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The performance of the density matrix renormalization group (DMRG) is strongly influenced by the choice
of the local basis of the underlying physical lattice. We demonstrate that, for the two-dimensional Hubbard
model, the hybrid–real-momentum-space formulation of the DMRG is computationally more efficient than the
standard real-space formulation. In particular, we show that the computational cost for fixed bond dimension of
the hybrid-space DMRG is approximately independent of the width of the lattice, in contrast to the real-space
DMRG, for which it is proportional to the width squared. We apply the hybrid-space algorithm to calculate the
ground state of the doped two-dimensional Hubbard model on cylinders of width four and six sites; at n = 0.875
filling, the ground state exhibits a striped charge-density distribution with a wavelength of eight sites for both
U/t = 4.0 and 8.0. We find that the strength of the charge ordering depends on U/t and on the boundary
conditions. Furthermore, we investigate the magnetic ordering as well as the decay of the static spin, charge, and
pair-field correlation functions.
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I. INTRODUCTION

Although the one-band Hubbard model [1] in two dimen-
sions has long been touted as a leading candidate for explaining
the basic phenomenon of high-temperature superconductivity
in copper oxide planes [2], whether the unmodified model
provides sufficient features to do this is still controversial [3].
In order to clear up this issue, enormous effort is being made
to obtain its phase diagram numerically [4]. As the model
is doped away from half filling, rich behavior emerges [5],
with phases that include antiferromagnetic ordering near half
filling, a metallic phase for weak on-site interaction, and a
superconducting phase for moderate interaction. Many details
of the phase diagram, such as the presence of charge and spin
density stripes [6,7], which have been shown experimentally
to play a role in high-temperature superconducting materials
[8,9], are yet to be unequivocally determined.

One of the most important numerical methods used to
address these questions is the density matrix renormaliza-
tion group (DMRG) [10–12]. In particular, the DMRG can
provide unbiased results that are a very useful benchmark
and complement for other methods. While the DMRG has
been very successful in treating one-dimensional systems and
ladders, its application to two-dimensional systems, such as
wider cylinders, is much more challenging [13] because the
growth of the entanglement between the DMRG blocks, which
is generally proportional to the system width for a short-range
Hamiltonian, leads to exponential growth of the computational
cost. Furthermore, the DMRG treats two-dimensional systems
by mapping the lattice to an intrinsically one-dimensional
matrix product state (MPS) [14], resulting in longer-range
effective interaction even for short-range models.

More recently developed tensor network methods such
as multiscale entanglement renormalization (MERA) [15,16]
and projected entangled pair states (PEPS) [17,18] avoid this
restriction in principle by adapting the topology of the tensor
network to the entanglement structure of the system. However,
these methods suffer from the fact that the scaling of their

computational costs with the dimension of the Hilbert space
treated is much higher than that of the standard DMRG or
other MPS-based algorithms.

Another ansatz to broaden the applicability of the DMRG
for two-dimensional systems is, instead of changing the
topology of the underlying network, to change the local basis of
the physical model [19]. A change of basis can influence three
characteristics that drastically influence the performance of the
DMRG: the entanglement between subsystems, the range and
structure of the interactions, and the number of quantities that
are conserved within the specific representation.

For instance, for translational invariant models, the
momentum-space DMRG takes advantage of the conserved
momentum quantum number and achieves a significant
speedup for a fixed size of the truncated Hilbert space [20,21].
However, the scaling of the size of the Hilbert space needed to
maintain a given fixed accuracy is problematic. In particular,
the block entropy is zero in the noninteracting limit in the
momentum-space representation, as the noninteracting Fermi
sea is a product state. Unfortunately, short-range interactions
in real space become long-range in momentum space so that
all parts of the system become strongly entangled and the
block entropy increases rapidly as the interaction is turned on;
as a result, the entropy scales with the volume of the system
for all nonzero interaction strengths. Thus, the computational
cost scales exponentially in the volume of the system,
making treating systems of any significant size prohibitively
expensive [22].

Recently, it has been shown that, by choosing a mixed basis,
one can partially take advantage of the performance benefits
of the momentum-space DMRG but also retain the beneficial
entanglement scaling of the real-space representation [23]. Our
goal hence is to further explore this approach. In particular,
we apply the hybrid–real-momentum-space DMRG to the
two-dimensional Hubbard model on a lattice with cylindrical
topology.

The remainder of the paper is organized as follows. In
Sec. II, we express the Hubbard model in the hybrid-space
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representation, discuss the structure of the matrix product oper-
ator (MPO), and outline how real-space two-point correlation
functions can be calculated in hybrid space. In Sec. III, we
discuss the computational cost of the hybrid-space DMRG as
applied to the two-dimensional Hubbard model. In particular,
we analyze the scaling of the CPU-time and memory costs as
a function of the cylinder width, and verify the results using
realistic numerical calculations. Section IV then describes our
study of the ground state of the doped Hubbard model at filling
n = 0.875 and interaction strengths U/t = 4.0 and U/t = 8.0
on cylindrical lattices of width 4 and 6. In particular, we address
the questions of whether the ground state exhibits stripe
structures and whether the pairing correlations are enhanced.
Finally, Sec. V contains the conclusion.

II. MODEL AND METHOD

A. Hubbard model in hybrid space

We investigate the two-dimensional Hubbard model with
nearest-neighbor hopping and on-site Coulomb repulsion
defined by the Hamiltonian

H = −t
∑

〈r,r′〉 σ

c†r σ cr σ + U
∑

r

nr ↑ nr ↓ , (1)

where 〈r,r′〉 denotes nearest neighbors on a square lattice
with lattice sites r = (x,y). Here, cr σ (c†r σ ) are creation
(annihilation) operators for electrons with spin σ ∈ {↑ , ↓},
and nr σ = c

†
r σ cr σ is the particle-number operator. We take

the lattice geometry to be cylindrical, with cylinder length Lx ,
width (i.e., circumference) Ly , a lattice spacing of unity, and
periodic or antiperiodic boundary conditions in the transverse
direction. Such a geometry is favorable for hybrid–real-
momentum-space representation. We Fourier transform in the
transverse (y) direction, i.e., write

c†r σ = 1√
Ly

∑
ky

e−ikyy c
†
x ky σ (2)

and correspondingly for cr σ . For periodic boundary con-
ditions, the transverse momentum points are given by
ky = 2π j/Ly with integer 0 � j < Ly , whereas, for antiperi-
odic boundary conditions, ky = 2π (j + 1

2 )/Ly . The resulting
Hamiltonian in hybrid space,

H = −t
∑

〈x,x ′〉 ky σ

c
†
x ky σ cx ′ ky σ (3a)

+
∑
x ky σ

ε(ky) nx ky σ (3b)

+ U

Ly

∑
x ky py qy

c
†
x ky+qy ↓ c

†
x py−qy ↑ cx py ↑ cx ky ↓ , (3c)

consists of three terms, a longitudinal hopping term (3a),
a transverse hopping term (3b) with dispersion relation
ε(ky) = −2 t cos ky , and a long-range interaction term (3c).
Note that the on-site Hubbard interaction becomes long-range
in the momentum direction, but remains short-range in the
real-space direction.

