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Resonant enhancement of thermoelectric properties by correlated hopping
for the Falicov-Kimball model on Bethe lattice
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The effect of correlated hopping on the charge and heat transport of strongly correlated particles is studied
for the Falicov-Kimball model on the Bethe lattice. Exact solutions for the one-particle density of states (DOS)
and two-particle transport function (the “quasiparticle” scattering time) are derived using dynamical mean-field
theory. For a wide range of the correlated hopping, the transport function exhibits singularities due to the resonant
two-particle contribution, whereas the one-particle DOS does not show any anomalous features. By tuning the
number of itinerant electrons, so as to bring the Fermi level close to the resonant frequency, we get a large
increase of the electrical and thermal conductivities, and the thermoelectric power. When the hopping amplitude
between the occupied sites is reduced sufficiently, the itinerant electrons localize in the clusters of sites occupied
by f electrons. This gives rise to an additional narrow band in the DOS between the lower and upper Hubbard
bands but has only a minor effect on the thermoelectric properties.
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I. INTRODUCTION

The effects of electron correlations on various phenomena
in different materials, from the one- and two-dimensional
organic conductors, through three-dimensional solids, up to the
optical lattices, have been attracting considerable interest for
more than half a century. The majority of publications dealing
with these problems considered only the local Coulomb
correlations of the Hubbard or Anderson type, U

∑
i n̂i↑n̂i↓.

However, as noticed by Hubbard in his seminal article [1], the
second quantized representation of the interelectron Coulomb
interaction should also take into account, besides the local
term, the nonlocal contributions. He pointed to the intersite
Coulomb interaction

∑
ij Vij n̂i n̂j and the so-called correlated

hopping, ∑
ijσ

t
(2)
ij (n̂iσ̄ + n̂j σ̄ )c†iσ cjσ , (1)

which reflects the fact that the overlap of different many-
body states is not the same, so that the value of intersite
hopping depends on the occupation of these states. The origin
of the correlated hopping can be either a direct intersite
interaction or an indirect effective one [2,3], which can
produce the multiparticle interactions, e.g., the three-particle
one

∑
ijσ t

(3)
ij n̂iσ̄ c

†
iσ cjσ n̂j σ̄ .

While the effects of local Coulomb interaction described
by the Hubbard and Anderson models have widely been
investigated in the theory of strongly correlated electron
systems, correlated hopping has attracted much less attention.1

1The name used for such contributions is not well established yet.
Apart from the term “correlated hopping,” many other terms circulate,
such as “assisted hopping,” “bond-charge interaction (repulsion),”
“occupation-dependent hopping,” “correlated hybridization,” etc.

It was considered in connection with the new mechanisms
for high-temperature superconductivity [5,6], properties of or-
ganic compounds [7] and molecular crystals [8], electron-hole
asymmetry [9], and enhancement of magnetic properties [10].
Recently, correlated hopping has been examined in relation
to quantum dots [11–13] and fermionic [14,15] and bosonic
[16–18] atoms on optical lattices. However, due to its nonlocal
character, the theoretical treatment of correlated hopping is
difficult and, in most cases, the solutions can only be obtained
by rather drastic approximations.

The exact results, that one can obtain in some special
cases, are of great importance, as they can be used for
benchmarking various approximations. Here, we study the
effects of correlated hopping using the Falicov-Kimball model,
the simplest model of strongly correlated electrons [19]. In
its canonical form, it considers the local interaction between
the itinerant d electrons and localized f electrons. It is a
binary-alloy-type model and its ground-state phase diagram for
the one-dimensional (D = 1) and two-dimensional (D = 2)
cases displays a variety of modulated phases [20–23]. The
dynamical mean-field theory (DMFT) [24–26] yields an exact
solution of the Falicov-Kimball model in infinite dimensions,
based on which the phase diagram and phase transitions
in ordered phase were investigated and different spectral
functions and responses were calculated [27]. An extension
of the model, so as to include the correlated hopping, was also
considered and the DMFT solution with a nonlocal self-energy
was obtained [28–30].

In this article we study the effect of correlated hopping
on the charge and heat transport of the Falicov-Kimball
model on the Bethe lattice. The correlated hopping makes

Similar contributions in the theory of disordered systems are also
known as an “off-diagonal disorder” [4].
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the Falicov-Kimball model similar to the binary alloy model
with off-diagonal disorder [4], studied long ago by Hoshino
and Niizeki [31]. Using the Mott’s relation and considering the
special case of the hopping matrix with zero determinant [32]
(see below) they obtained the thermoelectric power of the
model. More recently [33], the general case of the hopping
matrix was addressed on a D → ∞ hypercubic lattice with
the Gaussian density of states (DOS). Unfortunately, in this
case one encounters several difficulties related to an infinite
bandwidth and a finite “quasiparticle” scattering time at
ω → ±∞ [34]. In the case of a Bethe lattice with a semielliptic
density of states, the bandwidth is finite and the “quasiparticle”
scattering time vanishes whenever the DOS is zero, so one
is closer to the three-dimensional systems [35]. Here, we
calculate the single-particle and two-particle properties of an
infinite-dimensional Falicov-Kimball model with correlated
hopping and show that, unlike the single-particle DOS, the
transport properties exhibit a number of surprising features.
In infinite dimensions, the canonical model can have, at very
low temperatures, a phase transition to an ordered phase. (For
a Bethe lattice there are only two possibilities: two-sublattice
chessboard charge-density-wave ordering or segregation into
two phases with different particle densities [36].) However,
since the phase diagram for the model with correlated hopping
is not known, we present the results for the homogeneous phase
all the way down to T = 0.

The paper is organized as follows. In Sec. II, we present
the DMFT solution for the Falicov-Kimball model with
correlated hopping on a Bethe lattice. Section III provides
the derivation of the charge and energy transport coefficients
in a homogeneous phase. In Sec. IV, we consider peculiarities
of the charge and heat transport for different values of the
correlated hopping and doping. The results are summarized in
Sec. V.

