSe, and therefore, can be used to explore the
Lorenz number values in a more detailed and accurate manner.

It is worth pointing out that the assumption that PbTe
has no interband scattering but SnSe does, as well as the
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FIG. 9. Calibration figures demonstrating the ability of the three-
band model to match experimental data for SnSe. Panels (a) and
(b) show the a-axis Seebeck coefficient (solid black) and mobility
(solid red), respectively, as a function of carrier concentration, with
the blue dots and pink triangles representing experimental data on
polycrystalline (PC) samples taken from Refs. [56,57] respectively.
The dotted red line in (b) represents mobility along the ¢ axis.
Panels (c¢) and (d) show the Seebeck coefficient and conductance,
respectively, as a function of temperature for a lightly (solid blue)
and heavily (dashed blue) doped single-crystalline (SC) sample. Red
squares represent experimental results from Ref. [47] of a SC sample
along the a axis.

assumptions of parabolic bands, are justified here only by the
simple fact that these assumptions match experimental data
adequately. Undoubtedly, better matches to experimental data
could be achieved by including more scattering mechanisms
(such as optical phonons), more bands, nonparabolic effects,
etc. However, it is not the goal of this work to achieve the most
quantitatively accurate possible model of these materials but
merely to highlight the approximate size of deviations that can
result from the effects discussed here.

We take as a model of SnSe a system of two valence
bands, with interband acoustic phonon scattering [i.e., r = 0
in Eq. (9)] and a conduction band separated by a band gap
(i.e., a three-band model). Scattering is included in a manner
identical to that in Sec. I A 3 for PbTe, with the only exception
being that interband acoustic phonon scattering is included,
and its strength is taken to be the same as intraband scattering
(i.e., Aap = Arp). The values for filling Eq. (39) were drawn
from the density functional theory (DFT) results of Ref. [48]
for the a axis, which was found to match most closely the
experimental data for single-crystalline samples and the ¢
axis, which was found to match the polycrystalline mobility
data [see Fig. 9(b)]. The mass density p was taken to be
6.179 g/cm?, the sound velocity ¢, was taken to be 3356 m/s
for the a axis (3267 m/s along the ¢ axis), the deformation
potentials of the valence and conduction bands were taken to
be 14.1 eV (15.8 eV for the ¢ axis) and 12.9 eV (13.2 eV
for the ¢ axis), respectively. A value of the band gap of
0.78 eV was also assumed based on that work as well as
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effective mass values for the conduction band of m} = 0.5my,
m}y = 0.12mg, m} = 0.16m,.

The values of the valence band effective masses were
taken from the more recent Ref. [47] where they were found
to match experimental data for degenerately doped single-
crystalline samples. For the first (i.e.. highest-energy) valence
band, m} = 0.76my, mj = 0.33my, and m} = 0.14m,. For
the second valence band, the effective masses m} = 2.49my,
m;‘ = 0.18my, and m} = 0.19m are heavier than for the first
band. All bands are doubly degenerate and a band separation
of 0.06 eV was also assumed based on that work.

It is important to reiterate how effective mass enters into
the Landauer formalism (through the density of modes) versus
how it is calculated in the density of states, which is necessary
to determine carrier concentrations [52]. Along the a axis, the
density-of-modes effective mass is taken here to be gj,,/mym?,
where g, is the degeneracy of the band. This, in essence,
represents a cross section of the effective mass in the plane
perpendicular to the transport direction. Conversely, here the
density-of-states effective mass is given by gz/ 3 (m;m’y‘mij)l/ 3,

With this distinction in mind, a three-band model of SnSe
is used in Fig. 9 to compare against experimental results.
Figures 9(a) and 9(b) represent the Seebeck coefficient and
mobility, respectively, as a function of carrier concentration.
Carrier concentration is calculated by integrating the density
of states (using the density-of-states effective mass) and the
mobility is calculated from u = G /gp, where p is the positive
carrier concentration. The solid curves (black for the Seebeck
coefficient, red for the mobility) represent transport along
the a axis and the dotted red curve represents the mobility
along the ¢ axis. The blue circle and purple triangles represent
experimental data on silver (Ag) doped polycrystalline (PC)
SnSe taken from Refs. [56,57]. As those data are taken from
a polycrystalline sample, and thus each grain has a different
orientation, both the a- and c-axis calculations are shown. It is
clear that this relatively simple model adequately matches the
data in both the undoped regime (p &~ 2 x 107 cm~?) and the
highly doped regime (p ~ 10" cm™3).