As will be described in Sec. IV, we find states with
striped charge and spin density patterns for systems that
are moderately doped away from half filling. In order to
stabilize and target states with a particular wavelength of the
charge-density stripes, λ, we sometimes apply an additional
pinning field

Hn = P
∑
x ky σ

sin(φ + κx) nx ky σ (4)

to the doped system. The field couples directly to the local
charge density in hybrid space and can be tailored using
its amplitude P , wave number κ = 2π / λ, and phase φ.
Depending on the stability of the target state, we either turn
of the pinning field after the initial sweeps of the DMRG,
or we keep the field amplitude finite but small throughout
the calculation and subtract the contribution of the field to
the ground-state energy once the calculation is completed. In
order to ascertain that the presence of a small pinning field has
no significant effect on the physical results, we have compared
calculations with and without a pinning field for cases in which
the pinning field can be ramped to zero during the calculation
without affecting the final convergence and have found the
difference in observables and in energy (with the energy of the
pinning field subtracted) to be negligible.

B. Hybrid-space matrix product operator

In its modern formulation, the DMRG algorithm is best
described within the framework of MPSs and MPOs [24,25].
The MPS and MPO store the coefficients of the state |�〉
and Hamiltonian H as products of matrices associated with
each site of the DMRG chain. The MPS and MPO bonds are
the contractions of the row and column indices, respectively,
of neighboring matrices. The dimensions of the MPS bonds,
m, are directly related to the number of states kept in the
traditional DMRG, and the dimensions of the MPO bonds
refer to the operators stored in the left and right block of the
DMRG. The MPO also encodes the rules of how H |�〉 must
be calculated within the DMRG-specific block-site-site-block
decomposition of the system and how the DMRG blocks are
updated during the sweeping process. Therefore it is crucial
to find the optimal MPO representation for a given model and
lattice, i.e., to find the MPO with minimal bond dimension.

Roughly speaking, the dimension of each bond of the MPO
depends on the number of terms of the Hamiltonian acting
simultaneously on both sites of the bond. If the Hamiltonian
is factorizable in an appropriate way, the bond dimension
can be minimized by accumulating all interactions between
opposing sides of a “composed” operator, so that the same
interaction can be expressed using fewer terms [20]. In this
section, we describe how this is done in principle; the details
of the construction of the MPO matrices for the hybrid-space
Hubbard Hamiltonian are given in Appendix A.

For the two-dimensional Hubbard model in real space, the
bond dimension of the optimal MPO is proportional to the
system width Ly . This can be understood as follows:

Figure 1 shows the most common mapping of a
two-dimensional square lattice onto the one-dimensional
MPS/MPO chain; the one-dimensional path is simply folded
over the width of the lattice into two dimensions. Therefore
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A B

FIG. 1. Mapping of the one-dimensional DMRG chain (black
solid line) onto a 10×4 square lattice. The bold gray lines depict
nearest neighbors on the square lattice, and the dashed lines A
and B depict two possible cuts through the DMRG chain and the
corresponding bipartitions of the system.

it is clear that, whenever the chain is cut, the number of
nearest-neighbor bonds, and thus the number of hopping
term in the two-dimensional Hubbard model in real space,
is proportional to the width of the system. Since (almost) all of
these terms act on different sites of the lattice, the MPO must
include an individual channel for each term; thus its bond
dimension is proportional to the system width.

In hybrid space, the situation is more complicated. In
particular, the bond dimension of the MPO depends on where
we cut the system: if the cut is between two neighboring rings
of the cylinder (dashed line A in Fig. 1), only real-space-like
hopping terms (3a) are cut, and the bond dimension is again
proportional to the system width. If the cut separates sites
of the same ring of the cylinder (dashed line B in Fig. 1),
the corresponding MPO bond has to carry all the long-range
interactions in the term (3c); for each ring this sum runs over
three independent momenta. If we were to construct the MPO
with individual channels for each term, the resulting bond
dimension would be proportional to L3

y .
Fortunately, for a given bipartition, the sum (3c) can be

factorized to reduce the effective number of terms as follows:
for fixed x, the part of (3c) for which the annihilation and
creation operators are in separated parts of the system can be
rewritten as

U

N

∑
ky

A
†
x ky

Ax ky
(5)

with composed operators

A
†
x ky

=
∑
py

c
†
x py ↓ c

†
x ky−py ↑ ,

(6)
Ax ky

=
∑
py

cx py ↑ cx ky−py ↓ .

Analogous steps can be carried out for all possible distributions
of creation and annihilation operators of both spin species onto
the two subsystems, resulting in a formulation in which the
total number of terms connecting the two parts of the system
is O(Ly). Thus, without approximation, we obtain an MPO
in which the dimension of each bond is proportional to the
system width, just as in real space.

This approach was introduced for the momentum-space
DMRG in Ref. [20]. The technique can be applied to other
models as long as the Hamiltonian is factorizable. The hybrid-
space Hamiltonian and the optimized MPO for the fermionic
Hofstadter model are described in detail in Ref. [23]. Similar

TABLE I. Average MPO bond dimension for the two-dimensional
Hubbard model in the real-space and in the hybrid-space representa-
tion for different cylinder widths.

Ly = 4 Ly = 6 Ly = 8 Ly = 10

Real space 18 26 34 42
Hybrid space 26.0 45.7 66.5 84.6

optimizations of MPOs have also been carried out for other
systems with long-range interactions, such as the quantum
chemical Hamiltonian [26].

The exact bond dimension for the Hubbard model in hybrid
space varies with the position of the cut in the cylinder, whereas
in real space it is constant within the bulk of the system.