II. DMFT FORMALISM FOR CORRELATED HOPPING
ON BETHE LATTICE

A. The model Hamiltonian

The Hamiltonian of the Falicov-Kimball model [19] with
correlated hopping has the form

H = Hloc + Ht,

Hloc =
∑

i

[Unidnif − μf nif − μdnid ],

Ht =
∑
〈ij〉

t∗ij√
Z

[t1d
†
i dj + t2d

†
i dj (nif + njf )

+ t3d
†
i djnif njf ], (2)

where Hloc describes local correlations between the itinerant d

electrons and localized f electrons, and Ht describes nonlocal
terms on the Bethe lattice with infinite coordination number,
Z → ∞, including the nearest-neighbor intersite hopping
with amplitude t1 and nonlocal correlations with amplitudes
t2 and t3—the so-called correlated hopping. Because the
number of localized particles is conserved, [nif ,H ] = 0,
one can introduce the projection operators P +

i = nif and

P −
i = 1 − nif , and define the projected d-electron operators

di =
(

diP
+
i

diP
−
i

)
, (3)

such that the nonlocal term assumes a matrix form [29],

Ht =
∑
〈ij〉

t∗ij√
Z

[t++P +
i d

†
i djP

+
j + t−−P −

i d
†
i djP

−
j

+ t+−P +
i d

†
i djP

−
j + t−+P −

i d
†
i djP

+
j ]

=
∑
〈ij〉

t∗ij√
Z

d†
i tdj . (4)

The hopping matrix is

t =
[
t++ t+−

t−+ t−−

]
, (5)

and the connection between its matrix elements and initial
hopping amplitudes reads

t−− = t1, t1 = t−−,

t+− = t−+ = t1 + t2, t2 = t+−(−+) − t−−, (6)

t++ = t1 + 2t2 + t3, t3 = t++ + t−− − t+− − t−+.

Our aim is to find the transport properties of the model
which are related, for Z → ∞, to the single-particle Green’s
function.

B. The single-particle Green’s function

The off-diagonal Green’s function for projected d electrons
is defined by the matrix Gij = [Gαβ

ij ], where α,β = ±. On the
imaginary time axis we have

Gij (τ − τ ′) = −〈T di(τ ) ⊗ d†
j (τ ′)〉 , (7)

where T is the imaginary-time ordering operator, ⊗ denotes
the direct (Cartesian) product of two vectors, and the angular
bracket denotes the quantum statistical averaging with respect
to H . The Green’s function is calculated by treating Ht as
perturbation, i.e., by expanding around the atomic limit. This
leads to the Dyson-type equation, which can be written in the
matrix form as

Gij (ω) = �ij (ω) +
∑
〈i ′j ′〉

�ij ′(ω) · t∗j ′i ′√
Z

t · Gi ′j (ω), (8)

where �ij (ω) is the irreducible cumulant [26,37], which
cannot be split into two disconnected parts by removing a
single hopping line.

In the Z → ∞ limit, the irreducible cumulant is local [37],

�ij (ω) = δij�(ω), (9)

and can be computed by the DMFT. In that approach, the
local Green’s functions of the lattice is equated with the
Green’s functions of an auxiliary impurity embedded in a
self-consistent bath, described by the time-dependent mean
fields (λ fields). Introducing the unperturbed DOS of the Bethe
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lattice,

ρ(ε) = 2

πW 2

√
W 2 − ε2 , (10)

we write the DMFT equation in the matrix form as [29]

Glocal(ω) ≡ Gii(ω) =
∫ +∞

−∞
dερ(ε)Gε(ω)

= [�−1(ω) − �(ω)]−1 = Gimp(ω), (11)

where �(ω) = [λαβ(ω)] is the λ matrix, Gimp(ω) is the Green’s
function for the auxiliary impurity problem, and

Gε(ω) = [�−1(ω) − tε]−1 (12)

is the lattice Green’s function matrix with the components

Gβα
ε (ω) = Aβα(ω) − Bβαε

C(ω) − D(ω)ε + ε2 det t
. (13)

Here, we introduced the matrix adjugate to �−1(ω),

A(ω) = adj �−1(ω) = �(ω)/ det �(ω), (14)

and the matrix adjugate of the hopping matrix t,

B = adj t = t−1 det t . (15)

For the 2 × 2 matrices, the scalars C(ω) and D(ω) are given
by

C(ω) = det A(ω) = det �−1(ω) = 1/ det �(ω) (16)

and

D(ω) = Tr[A(ω)t] = Tr[�−1(ω)B]. (17)

The DMFT equation (11) contains two unknowns: the irre-
ducible cumulant �(ω) and the dynamical mean field �(ω),
both of which are related to Gimp(ω). The Green’s function of
the impurity model with correlated hopping is given by the
exact expression

G++
imp(ω) = w1g1(ω),

G−−
imp(ω) = w0g0(ω), (18)

G+−
imp(ω) = G−+

imp(ω) = 0,

where w1 = 〈P +〉 = 〈nf 〉, w0 = 〈P −〉 = 〈1 − nf 〉, and

g0(ω) = 1

ω + μd − λ−−(ω)
(19)

g1(ω) = 1

ω + μd − U − λ++(ω)

are the impurity Green’s functions of a conduction electron in
the presence of an f state which is either permanently empty
or occupied (i.e., locators in the CPA theory [4]). The impurity
Green’s function yields the renormalized DOS of the lattice,

Ad (ω) = − 1

π

∑
α,β=±

Im Gαβ
imp(ω)

= − 1

π
[w0 Im g0(ω) + w1 Im g1(ω)] , (20)

and, for the Bethe lattice, we can write the DMFT equation (11)
as [29]

�(ω) = W 2

4
tGimp(ω)t. (21)

In numerical calculations, we use W = 2, which defines our
energy scale. Equation (19) allows us to express the diagonal
components of the � matrix in Eq. (21) in terms of g0 and g1,
and write the system of equations

ω + μd − U − 1

g1(ω)

= W 2

4
[(t++)2w1g1(ω) + (t+−)2w0g0(ω)],

ω + μd − 1

g0(ω)
= W 2

4
[(t+−)2w1g1(ω) + (t−−)2w0g0(ω)],

(22)

which, in general, provides the fourth-order polynomial
equations for g0(ω) or g1(ω).