As a second demonstration of the quantitative validity of
the model, it is compared against experimental results from
Ref. [47] for single-crystalline (SC) SnSe along the a axis.
Doping was done with sodium (Na). Figures 9(c) and 9(d)
show the Seebeck coefficient and conductance, respectively,
versus temperature for the case of no doping (indicated in
Ref. [47] to occur at p & 2 x 10'7, shown by the dashed blue
lines in both figures), and the highly doped case (indicated
in Ref. [47] to occur at p ~ 4 x 10", shown by the solid
blue lines in both figures). It is important to note that SnSe
undergoes a structural phase transition at ~750 K, which is in
no way captured by the simple model here.

The existence of this structural phase transition, however,
does not likely explain all of the deviations in the Seebeck
coefficient from experiment observed at high temperatures in
the lightly doped case. The cause of this deviation is the fact
that the calculated Seebeck data (solid blue line) dramatically
tend towards zero at temperatures higher than approximately
600 K, where the experimental data have a more gradual
downturn. At higher temperatures, in order to preserve a fixed
carrier concentration, the Fermi level must move away from
the band and closer to the midgap. It is this approach towards
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FIG. 10. Lorenz number versus temperature in tin selenide
(SnSe). The red squares indicate a p-doping level of 2 x 10'7 cm—3
reflecting an essentially undoped sample, where blue triangles
represent a doping of 10" cm™ reflecting heavy doping (at p ~
4 x 10" cm™3 the Fermi level enters the valence band). Dotted lines
represent predictions based on Eq. (1) and solid lines represent results
from the complete inclusion of multiband effects.

the midgap that causes the Seebeck coefficient to tend towards
zero. This drop towards zero can be made to occur at higher
temperatures by either considering a larger band gap, or by
increasing the average effective mass of the conduction bands
[thus pulling the zero Seebeck point closer to the conduction
band as described by Eq. (36) and illustrated in Fig. 3]. This
is to say, it is possible to obtain a closer fit to experiment
in this high-temperature range by adjusting the band gap and
band effective masses of the model. However, the parameters
used here were extracted from either experiment or density
functional theory calculations and, thus, changing their value
in an ad hoc manner is difficult to justify and, given that the
goal of this work is not to produce a maximally accurate model,
is of little value. This is in addition to the expected inaccuracy
of the model regardless, due to the structural phase transition,
at high temperatures. With this understanding, the quantitative
fit to data is adequate for the purposes of exploring Lorenz
number behavior in this material, at least for temperatures
below ~600 K, especially for the highly doped case, which is
more relevant for TE applications.

Since the three-band model has been shown to acceptably
reproduce experimental results for the Seebeck coefficient and
conductance, it is worthwhile to consider what it says about the
Lorenz number. Figure 10 shows the calculated Lorenz number
versus temperature at two different carrier concentrations: p =
2 x 107 cm~? in red squares, representing undoped SnSe with
a Fermi level in the midgap region, and p = 1 x 10" cm~3,
in blue triangles, representing a heavily doped sample (in
Ref. [47] it was estimated that p =~ 4 x 10" cm—3 corresponds
to the point where the Fermi level enters the valence band).
The solid curves with solid markers represent values from
the Landauer approach taken here, and the dotted curves
with hollow markers represent those resulting from a Lorenz
number calculation based on Eq. (1). In the highly doped
case (blue lines), the effect is noticeable, although arguably
not substantial, amounting to a ~15% underestimation of
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the Lorenz number at low and high temperatures. Although
it is important to reiterate that at high temperatures, SnSe
actually undergoes a structural phase transition, and, thus,
this model may not quantitatively reflect that material in the
high-temperature range, although in the highly doped case,
which is more relevant for TE applications, a greater agreement
is achieved (this is seen by comparing the blue lines). However,
in the undoped case, the effect is undoubtedly significant. For
low temperatures, the discrepancy is, again, ~15%. However,
for intermediate and high temperatures, the deviation from
expectation differs by several orders of magnitude (red solid
line goes off the graph at very high values).