Assuming a constant MPS bond dimension, a good
indicator for the computational cost of the DMRG is the
average MPO bond dimension, which is approximately twice
as large in the hybrid-space representation as in the real-space
case (Table I). Note that the averaged MPO bond dimension
for the hybrid-space MPO may still vary slightly for different
orderings of the momentum points of each cylinder ring
within the DMRG chain.

C. Real-space correlation functions in hybrid space

The equal-time spin, charge, and pair-field correlation
functions are defined as

S(r,r′) = 〈Sz(r) Sz(r′)〉 ,

C(r,r′) = 〈n(r) n(r′)〉 − 〈n(r)〉 〈n(r′)〉 , (7)

Dy y(r,r′) = 〈	†
y(r) 	y(r′)〉

with

Sz(x,y) = c
†
x y ↑ cx y ↑ − c

†
x y ↓ cx y ↓ ,

n(x,y) = c
†
x y ↑ cx y ↑ + c

†
x y ↓ cx y ↓ , (8)

	†
y(x,y) = 1√

2
(c†x y+1 ↑ c

†
x y ↓ − c

†
x y+1 ↓ c

†
x y ↑) ,

where Sz(x,y) measures the local spin, n(x,y) is the local
charge density, and 	

†
y(x,y) is the creation operator for a pair

of spin-up and -down particles on sites (x,y) and (x,y + 1).
Measuring two-point real-space correlation functions in

hybrid space raises the same issues as implementing the MPO
of the Hamiltonian: applying the Fourier transformation (2) to
the correlation functions (7) introduces sums over multiple
momenta similar to term (3c). These sums can again be
factorized analogously to Eq. (5): the pair-field correlation
functions in hybrid space can be written as

Dy y(r,r′) = 1

2 L2
y

∑
ky

eiky (y−y ′) 〈O†
y(x,ky) Oy(x ′,ky)〉 (9)

with composed operators

O†
y(x,ky) = 2

∑
py

cos(py − ky/2) c
†
x py ↑ c

†
x ky−py ↓ ,

Oy(x,ky) = 2
∑
py

cos(py − ky/2) cx py ↑ cx ky−py ↓ . (10)
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The spin and charge correlation functions can be treated anal-
ogously. Thus, the correlation functions (7) can be measured
without changing the scaling of the total computational cost
of the algorithm.

III. PERFORMANCE

Here we start by emphasizing that the dimension of the MPS
bonds required to obtain a given accuracy scales exponentially
with the block entropy; thus, the scaling of the block entropy
with system parameters and lattice size has a decisive influence
on the performance for fixed accuracy. For two-dimensional
systems to which the entropy area law [27] applies, the entropy
is proportional to system width Ly . The resulting exponential
scaling of the computational cost with system width is a
fundamental limitation of the hybrid-space DMRG as well as
of the real-space DMRG and all known MPS-based algorithms.

In this section, we at first neglect the variation in the
required bond dimension m on model parameters and lattice
size and analyze the scaling of the computational cost of the
real-space and hybrid-space DMRG for fixed m. We thus
estimate the performance gain of the hybrid-space relative to
the real-space representation. We then compare our estimate
to measurements of the actual runtime and memory usage for
typical calculations and finally come back to the issue of the
dependence of the relative accuracy of the hybrid-space and
real-space representations on bond dimension m.

A. Estimated scaling of the computational cost

The majority of the computational cost in the DMRG
algorithm comes from applying the Hamiltonian to a state,
H |�〉; this is the fundamental step in iterative eigensolvers
such as the Lanczos or Davidson algorithms [28,29]. Therefore
we examine the scaling of the operations required for this
operation with the dimension of the physical lattice sites
d, cylinder width Ly , cylinder length Lx , and MPS bond
dimension m based on the structures of the MPS and MPO
used. The computational costs of other operations, e.g.,
changing the active sites of the DMRG in the sweeping process,
benefit from the hybrid-space representation in the same way.

We assume that the bond dimension of the MPO is
proportional to Ly in both real-space and hybrid-space repre-
sentations, as is the case for the Hubbard model (see Sec. II B).
In our estimate, we neglect the possibility of exploiting the
conservation of spin and charge quantum numbers, as it would
have the exact same effect on the computational costs in both
representations.

In the real-space representation, one Lanczos step then
requires O(d2 Ly) multiplications of m×m matrices, re-
sulting in O(d2 Ly m3) operations per Lanczos step and
O(d2 L2

y Lx m3 K) operations per DMRG sweep, with a fixed
number of Lanczos steps per DMRG step, K . The corre-
sponding memory costs areO(d2 m2 K) for the K-dimensional
Krylov space and O(Ly m2) for the left and right DMRG block
in the current block-site-site-block configuration.

Next, we analyze the scaling of the costs in the hybrid-space
representation under the assumption that the hybrid-space
MPS has the same total bond dimension m. Since the Hamilto-
nian (5) conserves the transverse momentum quantum number,

TABLE II. Scaling of the runtimes of a single Lanczos step
TLanczos and of a DMRG sweep Tsweep, and scaling of the memory costs
associated with the Krylov space MKrylov and the left and right DMRG
blocks of the current block-site-site-block configuration Mblock, as a
function of the cylinder length Lx , the cylinder width Ly , the MPS
bond dimension m, the local lattice dimension d , and the dimension
of the Krylov subspace K .

Real space Hybrid space

TLanczos O(d2 Ly m3) O(d2 L−1
y m3)

Tsweep O(d2 L2
y Lx m3 K) O(d2 Lx m3 K)

MKrylov O(d2 m2 K) O(d2 L−1
y m2 K)

Mblock O(Ly m2) O(m2)

every matrix of the MPS can be written in a block-diagonal
form with Ly blocks of size m′×m′ with m′ ≈ m/Ly , where
every block corresponds to one momentum sector. Therefore
the computational costs reduce to O(d2 L−1

y m3) per Lanczos
step and O(d2 Lx m3 K) per DMRG sweep, and the memory
costs becomeO(d2 L−1

y m2 K) for the Krylov space andO(m2)
for the DMRG blocks. A side-by-side comparison of all costs
is given in Table II.

Note that the above argument is only valid because the MPS
bonds decompose into Ly momentum quantum number sectors
of approximately equal size m′. For other conserved quantities
such as the total spin or particle number, there typically is
a different distribution of the quantum number sectors, with
only a few large sectors dominating the computational costs of
the algorithm; in these cases, the speedup depends primarily
on the size of the largest sectors rather than on the number of
sectors.