Previous investigations of the Falicov-Kimball model with
correlated hopping [29,33] have shown that the renormalized
DOS and transport properties depend strongly on the structure
of the hopping matrix (5), and that one can distinguish five
different cases (in what follows, unless stated explicitly, we
take t−− = t1 = 1):

(a) For t++ 
= 0, t+− 
= 0, and det t = 0, the right-hand
parts of Eqs. (22) are proportional to each other, so that

1

t++

[
ω + μd − U − 1

g1(ω)

]

= 1

t−−

[
ω + μd − 1

g0(ω)

]

= W 2

4
[t++w1g1(ω) + t−−w0g0(ω)]. (23)

This case was considered by Shiba [32] and Hoshino and
Niizeki [31]. The regular Falicov-Kimball model, without the
correlated hopping, belongs also to this case.

(b) For t++ = 0, t+− 
= 0, and det t 
= 0, one of the
diagonal components of the hopping matrix vanishes, so that
the direct hopping of d particles between the sites occupied by
the f particles is reduced.

(c) For t++ 
= 0, t+− = 0, and det t 
= 0, the hopping
matrix is diagonal and the hopping of d particles is allowed
only between the sites with the same occupation of f states.

(d) For t++ = 0, t+− = 0, and det t = 0 we are dealing
with the simultaneous realization of all three previous cases,
and the hopping of d particles is allowed only between the
sites which are not occupied by the f particles.

(e) The most general case is obtained for t++ 
= 0, t+− 
=
0, det t 
= 0.

For the cases (a,b) and (c,d), the impurity Green’s functions
g0(ω) or g1(ω) are defined by the cubic and quadratic equa-
tions, respectively. Within the solutions of these equations, we
choose the one with negative imaginary parts, which yields the
retarded Green’s functions. For the general case (e), the quartic
polynomial equation with real coefficients has either four real
roots, or two real and two mutually conjugated complex roots,
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or two pairs of mutually conjugated complex roots. The correct
physical solution is the one with negative imaginary parts,
which gives the retarded Green’s functions g0(ω) and g1(ω). It
can be shown that there is always just a single set of physical
solutions. When ω has only the real roots, the physical solution
is obtained by using the spectral relation

Re g0,1(ω) = − 1

π

∫ +∞

−∞
dω′ Im g0,1(ω′)

ω − ω′ , (24)

which yields the correct retarded Green’s functions and
renormalized single-particle density of states.

For the local single-particle Green’s function

Gii(τ − τ ′) = −〈T di(τ )d†
i (τ ′)〉, (25)

we have

Gii(ω) =
∑

α,β=±
Gαβ

imp(ω) = w0g0(ω) + w1g1(ω)

= [ω + μd − 
(ω) − λHF(ω)]−1, (26)

where λHF(ω) = w1λ
++(ω) + w0λ

−−(ω) is the Hartree-Fock
dynamical mean field and


(ω) = Uw1 + Ũ 2(ω)w1w0

ω + μd − Ũ (ω)w0 − λ−−(ω)
(27)

is local self-energy, which is different from the nonlocal one
for the lattice Green’s function [29]. The parameter

Ũ (ω) = U + λ++(ω) − λ−−(ω) (28)

is an effective retarded Coulomb interaction. These expres-
sions reveal the dual nature of correlated hopping: on one
hand, it modifies the hopping amplitude in the Hartree-Fock
term λHF(ω), and, on the other hand, it leads to the nonlocal
two-particle correlation, which gives rise to the retarded local
interaction.

For a given value of the d-electron concentration, nd =
〈nd〉, the chemical potential μd is obtained by solving the
equation

nd = − 1

π

∫ +∞

−∞
dωf (ω) Im Gii(ω), (29)

where f (ω) = 1/(eω/T + 1) is the Fermi function and Gii(ω)
is given by Eq. (26).

III. TRANSPORT COEFFICIENTS IN THE PRESENCE
OF CORRELATED HOPPING

We now calculate the transport properties of correlated elec-
trons by linear response theory. The Falicov-Kimball model
with correlated hopping satisfies the Boltzmann (Jonson-
Mahan) theorem [33,38–40] so that all transport integrals
follow from a single transport function,

Llm = σ0

e2

∫ +∞

−∞
dω

[
−df (ω)

dω

]
I(ω)ωl+m−2, (30)

where I(ω) is the transport function, which is given below.
The dc charge conductivity σ dc, the Seebeck coefficient

(thermoelectric power E = S∇T ), and the electronic contri-
bution to thermal conductivity κe follow immediately from the

transport integrals as

σ dc = e2L11, (31)

S = 1

eT
L−1

11 L12, (32)

κe = 1

T

[
L22 − L21L−1

11 L12
]
. (33)

The DMFT expression for transport function, generalized
to the case of correlated hopping, reads

I (ω) = 1

π

∫
dερ(ε)�xx(ε) Tr [t Im Gε(ω) t Im Gε(ω)]

= 1

π

∑
αβα′β ′

tαβ tα
′β ′
∫

dερ(ε)�xx(ε) Im Gβα′
ε (ω) Im Gβ ′α

ε (ω),

(34)

where �xx(ε) is the so-called lattice-specific transport
DOS [41]. For a D = ∞ hypercubic lattice with Gaussian
DOS, we have �xx(ε) = W 2/2D, whereas for the Z = ∞
Bethe lattice with semielliptic DOS, the f -sum rule yields [42]

�xx(ε) = 1

3Z
(W 2 − ε2). (35)

The integral over ε in Eq. (34) can now be evaluated and we
find that the final result depends on the value of det t.