III. CONCLUSIONS

In this work, we have explored the types and sizes of devi-
ations of the Lorenz number from the expected nondegenerate
limit of Ly = 2(kg/q)* = 1.49 x 1078 W QK2 and the ex-
pected degenerate, or metallic, limit of Lo = 72/3(kg/q)* =
2.45 x 107 W QK2 that occur due to multiband effects.
Specifically, we have shown that the Lorenz number can
deviate markedly from expectation in the case of multiple
bands of the same type (i.e., multiple conduction bands or
multiple valence bands), even if there is no explicit interband
scattering present.

For the deviations outlined in this work, a number of
analytical expressions were derived that allow for a more accu-
rate estimation of the Lorenz number. Furthermore, particular
stress is placed on the amount of error that can result from the
assumption that multiband systems can be treated as entirely
decoupled, resulting in equations like Eq. (1). In this case, it
was found that values can deviate by orders of magnitude
in the midgap of bipolar systems and by approximately a
factor of 2 for unipolar systems. The study was performed
within the Boltzmann transport approach expressed within the
Landauer form with an assumed semiclassical transmission
function. Thus, it can be said to be generally relevant to
diffusive transport for any scattering mechanism that follows
a power-law form in energy.

The primary model used in this work is that of parabolic
bands in the presence of acoustic scattering only. For materials
where such a model is inappropriate, it is likely that the main
insights obtained can be said to be only qualitatively accurate,
although providing even qualitative insights on how multiple
bands and intravalley versus intervalley scattering affect the
Lorenz number is of great value. However, as a demonstration
of the real effect these deviations can have on real materials,
specific examples of the common thermoelectric materials lead
telluride (PbTe) and tin selenide (SnSe) were explored. Simple
multiband models were developed for each material and found
to adequately match published experimental results. From
these models, the value of the Lorenz number was explored as
a function of temperature and doping (or Fermi level). It was
found that substantial deviation from expectation can occur in
some cases in these materials.

These deviations have important consequences to experi-
mental results, as the Lorenz number is often used as a means
of calculating the lattice thermal conductivity from measure-
ments of the total thermal conductivity. Thus, deviations in
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the Lorenz number represent a misestimation of the relative
contribution of the lattice, versus charge carriers, to the total
thermal conductivity. This is of particular importance in the
field of thermoelectrics, where there is a strong push to lower
the lattice thermal conductivity and there is constant debate
as to whether lattice thermal conductivity values have reached
theoretical amorphous limits.
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APPENDIX: DERIVATION OF TRANSPORT
COEFFICIENTS IN A TWO-BAND SYSTEM IN THE
ABSENCE OF INTERBAND SCATTERING

The values of SG and k for the full system of two
conduction or valence bands without interband scattering can
be obtained through addition. For a 3D parabolic band in the

PHYSICAL REVIEW B 95, 125206 (2017)

nondegenerate limit, these quantities take the form

— k
SG), ~ —;Byr‘(r + Dape” [(r +2) —ngpl,  (AD

ks\*
kop T — ) yI(r + 2)ape
q

x [(r +3)r +2) — 205, (r +2) + 13, (A2)
and adding them for both bands produces the expressions
Acre®
i)

_ kp
SG~ ——yI'(r + 2"y (r +2) —nr —
q

(A3)

2
Ko & T<kq—3> yr(r+2)e'm/f[(r+2)2 + (r+2) — 2nrp(r+2)

Aaye®
+ 0%+ [2nF — 20 +2) + A]Tz}.

(A4)
It is important to reiterate that although SG and Ko add
for independent bands, k, does not [see Eq. (19) where the
§? term couples bands]. Using Egs. (29), (A3), and (A4),
and inserting them into Eqgs. (17) and (19) we obtain the
expressions Egs. (31) and (32).
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