In conclusion, the computational costs of the hybrid-space
DMRG are expected to be independent of Ly for fixed m,
whereas for the standard real-space DMRG the runtime and
the memory consumption scales as L2

y and Ly , respectively
(Table II). Estimating the bulk MPO bond dimension for the
Hubbard model to be approximately twice as large in hybrid
space as in real space (Table I), we estimate a total speedup of
roughly L2

y/2.

B. Measured performance

In order to investigate the actual performance, we com-
pare the computational costs of real-space and hybrid-space
calculations for Hubbard cylinders with length 16, widths 4,
6, and 8, and periodic transverse boundary conditions. All
calculations were carried out using the same code and using
six physical cores on an Intel R© Xeon R© X5650 CPU. In both
representations, we exploit the block-diagonal structure of the
MPS and MPO matrices with respect to the conserved charge
and total spin quantum numbers; in the hybrid space version,
we further decompose the matrices using the transverse
momentum quantum number.

Figure 2 shows a comparison of the runtime and memory
requirements for different Ly as a function of m. As expected,
the CPU time per sweep is proportional to m3 for large m

in both cases, while the peak memory consumption scales
with m2 [Figs. 2(a) and 2(b)]. The deviation from this
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FIG. 2. Performance comparison between real-space and hybrid-
space DMRG, calculated for U/t = 4.0 and n = 0.875; (a) wall time
per DMRG sweep and (b) peak memory consumption for a 16×6
cylinder as a function of the MPS bond dimension m. The dashed
gray lines depict the m3 and m2 scaling expected in the m → ∞ limit.
(c) Speedup and (d) memory savings of the hybrid-space DMRG
compared to real-space DMRG as a function of m for 16×4, 16×6,
and 16×8 cylinders.

limiting behavior for smaller m is due to the quantum number
bookkeeping and other overhead in the code and is amplified
for the hybrid-space DMRG because of the additional momen-
tum quantum number. In agreement with the predictions above,
the speedup of the hybrid-space DMRG over the real-space
calculations is larger for wider cylinders [Fig. 2(c)]. Because
of the additional overhead, the full speedup of the hybrid-space
code is only seen at large m. In the regime in which both
methods still provide results within reasonable time in our
calculations, the hybrid-space DMRG is approximately 12
times faster for Ly = 4 and up to 20 and 26 times faster for
Ly = 6 and 8. In terms of the peak memory consumption, we
observe a weaker influence of Ly : the memory savings for the
larger m values treated varies only between a factor of 4 for
Ly = 4 and 4.5 for Ly = 6 and Ly = 8 [Fig. 2(d)].

In Fig. 3, we compare the CPU time per sweep and
the memory consumption of the hybrid-space DMRG for
different Ly . In agreement with Table II, the computational
costs are almost independent of Ly . The minor growth
of the runtime that is still present is clearly sublinear in
Ly . The measured computational costs deviate somewhat from
the estimated costs even in the large-m limit, in which the
influence of overhead should be insignificant. In particular, the
measured absolute runtime of the hybrid-space DMRG is not
strictly independent of Ly , and thus the observed speedup over
real-space DMRG grows more slowly than L2

y . This deviation
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FIG. 3. (a) CPU time per sweep and (b) peak memory consump-
tion of hybrid-space DMRG calculations for Hubbard cylinders with
length 16 and width Ly as a function of the MPS bond dimension m.
The calculations were carried out for n = 0.875 and U/t = 4.0.

is caused by fact that the MPO dimension is not perfectly
proportional to Ly for small Ly (Table I).

After having compared the computational costs for fixed
m, we now investigate how the change of basis influences the
block entropy and the convergence of both methods. Since
the MPS bond dimension required to reach a fixed truncation
error grows exponentially with the von Neumann entropy of
the DMRG blocks, S(i), even small changes in the entropy
can influence the convergence significantly. Figure 4 shows
comparisons of S(i) in real and hybrid representations for
the half-filled system at U/t = 4.0, Fig. 4(a), and for the
doped system, n = 0.875, at U/t = 8.0, Fig. 4(b). In Fig. 4(a),
it can be seen that the block entropy in the hybrid-space
representation differs only slightly from that in the real-
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FIG. 4. Von Neumann entropy S(i) as a function of the MPS
bond index i for (a) 8×6 cylinders at U/t = 4.0 andhalf-filling and
(b) 16×6 cylinders at U/t = 8.0 and n = 0.875. The sites of the
real-space and hybrid-space lattices are mapped to the MPS sites
in an x-direction-first ordering; accordingly, the gray vertical lines
indicate cuts between neighboring rings of the cylinders.
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FIG. 5. Ground-state energy obtained from hybrid-space DMRG
and real-space DMRG as a function of the discarded weight per
site 	ξ for (a) 8×6 cylinders at U/t = 4.0 and half-filling and
(b) 16×6 cylinders at U/t = 8.0 and n = 0.875. The MPS bond
dimension is increased every other sweep and is written alongside
the corresponding data points. The solid lines are linear fits through
the last five data points of each series and indicate the zero-truncation-
error extrapolations of the ground-state energies.

space representation. Note that if we cut the system between
neighboring rings of the cylinder (gray lines), the block entropy
actually is the same in both cases, as expected. This can also
be seen in Fig. 4(b); however, here the entropy in the hybrid
representation is perceptibly higher between these points. This
illustrates that the nonlocal nature of the interaction within the
rings does lead to a moderate increase of the entropy for cuts
within the rings in the hybrid representation, especially as
U/t is increased and the system is doped. Figure 5 illustrates
the good agreement of the ground-state energies for fixed
m as well as after extrapolation to zero truncation error for
both parameter sets in Fig. 4. The slight divergence in the
extrapolations for the hybrid versus the real-space calculations,
especially evident in Fig. 5(b), shows the limitations of the
extrapolation, especially for the real-space results. As can be
clearly seen, the maximum MPS bond dimension available is
significantly larger for the hybrid-space algorithm, resulting in
a more well-controlled extrapolation and higher accuracy in
the extrapolated energy. In Fig. 5, we expect that the real-space
results would converge towards the hybrid-space results if m

could be further increased in the real-space calculation; this
is not practically possible here. For narrower systems, the
energies converge more rapidly with m, and both methods
yield results that agree very well. For example, for the 16×4
cylinder at U/t = 8.0 and n = 0.875, we obtain the same
extrapolated energy, E0/t = −0.75114(2), for each method.