For det t = 0, we find

I (ω) = 1

2π

{
Re � ′

[
C(ω)

D(ω)

]
−

Im �
[

C(ω)
D(ω)

]
Im

[
C(ω)
D(ω)

]
}

, (36)

where

�(ζ ) =
∫

dε
ρ(ε)

ζ − ε
�xx(ε),

� ′(ζ ) = d�(ζ )

dζ
. (37)

For the semielliptic DOS, we find

�(ζ ) = 1
3 [(W 2 − ζ 2)F (ζ ) + ζ ],

� ′(ζ ) = 1
3 [(W 2 − ζ 2)F ′(ζ ) + 1 − 2ζF (ζ )], (38)

where

F (ζ ) =
∫

dε
ρ(ε)

ζ − ε
= 2

W 2
(ζ −

√
ζ 2 − W 2),

F ′(ζ ) = dF (ζ )

dζ
= ζF (ζ ) − 2

ζ 2 − W 2
. (39)

The transport function (36) is similar to the one for the
Falicov-Kimball model without correlated hopping, provided
we replace the inverse irreducible cumulant �−1(ω) = ω +
μd − 
(ω) by the expression

C(ω)

D(ω)
= 1

Tr [�(ω)t]
. (40)
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For det t 
= 0, the transport function reads

I (ω) = 1

2π

[
Re{� ′[E1(ω)] + � ′[E2(ω)]} − Im �[E1(ω)]

Im E1(ω)
− Im �[E2(ω)]

Im E2(ω)

− K(ω)

{
1

Im E1(ω)
Im

�[E1(ω)]

[E1(ω) − E2(ω)][E1(ω) − E∗
2 (ω)]

+ 1

Im E2(ω)
Im

�[E2(ω)]

[E2(ω) − E1(ω)][E2(ω) − E∗
1 (ω)]

}]
,

(41)

where E1 and E2 are the roots of the denominator in Eq. (13),
C(ω) − D(ω)ε + ε2 det t = 0, given by

E1(ω) = D(ω)

2 det t

[
1 +

√
1 − 4C(ω)

D2(ω)
det t

]
, (42)

E2(ω) = 2C(ω)

D(ω)

[
1 +

√
1 − 4C(ω)

D2(ω)
det t

]−1

, (43)

and K(ω) reads

K(ω) = 2 Re[E1(ω)E∗
2 (ω)] − 1

det t
Re Tr[A∗(ω)�−1(ω)].

(44)

In the limit det t → 0, the eigenvalue E1 diverges and its con-
tribution to the transport function vanishes, whereas E2(ω) →
C(ω)/D(ω), so that we recover the transport function given
by expression (36).

IV. RESULTS

In the first part of this section we show how the interacting
density of states Ad (ω) and transport function I (ω) depend on
frequency ω and correlated hopping t2. The functional form of
both functions changes with the concentration of f electrons
nf = 〈nf 〉 but does not depend on the chemical potential of d

particles μd . Thus, we plot Ad (ω) and I (ω) with ω + μd on the
abscissa. Furthermore, since t2 and t3 enter all the expressions
only through the matrix elements tαβ defined in Eq. (5), we
show the results for t3 = 0 only. Finite values of t3 can change
the results in a quantitative but not in a qualitative way. The
data are presented for various concentrations of f particles, in
the weak (U = 0.25) and the strong (U = 2) coupling regime.
In the second part of this section, we discuss the effect of
correlated hopping on Ad (ω) and I (ω), for typical values of the
parameters, and show the corresponding transport coefficients
in the weak- and strong-coupling limit.

A. Overall features of the DOS and transport function

The dependence of Ad (ω) and I (ω) on ω + μd and t2 is
shown in Fig. 1 on a false color plot, for nf = 0.5, 0.75,
and 0.9, in the weak-coupling limit (U = 0.25, t3 = 0). The
data show that Ad (ω) and I (ω) have the same bandwidth,

which increases for t2 > 0 and t2 < −1, while it shrinks for
−1 < t2 < 0.

The DOS is a smooth and almost semielliptic function for
all values of t2, except for t2 ≈ −(t1 + t3)/2 ≈ −0.5, where the
matrix element t++ is small and changes sign. At half filling,
nf = 0.5, and in the vicinity of t2 = −0.5 (t++ = 0), the DOS
exhibits a tiny gap at ω + μd = U [see insert in Fig. 1(a)],
with a sharp peak at the bottom edge of the upper band [see
Fig. 7 below]. For larger values of nf , the DOS develops
more prominent gaps, generating, first, a two-band and, then,
a three-band structure. In the case of the two-band structure,
the spectral weights of the lower and upper bands are w0 =
1 − nf and w1 = nf , respectively, which is similar to what
one finds in the doped Mott-Hubbard insulator phase of the
Falicov-Kimball model without correlated hopping [35,43,44].
As we approach the t++ = 0 point, an additional gap appears
in the upper Hubbard band and the two-peak structure is
transformed into a three-peak one; the spectral weights of
the lower and upper bands are the same, w0 = 1 − nf ,
while the spectral weight of the middle band is 2nf − 1.
For t++ → 0, the DOS of the middle band narrows to a δ

peak.
The midband emerges, for nf > 1/2, because the probabil-

ity of the neighboring sites being occupied by the f particles
becomes macroscopically large so that the clusters of sites
occupied by the f particles are created. Since the value of t2 is
such that the hopping matrix element t++ is very small, a direct
hopping of d particles between these sites is suppressed. Thus,
the d particles within the cluster are localized and we observe
a band of localized states which are separated from the upper
Hubbard band by the localization gap. As nf → 1, almost all
the sites are occupied by f particles, so that the cluster covers
the whole lattice and the weight of the lower and upper band
decreases as 1 − nf and the DOS is dominated by a narrow
peak of localized states located at ω + μd = U . The presence
of the clusters of localized states strongly affects the properties
of itinerant d electrons around the Fermi level EF (the chemical
potential μd at zero temperature). For nd < 1 − nf , the Fermi
level is in the lower band; for 1 − nf < nd < nf , it is fixed in
the narrow midpeak and the localized d states of clusters are
filled; for nd > nf , the Fermi level is in the upper band.

In the strong-coupling limit, Ad (ω) and I (ω) change in
a qualitative way. As shown in Fig. 2 (left panel), the
Mott-Hubbard gap emerges now in an extended range of
t2 values, including the case without the correlated hop-
ping (Mott transition in the regular Falicov-Kimball model).
The localization band is pushed into the upper Hubbard
band and is very narrow; the corresponding localization
gap exists only in the immediate vicinity of the t++ = 0
value.
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FIG. 1. The density of states Ad (ω), left panels (a), (c), (e), and transport function I (ω), right panels (b), (d), (f), shown as a function of
frequency ω and correlated hopping parameter t2 on a false color plot for U = 0.25, t3 = 0, and for f -particle concentrations (a,b) nf = 0.5,
(c,d) 0.75, and (e,f) 0.9 (top to bottom). Inserts represent enlarged rectangular areas with (a,b) t2 ∈ [−0.53,−0.47], ω + μd ∈ [0.2,0.3]; (c,d)
t2 ∈ [−0.6,−0.4], ω + μd ∈ [0.0,0.5]; and (e,f) t2 ∈ [−0.65,−0.35], ω + μd ∈ [−0.4,0.6]. Dashed line indicates the resonant frequency ωres

given by Eq. (46).

The above results show that the definition of the weak and
strong coupling is modified by the dual nature of correlated
hopping. Figures 1 and 2 indicate three regions of the
parameter space with markedly different band structure. For
large positive and negative t2, a single band, with a bandwidth
which depends linearly on t2, is observed. Here, the amplitude
of the Hartree-Fock hopping is larger than the effective
Coulomb interaction, which is typical of a weak-coupling
regime. The intermediate values of t2 are characterized by a
large reduction of the bandwidth and an opening of a band gap.
The reduced amplitude of the Hartree-Fock hopping and the
Mott-Hubbard gap are typical features of the strong-coupling
regime. In the third case, for t++ � 0, in addition to the
Hubbard bands, there emerges a band of localized states.

The transport function, plotted in the right panel of Figs. 1
and 2, shows a completely different behavior than the density
of states. For t2 > −(t1 + t3)/2, and t++ > 0, I (ω) exhibits a
large enhancement at a resonant frequency, ω = ωres, which is
indicated in Figs. 1 and 2 by dashed lines. Numerical analysis
of Eq. (41) shows that the resonant contribution to I (ω) comes
from the term Im �[E2(ω)]/Im E2(ω). At the resonance, the λ

fields and Green’s functions satisfy the interference condition,

λ++(ω)

λ−−(ω)
= g0(ω)

g1(ω)
= η, (45)

which gives

ωres + μd = U

1 − η
(46)

with

η = (t+−)2

(t−−)2

− (t+−)2 −
√

(t+−)4 + 4w1w0[(t++t−−)2 − (t+−)4]

2(t−−)2w0
.

(47)

For two special values of t2, given by the solutions of the
equation η = 1 or

(t−−)2w0 + (t+−)2(w1 − w0) − (t++)2w1 = 0, (48)

125133-6



RESONANT ENHANCEMENT OF THERMOELECTRIC . . . PHYSICAL REVIEW B 95, 125133 (2017)

FIG. 2. Same as in Fig. 1 for U = 2. Inserts represent enlarged rectangular areas with t2 ∈ [−0.6,−0.4], ω + μd ∈ [1.8,2.4].

the resonant frequency is at infinity, i.e., it is shifted outside
the bands. The regular Falicov-Kimball model, where t−− =
t+− = t++ = t1, is precisely at one of these special points with
ωres → ±∞, so that the transport function has no resonant
contribution. On the other hand, for t++ → 0, ωres is within
the localized band and the resonant contributions become
prominent for t++ > 0, while it is suppressed for t++ < 0.

Since the expressions given by Eqs. (46) and (47) for ωres do
not depend on the parameter W , characterizing the semielliptic
DOS for the Bethe lattice, we conjecture that the same expres-
sions also hold for other lattices with different unperturbed
DOS. Direct numeric calculations for the hypercubic lattice
with the Gaussian DOS confirm this conjecture but, in that
case, there are no clear band edges and the resonant peak is
within the band for any value of correlated hopping [33].

B. Transport coefficients

1. Weak-coupling regime

In the weak-coupling regime, the interaction constants are
much smaller than the hopping integral: |U |,|t2|,|t3| � |t1|. At
half filling, nf = nd = 1/2, the renormalized DOS is slightly
deformed with respect to the unperturbed semielliptic one,
i.e., the correlated hopping breaks the electron-hole symmetry
and makes Ad (ω) an asymmetric function [see Fig. 3(a)]. (At

half filling and without the correlated hopping, t2 = t3 = 0,
the DOS is symmetric with respect to the frequency ω + μd =
U/2.) The width of the conduction band increases for t2 > 0
and decreases for t2 < 0.

In contrast, the transport function I (ω), which is almost
semielliptic in the absence of the correlated hopping, becomes
highly asymmetric as soon as t2 
= 0. For t2 = ±0.05, the
resonant peak is outside the conduction band and the transport
function is somewhat enhanced close to the band edges,
but it is still smooth and almost flat around the chemical
potential [see Fig. 3(b)]. Hence, the transport coefficients
exhibit typical metallic behavior as functions of temperature
(see Fig. 4). For t2 = ±0.1, the resonant peak gives the main
contribution to I (ω). At low temperatures, the resonant peak
is outside the Fermi window, −df (ω)/dω|ω�ωres � 0, and
its contribution to the transport integrals is negligibly small.
Hence, the transport coefficients exhibit a metallic behavior.
However, as temperature increases, the resonant peaks enter
the Fermi window and we observe, first, an enhancement of
the thermal conductivity, then, of the thermoelectric power,
and, eventually, of the electric conductivity (see Fig. 4).

Doping does not change much the shape of Ad (ω) and
I (ω) in the weak-coupling regime, as shown by Fig. 5 for
nf = 0.75 and nd = 0.25. The main effect is the shift of the
chemical potential towards the bottom of the conduction band,
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FIG. 3. The interacting DOS (panel a) and transport function
(panel b) plotted versus frequency for U = 0.25 at half filling
(nf = nd = 1/2) and for t2 = −0.1, −0.05, 0, 0.05, 0.1 (t3 = 0).
The Fermi level EF depends on the hopping t2, and the gray arrow
indicates a narrow frequency interval in which EF is located for
different values of t2.

giving μd ≈ −0.7. For t2 = 0.1, the resonant peak overlaps
the Fermi level, so that the electric conductivity, the thermal
conductivity, and the thermopower are enhanced with respect
to the half-filled case and when the resonant peak is absent
(see Fig. 6). For t2 = −0.1, the resonant peak is too far away
from the chemical potential to contribute to the electric and
thermal conductivity, but a large asymmetry of I (ω), shown
in Fig. 5(b), gives rise to an enhanced thermopower at high
temperatures.