Even with the significant reductions in computational costs,
achieving good convergence for wider cylinders is still very
expensive, making an efficient parallelization indispensable.
In this respect, the hybrid-space DMRG has an advantageous

property: the additional momentum quantum number leads
to finer-grained quantum number sectors, which makes for
better load balancing. In particular, the momentum quantum
numbers yield equal-sized quantum number sectors, resulting
in more equal-sized chunks of work. In our implementation,
we apply shared-memory parallelization to the combined loops
over quantum number sectors and terms of the Hamiltonian,
as described for classical DMRG in Ref. [30]. In order
to further extend the applicability of the hybrid algorithm,
additional steps such as real-space parallelization [31] or
efficient distributed memory parallelization [32] could be
implemented.

IV. RESULTS

We study the ground state of the doped Hubbard model on
width-4 and width-6 cylinders for U/t = 4.0 and U/t = 8.0
at filling n = N−1 ∑

r σ nr σ = 0.875. We choose these two
values of U/t for the following reasons: (i) in general, we want
to compare the physics and the performance of the method
at moderate coupling with that at strong coupling. (ii) It is
interesting to investigate the stability of inhomogeneous phases
as the interaction strength is changed, in particular, whether
a stripe phase remains stable for weaker interaction. (iii) For
real-space DMRG methods, the numerical convergence, i.e.,
the behavior of the block entropy, is generally more favorable
at strong coupling. (Real-space DMRG actually becomes exact
in the atomic limit rather than the strong-coupling limit, but a
local interaction that is strong relative to the hopping generally
brings the system closer to that limit.) As was discussed
in Sec. III B, the hybrid-space DMRG has the same block
entropy as the real-space method at cuts between cylinder
rings and moderate excess entropy for cuts within the rings
(see Fig. 4), an excess which becomes smaller for weaker
interaction strength. Therefore the hybrid-space algorithm has
slightly better relative convergence at moderate interaction
strength and can also handle a larger bond dimension m than
the real-space method, so that the moderate-interaction regime
is more accessible than with the real-space method.

In the following, we calculate the ground-state energy, the
site occupancy, and equal-time spin, charge, and pair-field
correlation functions. All results are extrapolated to zero
truncation error. The maximum MPS bond dimension was at
least 30 000 for cylinder lengths 16 and 32, 27 500 for length
48, and 25 000 for length 64.

Figure 6 shows the charge-density distribution in the
longitudinal direction, n(x) = L−1

y

∑
y σ nx y σ , for U/t = 4.0

and different widths Ly and boundary conditions. In all cases,
we find a stripe pattern with wavelength 8; for Ly = 4, each
stripe contains 4 holes [Figs. 6(a) and 6(b)], and for Ly = 6
each stripe contains 6 holes [Figs. 6(c) and 6(d)]. For larger
interaction strength, U/t = 8.0, Fig. 7, we find two different
stripe configurations, wavelength λ = 8.0 [Figs. 7(a)–7(c)]
and wavelength λ = 5.3 (more exactly, λ = 16/3) [Fig. 7(d)].
For both configurations, we add a pinning field, Eq. (4),
with the appropriate wavelength to stabilize the state. In most
cases it is sufficient to add the pinning field during the initial
sweeps of the calculation and ramp its amplitude P down to
zero in subsequent sweeps. However, for width 6 cylinders
at U/t = 8.0, the amplitude of the field must be held finite
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FIG. 6. Charge-density distribution n(x) for length-32 Hubbard
cylinders at U/t = 4.0 and n = 0.875. Panels (a)–(d) show width-4
and width-6 cylinders with periodic (PBC) and antiperiodic (ABC)
transverse boundary conditions, as indicated. The black lines show
the zero-truncation-error extrapolated densities, and the gray lines
show the nonextrapolated values. The gray dashed lines indicate the
average filling.

(we take P = 0.01) during the entire calculation in order to
stabilize the λ = 8.0 stripe pattern. After subtracting the field
energy, we find that the λ = 8.0 phase is lower in energy
and is thus globally stable; it should also be noted that the
λ = 5.3 phase only occurs for the Ly = 6 lattices with periodic
boundary conditions.

In order to elucidate the convergence of the λ = 5.3 and λ =
8.0 states for Ly = 6 at U/t = 8.0, we examine the discarded-
weight extrapolation of both pinning-field-stabilized states in
Fig. 8. As can be seen, the λ = 8.0 state has lower energy
for any fixed 	ξ as well as for 	ξ → 0.0, but the λ = 5.3
state has lower energy for any accessible fixed m. Because of
this, the λ = 8.0 state becomes unstable if P is set to zero at
any point during the calculation due to the fact that the DMRG
algorithm is always driven towards the state that has the lowest
energy within the finite reduced subspace of the Hilbert space
treated, i.e., the state space with fixed MPS bond dimension
m. The ground state within this subspace is not necessarily
the ground state for fixed truncation error 	ξ or, indeed, for
	ξ → 0. In general, the DMRG should converge to the true
ground state at some level of accuracy (because it becomes
exact for m → ∞), but the required m may be inaccessible.
Thus, applying a pinning field is necessary here in order to
enable the DMRG to track both states as the discarded weight
is varied; in practice, we use the fixed pinning field amplitude
of P = 0.01 for the depicted range of 	ξ for both states even
though it would have been possible to set P = 0 in the latter
part of the λ = 5.3 calculation.
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FIG. 7. Charge-density distribution n(x) for length-32 Hubbard
cylinders at U/t = 8.0 and n = 0.875. (a)–(d) show cylinder with
different width, boundary conditions, and wavelength λ of the
charge-density stripes, as indicated. The black lines show the zero-
truncation-error extrapolated densities, and the gray lines show the
nonextrapolated values. The gray dashed lines indicate the average
filling.