As shown in Fig. 2, an increase of local Coulomb interaction
U shifts the resonant frequency in the region of large positive
and negative values of t2, so that the resonant peaks do
not affect much the transport properties for small values of
correlated hopping t2. The only effect of correlated hopping is
to break the electron-hole symmetry and to make Ad (ω) and
I (ω) asymmetric functions of ω. Hence, in this part of the
parameter space, the transport coefficients behave similarly
as in the case of a doped Falicov-Kimball model without
correlated hopping [35,43,44].

(a)

(b)

(c)

e
S

FIG. 4. Temperature dependences of the dc conductivity σdc,
thermal conductivity κe, and Seebeck coefficient S for the same
parameters as in Fig. 3.

A different behavior emerges for small values of t++, when
the direct hopping amplitude between the sites occupied by f

particles is much reduced, while the hopping between occupied
and unoccupied, and between the unoccupied sites is large.
For the Gaussian density of states, this case was analyzed in
Ref. [33] (see Figs. 6 and 7 of Ref. [33]). For the semielliptic
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FIG. 5. The interacting DOS (panel a) and transport function
(panel b) plotted versus frequency for U = 0.25, nf = 0.75, and
nd = 1 − nf = 0.25, and for t2 = −0.1, −0.03, 0, 0.03, 0.1. The
gray arrow indicates a narrow ω interval in which EF is located for
different values of t2.

density of states, we find similar behavior but the data reveal
more details and we discover new interesting regimes, like
the three-band structure in the DOS and the clusters of sites
occupied by f electrons.

At half filling and t++ = 0 (t2 = −0.5), the DOS acquires
a tiny gap at the Fermi level, bounded by the singularity at
the bottom of the upper Hubbard band [see Fig. 7(a)]. The
transport function also displays a gap, but the band-edge
singularity is replaced by a steplike function [Fig. 7(b)]. The
presence of the gap at the Fermi level reduces the dc and ther-
mal conductivities at low temperatures, whereas it increases
the thermopower due to the asymmetry of I (ω) around the
chemical potential (see Fig. 8). At high temperatures, when
the width of the Fermi window exceeds the gap, the doped
metallic or semiconductor behavior is restored.

At half filling and t++ 
= 0, the gap closes rapidly and the
DOS exhibits a smooth peak around the chemical potential. For
negative t++ (t2 < −0.5), the transport function is smooth and
we find a metallic behavior. For positive t++ (t2 > −0.5), the
transport function acquires a resonant peak such that the trans-
port coefficients are enhanced at low temperatures (see Fig. 8).
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FIG. 6. Temperature dependences of the dc conductivity σdc,
thermal conductivity κe, and Seebeck coefficient S are shown for
the same parameters as in Fig. 5.

Away from half filling, the three-band structure of Ad (ω)
emerges for small values of t++. As shown in Fig. 9, for t++ =
0 (t2 = −0.5) exactly, Ad (ω) exhibits two broad bands [the
lower (1) and upper (2) Hubbard bands with spectral weights
1 − nf ], and a δ peak (3) at ω + μd = U with spectral weight
2nf − 1. The δ peak in Ad (ω) is due to the localized d states
in the clusters of lattice sites occupied by f electrons. Because

125133-9



D. A. DOBUSHOVSKYI, A. M. SHVAIKA, AND V. ZLATIĆ PHYSICAL REVIEW B 95, 125133 (2017)
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FIG. 7. The interacting DOS (panel a) and transport function
(panel b) plotted versus ω for U = 0.25 at half filling (nf = nd =
1/2) and for t2 = −0.47, −0.5, −0.53 (t3 = 0). The gray arrow
indicates a narrow ω interval in which EF is located for different
values of t2.

we have nd = 1 − nf , the Fermi level is in the gap between
the lower Hubbard band and the localized band. Unlike the
single-particle DOS, the transport function I (ω) has only two
contributions, due to the lower and upper Hubbard band. The
absence of any feature at ω + μd = U is obvious. Since the
localized states cannot contribute much to the charge or heat
transport, the shape of I (ω) and temperature dependences of
the transport coefficients (see Fig. 10) are similar to the one
obtained for a doped Mott insulator [35,43,44].

Away from half filling and for t++ 
= 0 (Fig. 9), the δ

peak of localized d states (3) broadens into a band which
merges with the upper Hubbard band for larger values of
|t++|. The contribution of the localized state to transport
function depends on the sign of t++. For negative values
of t++ < 0 (t2 < −0.5), this contribution increases at first
and, then, as t++ becomes more negative and the localized
band merges with the upper Hubbard band, it decreases. For
t++ > 0 (t2 > −0.5), the resonant peak due to the localized
states dominates the transport function. In both cases, the
thermoelectric properties are enhanced, most prominently for

 0
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T

σ d
c

(a)

t2=-0.470
t2=-0.500
t2=-0.530

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6
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(c)

t2=-0.470
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t2=-0.530

FIG. 8. Temperature dependences of the (a) dc conductivity σdc,
(b) thermal conductivity κe, and (c) Seebeck coefficient S are shown
for the same parameters as in Fig. 7.

positive t++, as the resonant peak affects strongly the transport
properties (see Fig. 10).

2. Strong-coupling regime

A large enough Coulomb interaction U leads to the
reconstruction of the DOS and transport function. In the
strong-coupling regime, a large Mott-Hubbard gap governs
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FIG. 9. The interacting DOS (panel a) and transport function
(panel b) plotted versus ω for U = 0.25, nf = 0.75, nd = 1 − nf =
0.25, and for t2 = −0.46, −0.48, −0.5, −0.52, −0.54. Labels 1,
2, and 3 denote the lower Hubbard band, the upper Hubbard band,
and band of localized states, respectively. The gray arrow indicates a
narrow ω interval in which EF is located for different values of t2.

the transport properties at low temperatures. Besides, the upper
Hubbard band becomes narrow and acquires a high density of
states.

At half filling and t++ = 0 (t2 = −0.5), the upper Hubbard
band has a singularity at the bottom edge, where the transport
function shows only a steplike feature (see Fig. 11). The dc
charge and thermal conductivities are similar to what one
sees in doped Mott insulators [35,43,44], but the Seebeck
coefficient is different: it is negative and displays anomalous
behavior at low temperatures (see Fig. 12). Such a behavior
is reflected in the anomalous temperature dependence of the
chemical potential caused by the singularity in the DOS. For
t++ 
= 0, the features in the upper Hubbard band are smoothed.
For t++ > 0 (t2 > −0.5), the resonant peak dominates the
transport function, so that the dc charge and thermal conduc-
tivities increase, and the Seebeck coefficient is positive. The
anomalous behavior is shifted to lower temperatures.

An increase of doping has a twofold effect. First, it expands
the ω−t2 region in which the Mott gap is observed [see
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FIG. 10. Temperature dependence of the (a) dc conductivity
σdc, (b) thermal conductivity κe, and (c) Seebeck coefficient S in
the weak-coupling regime is shown for the same parameters as in
Fig. 9.

panels (c) and (d) in Fig. 2]. Second, for t++ in a narrow
interval around t++ = 0 (t2 = −0.5), it leads to the three-band
structure in the DOS and transport function. This is illustrated
in Fig. 13(a), where the lines (1), (2), and (3) represent the
lower Hubbard band, the upper Hubbard band, and the band of
localized states, respectively. The δ peak in the DOS, observed
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FIG. 11. The interacting DOS (panel a) and transport function
(panel b) is plotted versus ω for U = 2 at half filling (nf = nd = 1/2)
and for t2 = −0.45, −0.5, −0.55 (t3 = 0). The gray arrow indicates
a narrow ω interval in which EF is located for different values
of t2.

for t++ = 0 exactly, is represented by the vertical line (3). This
singular feature is coming from the localized d states and the
corresponding singularity in the transport function is absent.
Any deviation of t++ from zero broadens the δ peak into a
narrow band of excitations which contribute to the heat and
charge transport (see Fig. 14). For a sufficiently large value
of |t++|, the band of localized states [line (3) in Fig. 13]
merges with the upper Hubbard band [line (2)] so that the
sharp features in the DOS are smoothed out. In comparison
with the half-filled case shown in Figs. 11 and 12, the Mott gap
is now larger, so that we obtain smaller values of the dc charge
and thermal conductivities, and the Seebeck coefficient, for
t++ close to zero. For larger values of |t++|, the resonant peak
dominates the transport function, which becomes large for
positive t++ (t2 > −0.5) and relatively small for negative t++
(t2 < −0.5), so that the dc charge and thermal conductivities
increase. The comparison with the undoped case shows that the
temperature dependence of the Seebeck coefficient is modified
and S(T ) is now larger and positive.
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FIG. 12. Temperature dependence of the dc conductivity σdc, the
thermal conductivity κe, and Seebeck coefficient S in the strong-
coupling regime is shown for the same parameters as in Fig. 11.

V. DISCUSSION AND CONCLUSIONS

In this article we studied the effects of correlated hopping on
the density of states and transport coefficients of the Falicov-
Kimball model on a Bethe lattice with a semielliptic DOS.

Using dynamical mean-field theory, we derived an exact
solution for the renormalized DOS Ad (ω) and the transport
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FIG. 13. The interacting DOS (panel a) and transport function
(panel b) for U = 2 and nf = 0.75, and nd = 1 − nf = 0.25. Here,
t2 = −0.45, −0.496, −0.5, −0.504, −0.55 and labels 1, 2, and 3
denote the lower Hubbard band, the upper Hubbard band, and the
band of localized states, respectively. The gray arrow indicates a
narrow ω interval in which EF is located for different values of t2.

function I (ω), and computed the transport coefficients via the
Boltzmann relations (Jonson-Mahan theorem). The bandwidth
of Ad (ω) and I (ω) is found to be the same, but their functional
form is completely different, showing that correlated hopping
renormalizes the single-particle and the two-particle properties
in a different way. As regards Ad (ω), the main effect of
correlated hopping is an effective narrowing of the bandwidth,
accompanied by the opening of a Mott-Hubbard gap and,
at finite doping, the emergence of a band of localized
states. As regards I (ω), its behavior is dominated by the
resonant peak which appears in the region of the parameter
space (small values of |t++|), where the single-particle sates
are localized. Our interpretation of the resonance is that it
manifests a two-particle interference in random media, e.g.,
weak (anti)localization [45]. The correlated hopping mimics
the random media, with different values of the hopping integral
corresponding to the random distances between the atoms.
From this point of view, Eq. (45) is the interference condition
for d particles following different trajectories over the lattice
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FIG. 14. Temperature dependence of the dc conductivity σdc, the
thermal conductivity κe, and Seebeck coefficient S for the same
parameters as in Fig. 13.

sites, which are either occupied or unoccupied by the f

particles.
In our previous article [33] it was found that the charge and

heat transport of particles described by the Falicov-Kimball
model on a hypercubic lattice exhibits a number of surprising
features. However, the anomalies were associated with the
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peculiarities of the Gaussian density of states, which does not
have the clear-cut band edge and has a finite “quasiparticle”
scattering time for frequencies outside the band. To our
surprise, similar behavior is obtained for a Bethe lattice with a
semielliptic density of states, so that the anomalous transport
coefficients seem to be a common feature of systems with
correlated hopping.

The anomalous features of I (ω), due to the resonant
two-particle contribution, are observed for a wide range of
the correlated hopping parameter, t2. In this parameter range,
the renormalized one-particle DOS does not display any
anomalies. The analytic expression for the resonant frequency,
given by Eq. (46), shows that by tuning the concentration of
the itinerant electrons we can bring the Fermi level close to
the resonance and increase substantially the conductivities and
thermoelectric power.