The amplitude of the charge-density modulations,
	n = 1/2 {maxx[n(x)] − minx[n(x)]}, is plotted as a function
of the inverse cylinder length in Fig. 9 for both values of
U/t . The trend shows that in all cases the stripes have finite
amplitude in the infinite-cylinder length limit. The fact that the
stripes are enhanced for Ly = 6 indicates a striped ground state
in the two-dimensional limit. As the interaction is increased

0 2e-5 4e-5 6e-5 8e-5
Δξ

−0.748

−0.746

−0.744

−0.742

−0.740

E
0
/t

20.0k25.0k
30.0k

35.0k

25.0k30.0k35.0k

λ ≈ 5.3 P = 0.01

λ ≈ 8.0 P = 0.01

FIG. 8. Discarded weight extrapolation of the energy for λ = 5.3
and 8.0 on 16×6 cylinders at U/t = 8.0 and n = 0.875. The energy
contribution of the pinning field has been subtracted, and the MPS
bond dimension m is indicated by the labels alongside selected data
points.
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FIG. 9. Amplitude of the charge-density stripes 	n for width-4
and width-6 cylinders with periodic (PBC) and antiperiodic (ABC)
transverse boundary conditions at n = 0.875 with (a) U/t = 4.0 and
(b) U/t = 8.0 as a function of the inverse cylinder length, 1/Lx .

from U/t = 4.0 to U/t = 8.0, the amplitude of charge density
in the λ = 8.0 stripes increases.

Typically, a striped charge-density distribution in the
doped Hubbard model is accompanied by a striped staggered
spin-density distribution with a wavelength that is double
that of the charge-density distribution [6]. Measuring these
stripes in hybrid space would require breaking the translation
invariance in the transverse direction, which could only be
done at the cost of slowing down the algorithm significantly.
Instead, we calculate the structure factor of the equal-time spin
correlations,

SS(k) = 1

N

∑
r r′

eik (r−r′) S(r,r′) ; (11)

for finite cylinder length, we expand in the particle-in-a-box
eigenmodes, as in Ref. [7]. Figures 10 and 11 show SS(k)
for U/t = 4.0 and U/t = 8.0, respectively, at n = 0.875 (the
same parameter sets as in Figs. 6 and 7). As can be seen in
Figs. 10(a)–10(d) for U/t = 4.0 and in Figs. 11(a)–11(c) for
U/t = 8.0, SS(k) is peaked at k ≈ (±7/8 π,π ) in all cases
in which period λ = 8.0 stripes are present. Thus the spin
correlations are antiferromagnetic with a π -phase shift every
eighth site, as expected. For the λ = 5.3 stripes, Fig. 11(d),
the peak shifts to k ≈ (±13/16 π,π ), which corresponds to
antiferromagnetic spin correlations with a π -phase shift every
5.3 sites, also compatible with the stripe structure. As we
have seen for the amplitude of the charge-density stripes,
the amplitudes of the peaks of the spin structure factor also
increase with increasing interaction strength.

In order to test for dx2−y2 -pairing-induced superconductiv-
ity, we have calculated the equal-time pair-field correlation
functions and have compared their decay to that of the spin
and charge correlations. To compensate for the stripe structure
of the ground state, we take averaged absolute values; e.g., for
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FIG. 10. Spin structure factor SS(k) for (a) and (b) 32×4 and
(c) and (d) 32×6 Hubbard cylinders with periodic [(a) and (c)]
and antiperiodic [(b) and (d)] boundary conditions at n = 0.875 and
U/t = 4.0.

the spin correlation functions, we define

S(lx) = 1

8

(Lx−lx )/2+3∑
x=(Lx−lx )/2−4

|S(x,x + lx)| . (12)
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FIG. 12. Equal-time pair-field Dy y(lx), spin S(lx), and charge
C(lx) correlations as a function of the longitudinal distance lx for
64×4 Hubbard cylinders at n = 0.875 and U/t = 4.0 for (a) periodic
and (b) antiperiodic boundary conditions.

The decay of the correlations with distance along the cylinder
is shown in Fig. 12 for width-4 cylinders.

As can be seen by the approximately linear behavior of the
envelopes of the correlation functions on the semilogarithmic
scale, all three correlation functions decay exponentially at
moderate to long distances for both periodic and antiperiodic
boundary conditions. For periodic boundary conditions, all
three correlation functions decay approximately at the same
rate, with the spin correlations having a larger absolute value.
For antiperiodic boundary conditions, the spin correlations are
dominant for larger distance. Thus, we do not find that pairing
correlations are long-range or, indeed, even dominant.

We investigate the effect of interaction strength on the
strength of pairing correlations by comparing the pair cor-
relation functions for the λ = 8.0 stripes for U/t = 4.0 and
8.0 in Fig. 13. For periodic boundary conditions, Fig. 13(a),
there is a slight suppression of the exponentially decaying cor-
relation function as U/t is increased, whereas for antiperiodic
boundary conditions, Fig. 13(b), changing U/t has virtually
no effect.

The obvious question to be addressed is why the pair
correlations, and, indeed, also the charge and spin correlations,
are strong at short length scales, but have no long-range or
quasi-long-range (i.e., critical power-law) order. Here we point
out that the stripe state breaks the translational symmetry and is
locked into the finite lattice, so that the charge order manifests
itself in a variation of the local charge density. One then expects
the charge correlation with the local order subtracted out to be
short-range, i.e., exponentially decaying. A similar argument
holds for the spin correlations, which are locked to the charge
correlations (but have twice the wavelength and a π -phase
shift between stripes). The dx2−y2 pair correlations do show
strong short-range correlations, but are also exponentially
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FIG. 13. Equal-time pair-field correlation functions for 64×4
Hubbard cylinders at n = 0.875 for different U/t for (a) periodic
and (b) antiperiodic boundary conditions.

decaying, meaning that pairing is not even present in the
one-dimensional sense, i.e., that the correlations decay as a
power law. To explain this behavior, we make three points.
(i) The locked-in charge order could preclude any other than
short-range order in all correlation channels. (ii) The pairing
correlations are measured perpendicularly to the stripes, i.e.,
in a direction in which charge transport for static stripes would
not be expected. (Note that the cylindrical geometry locks in
transverse stripes, and that measurement of pair correlations
in the transverse direction over any significant length is not
possible due to limitations in the treatable system width.) (iii)
For this doping of the system and wavelength of the stripes, the
stripes are completely filled with holes and thus insulating, so
that quasi-long-range pair correlations would not be expected.
In addition, it is fair to point out that, as earlier works
on two-leg ladders have shown [33,34], convergence of the
long-range part of the pairing correlations occurs very slowly
as m is increased in the DMRG; an MPS bond dimension of
30 000 states might still be insufficient to restore algebraic
decay over long-length scales for width-4 cylinders.

Finally, we obtain accurate estimates of the ground-state
energies in the infinite-length-cylinder-limit by carrying out
consecutive extrapolations in the discarded weight, followed
by the inverse cylinder length.

The extrapolation to infinite cylinder length for U/t = 4.0
and U/t = 8.0 is shown in Fig. 14. Energies for cylinder
lengths 16, 32, 48, and 64 fall almost perfectly onto the
linear fits for all curves in both Figs. 14(a) and 14(b). As
can be seen, the error bars, which result from the discarded-
weight extrapolations, get larger for wider cylinders, but the
data points still allow for a well-controlled and accurate
extrapolation. Note that in Fig. 14(b) the metastable state with
a stripe wavelength λ = 5.3 is very close in energy to the
λ = 8.0 state. Even though the effects of the discarded-weight
extrapolation, Fig. 8, and the system-length extrapolation can
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FIG. 14. Ground-state energies for doped width-4 and width-6
Hubbard cylinders with periodic (PBC) and antiperiodic (ABC)
transverse boundary conditions at n = 0.875 and (a) U/t = 4.0 and
(b) 8.0 as a function of the inverse cylinder length. In (b), the
wavelength λ of the charge-density stripe is indicated. The energies
are extrapolated to zero discarded weight, with the estimated error
from the extrapolation indicated by the error bars. The dashed and
the solid lines show the extrapolation to infinite cylinder length for
width-4 and width-6 cylinders, respectively.

be larger than the energy difference, the energy of the λ = 8.0
state is consistently lower than that of the λ = 5.3 state, both at
finite system length after the discarded-weight extrapolation
and after subsequently extrapolating to the infinite-system-
length limit. The energies obtained for all parameters are given
in Appendix B in Tables IV and V.

V. SUMMARY AND DISCUSSION

We have investigated the applicability and usefulness of the
DMRG in a hybrid–real-momentum-space formulation for the
two-dimensional Hubbard model on cylindrical lattices. We
have first compared the computational costs of the real-space
and hybrid-space DMRG as a function of the system width in
theory and practice, and have shown the hybrid-space variant
to be significantly faster. In particular, we have shown that, due;
to conservation of the additional momentum quantum number,
the computational and memory costs of the hybrid-space
DMRG are essentially independent of the width of the cylinder
for fixed dimension of the MPS bonds, m. In practice, we have
found that the computational cost is almost width-independent
and have obtained speedup factors of roughly 12, 20, and 26 for
cylinder width 4, 6, and 8 relative to the real-space DMRG for

fixed m. Subsequently, we have demonstrated, that the entropy
in the system is not increased significantly in the hybrid repre-
sentation, giving both formulations comparable convergence
with m. Thus we have shown that the hybrid-space ansatz
widens the applicability of the DMRG to Hubbard-like models,
especially for larger system widths.

We have then used the hybrid-space DMRG to investi-
gate the static properties of the ground state of the doped
two-dimensional Hubbard model at filling n = 0.875 and
interaction strengths U/t = 4.0 and 8.0; examining width-4
and width-6 cylinders, we have found that the system forms
a striped charge-density distribution of wavelength λ = 8.0
for both values of U/t . The magnetic ordering of the ground
state is antiferromagnetic with a modulation of wavelength
16. For width 6 cylinders with periodic boundary conditions
and interaction strengths U/t = 8.0, we have also found a
metastable λ = 5.3 state, which we have shown to be slightly
higher in energy for both finite cylinder length and in the
infinite-length limit. Furthermore, we have calculated pairing,
spin, and charge correlation functions and have found that the
spin correlations have the slowest decay with distance, while
the pair-field and charge correlations have a sub-dominant
decay of comparable strength. The behavior of the correlations
is nearly identical for U/t = 4.0 and 8.0.

We now compare our results to those of other methods,
first for U/t = 4.0: unsurprisingly, the ground-state energy
we have obtained is in excellent agreement with recent real-
space DMRG calculations; Leblanc et al. reported a value of
E0/t = −1.028 [4], for infinite width-6 cylinders averaged
over periodic and antiperiodic boundary conditions, while
we have obtained E0/t = −1.0282(4). Recent calculations
using the density matrix embedding theory (DMET) [35]
find a phase diagram in which the system lies just within a
superconducting phase for n = 0.875 and U/t = 4.0. This
phase is in very close proximity to both an antiferromagnetic
and to a metallic phase; see Fig. 2 in Ref. [5]. In particular,
the authors find two states with somewhat different magnetic
orderings and strengths of d-wave pairing correlations that are
energetically very close to one another: an incommensurate
antiferromagnet for 8×2 clusters with E0/t = −1.0288 and
a homogeneous antiferromagnetic state for 4×4 clusters with
E0/t = −1.033(2). A recent DMET calculation on a 16×2
cluster [36], which is large enough to encompass the π -phase
shift in spin correlations between stripes, yields a lower energy,
E0/t = −1.0327(1), for the incommensurate antiferromagnet.
This improved energy for the incommensurate state is within
error bounds of that of the homogeneous antiferromagnetic
state, leaving the nature of the ground state within the DMET
undetermined. The improved energy for the incommensurate
antiferromagnetic state and for the homogeneous state agree
well with our results; however, we find only a incommensurate
striped state, no homogeneous state, in our calculations. We
note that we have been able to take larger cluster sizes into
account and that an incommensurate striped state is excluded
for the 4×4 cluster in the DMET calculations. Therefore
we find it likely that the ground state for this parameter set
indeed has an inhomogeneous, i.e., striped, magnetic order
in the thermodynamic limit. Earlier DMRG studies of doped
width-6 Hubbard cylinders found that the charge-density
stripes disappear in the Lx → ∞ limit for U/t = 3.0 and
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n ≈ 0.905 [7]. According to the phase diagram of the DMET
calculations, this parameter set falls just on the other side
of the phase transition line to a homogeneous metallic state.
Thus these findings are not inconsistent with our results or the
DMET results.

The main additional feature of the results for U/t = 8.0 is
the presence of a metastable higher energy state with stripe
order of wavelength λ = 5.3 in addition to the λ = 8.0 ground
state, found only in the width-6 lattices with periodic boundary
conditions. The energy difference between these two states
can only be resolved by careful extrapolation in truncation
error and system length. We note, however, that these results
are consistent with those of other methods, including real-
space DMRG, DMET, iPEPS [37,38], and constrained-path
auxiliary-field quantum Monte Carlo, as discussed extensively
in Ref. [39]. Thus, there is strong evidence that the λ = 8.0
stripes are a robust feature of the ground state of the two-
dimensional Hubbard model at n = 0.875 for interaction
strengths from U/t = 4.0 to 8.0.