The reduction of the amplitude of correlated hopping
between the sites occupied by the f particles creates,
for t++ → 0, clusters of sites occupied by f electrons
and the ensuing band of localized d states. When the f

electron concentration is above half filling, nf > 0.5, this
band can be seen in the single-particle DOS, in addition
to the lower and upper Hubbard band. Depending on the
concentration of d electrons, the Fermi level is either in the
lower (nd < 1 − nf ) or in the upper (nd > nf ) Hubbard band
or in the band of localized states (1 − nf < nd < nf ). In
each of these cases, the thermoelectric coefficients exhibit
completely different behaviors.

Finally, we remark that a large enhancement of the
conductivities by correlated hopping, driven by the emergence
of two-particle resonant states, has been found here for
the Falicov-Kimball model with static interaction. It would
be interesting to check whether similar transport anomalies
emerge in the models with dynamic interactions, e.g., in the
Hubbard model with correlated hopping.
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Optimizing thermal transport in the Falicov-Kimball model: The
binary-alloy picture, Phys. Rev. B 68, 195120 (2003).

[35] A. V. Joura, D. O. Demchenko, and J. K. Freericks, Thermal
transport in the Falicov-Kimball model on a Bethe lattice, Phys.
Rev. B 69, 165105 (2004).

[36] J. K. Freericks and R. Lemański, Segregation and charge-
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[44] V. Zlatić, G. R. Boyd, and J. K. Freericks, Universal ther-
mopower of bad metals, Phys. Rev. B 89, 155101 (2014).

[45] G. Bergmann, Physical interpretation of weak localization: A
time-of-flight experiment with conduction electrons, Phys. Rev.
B 28, 2914 (1983).

125133-15

https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/PhysRevB.60.15660
https://doi.org/10.1103/PhysRevB.60.15660
https://doi.org/10.1103/PhysRevB.60.15660
https://doi.org/10.1103/PhysRevB.60.15660
https://doi.org/10.1103/PhysRevB.67.075101
https://doi.org/10.1103/PhysRevB.67.075101
https://doi.org/10.1103/PhysRevB.67.075101
https://doi.org/10.1103/PhysRevB.67.075101
https://doi.org/10.1103/PhysRevB.82.119901
https://doi.org/10.1103/PhysRevB.82.119901
https://doi.org/10.1103/PhysRevB.82.119901
https://doi.org/10.1103/PhysRevB.82.119901
https://doi.org/10.1143/JPSJ.38.1320
https://doi.org/10.1143/JPSJ.38.1320
https://doi.org/10.1143/JPSJ.38.1320
https://doi.org/10.1143/JPSJ.38.1320
https://doi.org/10.1143/PTP.46.77
https://doi.org/10.1143/PTP.46.77
https://doi.org/10.1143/PTP.46.77
https://doi.org/10.1143/PTP.46.77
https://doi.org/10.5488/CMP.17.43704
https://doi.org/10.5488/CMP.17.43704
https://doi.org/10.5488/CMP.17.43704
https://doi.org/10.5488/CMP.17.43704
https://doi.org/10.1103/PhysRevB.68.195120
https://doi.org/10.1103/PhysRevB.68.195120
https://doi.org/10.1103/PhysRevB.68.195120
https://doi.org/10.1103/PhysRevB.68.195120
https://doi.org/10.1103/PhysRevB.69.165105
https://doi.org/10.1103/PhysRevB.69.165105
https://doi.org/10.1103/PhysRevB.69.165105
https://doi.org/10.1103/PhysRevB.69.165105
https://doi.org/10.1103/PhysRevB.61.13438
https://doi.org/10.1103/PhysRevB.61.13438
https://doi.org/10.1103/PhysRevB.61.13438
https://doi.org/10.1103/PhysRevB.61.13438
https://doi.org/10.1103/PhysRevB.43.8549
https://doi.org/10.1103/PhysRevB.43.8549
https://doi.org/10.1103/PhysRevB.43.8549
https://doi.org/10.1103/PhysRevB.43.8549
https://doi.org/10.1103/PhysRevB.21.4223
https://doi.org/10.1103/PhysRevB.21.4223
https://doi.org/10.1103/PhysRevB.21.4223
https://doi.org/10.1103/PhysRevB.21.4223
https://doi.org/10.1103/PhysRevB.42.9350
https://doi.org/10.1103/PhysRevB.42.9350
https://doi.org/10.1103/PhysRevB.42.9350
https://doi.org/10.1103/PhysRevB.42.9350
https://doi.org/10.1103/PhysRevB.75.035133
https://doi.org/10.1103/PhysRevB.75.035133
https://doi.org/10.1103/PhysRevB.75.035133
https://doi.org/10.1103/PhysRevB.75.035133
https://doi.org/10.1103/PhysRevB.88.205109
https://doi.org/10.1103/PhysRevB.88.205109
https://doi.org/10.1103/PhysRevB.88.205109
https://doi.org/10.1103/PhysRevB.88.205109
https://doi.org/10.1103/PhysRevB.57.11955
https://doi.org/10.1103/PhysRevB.57.11955
https://doi.org/10.1103/PhysRevB.57.11955
https://doi.org/10.1103/PhysRevB.57.11955
https://doi.org/10.1103/PhysRevLett.109.266601
https://doi.org/10.1103/PhysRevLett.109.266601
https://doi.org/10.1103/PhysRevLett.109.266601
https://doi.org/10.1103/PhysRevLett.109.266601
https://doi.org/10.1103/PhysRevB.89.155101
https://doi.org/10.1103/PhysRevB.89.155101
https://doi.org/10.1103/PhysRevB.89.155101
https://doi.org/10.1103/PhysRevB.89.155101
https://doi.org/10.1103/PhysRevB.28.2914
https://doi.org/10.1103/PhysRevB.28.2914
https://doi.org/10.1103/PhysRevB.28.2914
https://doi.org/10.1103/PhysRevB.28.2914