ACKNOWLEDGMENTS

We thank C.-M. Chung for useful discussions. G.E. and
R.M.N. acknowledge support from the Deutsche Forschungs-
gemeinschaft (DFG) through Grant No. NO 314/5-2 in
Research Unit FOR 1807. S.R.W. was supported by
the U.S. National Science Foundation through Grant No.
DMR-1505406.

APPENDIX A: MPO MATRICES

The individual matrices of the MPO for the hybrid-space
Hamiltonian (3a)–(3c) are relatively large, and their size and
structure depend on the width of the cylinder, the mapping
between the lattice and the MPO, and the position within the
MPO in a nontrivial way. Therefore it is not possible to give
the explicit form of the matrices in a compact way. Instead,
we give stepwise instructions on how to construct the explicit
form of the MPO.

MPO matrices are best written down as matrices of local
operators. For the case of spinful fermions with local basis
(0, ↑ , ↓ , ↑↓), we use

c†↑ =

⎡
⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎦, c↑ =

⎡
⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎦ ,

c†↓ =

⎡
⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

⎤
⎥⎦, c↓ =

⎡
⎢⎣

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎤
⎥⎦ ,

1 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦, F =

⎡
⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎦

(A1)

for the creation, annihilation, identity, and fermionic-sign
operators. Here we have incorporated the fermionic sign that

occurs when the MPO is applied to an MPS through the F
operator and the minus signs in c†↓ and c↓, which are chosen

according to the normal ordering (c†↑,c↑,c
†
↓,c↓).

To familiarize the reader with the construction of the
fermionic MPO, we start by giving the form of the
MPO for the one-dimensional Hubbard model in real
space:

W [i] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
t c↑ 0 0 0 0 0

−t c†↑ 0 0 0 0 0

t c↓ 0 0 0 0 0

−t c†↓ 0 0 0 0 0

U n↑ n↓ c†↑F c↑F c†↓F c↓F 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)

with nσ = cσ c†σ . Here, W [i] is the matrix for the ith site, and
the row and column indices correspond to the virtual MPO
bonds. Within each virtual bond, the first and the last channels
are used as “initial” and “target” channels of the MPO, and
within these channels, identity operators establish connections
through the entire MPO from left to right. The on-site repulsion
is local in real space and thus its operator directly connects the
initial and target channels on each site. For the hopping term,
four additional channels are needed to connect the appropriate
combinations of creation and annihilation operators on neigh-
boring sites. To complete the MPO, the matrix for the first (last)
site must be multiplied with the column (row) unit vector eT

6
(e1).

Using the same basic concepts as in Eq. (A2), we can now
construct the MPO for the first two parts (3a) and (3b) of
the hybrid-space Hamiltonian, i.e., the MPO for the hopping
terms. For a width-2 cylinder, the MPO matrices can be
written as

W [i] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
t c↑ 0 0 0 0 0 0 0 0 0

−t c†↑ 0 0 0 0 0 0 0 0 0

t c↓ 0 0 0 0 0 0 0 0 0

−t c†↓ 0 0 0 0 0 0 0 0 0
0 F 0 0 0 0 0 0 0 0
0 0 F 0 0 0 0 0 0 0
0 0 0 F 0 0 0 0 0 0
0 0 0 0 F 0 0 0 0 0

εi n 0 0 0 0 c†↑F c↑F c†↓F c↓F 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A3)

with n = n↓ + n↑. For the mapping between the MPO chain
and the two-dimensional lattice given in Fig. 1, an additional
four channels are needed to connect the appropriate cσ and c†σ
operators between next-nearest-neighbor sites. The transverse
hopping is encoded into the dispersion relation and is thus
local in hybrid space; it can then be treated just like the on-site
repulsion in the real-space MPO. For arbitrary cylinder width,
four channels are needed for each momentum point, resulting
in a total MPO bond dimension of 2 + 4 Ly for the combined
terms (3a) and (3b).
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TABLE III. Labels for MPO channels grouped according to the
number of included operators as used for the MPO matrix in Eq. (A6).

four two one

1 final 6 c†↑ c↑ 12 c†↑
three 7 c†↑ c†↓ 13 c↑

2 c†↑ c↑ c†↓ 8 c†↑ c↓ 14 c†↓
3 c†↑ c↑ c↓ 9 c↑ c†↓ 15 c↓
4 c†↑ c†↓ c↓ 10 c↑ c↓ zero

5 c↑ c†↓ c↓ 11 c†↓ c↓ 16 initial

The last term (3c) is more complicated to implement,
requiring multiple steps. For fixed x, the sum (3c) can
alternatively be written as a sum over four momenta,

U/Ly

∑
k k′ p p′

c
†
k ↑ ck′ ↑ c

†
p ↓ cp′ ↓ δk−k′+p−p′ , (A4)

where the δ-function ensures momentum conservation. Note
that we have dropped the x index and the second-level y

index for compactness. Furthermore, if we neglect momentum
conservation for the moment, we obtain a relatively simple sum
that contains all possible arrangements of the four operators

(c†↑,c↑,c
†
↓,c↓) within the sites of one ring of the cylinder:

U/Ly

∑
k k′ p p′

c
†
k ↑ ck′ ↑ c

†
p ↓ cp′ ↓ . (A5)

This sum can be represented as an MPO in a compact form
using 16 channels, which we label in the following way: the
initial channel designates “no operator,” the target channel
stands for “all four operators,” and the other 14 channels
represent all possible one-, two-, and three-operator combi-
nations (disregarding order and repetition). The complete set
of channels is given in Table III. The lower triangular part
of the MPO matrices then contains all entries that logically
connect this set of channels in that the matrix element in row
i and column j consists of either the operator(s) that must
be added to the label of the ith row to obtain the label of
the j th column or zero if this is not possible. In addition,
the matrices must incorporate the appropriate sign that takes
into account the fermionic commutation relations with respect
to the ordering of the operators in Eq. (A5) within the MPO
chain. This can be done by assigning a minus sign to all matrix
elements that require an odd number of exchanges of operators
to reorder the combined labels of the row plus the element itself
to match the label of the column. Finally, identity operators
and fermionic-sign operators must be placed on the diagonal
so that operators connect over longer distances. Following
these rules, the resulting MPO matrix for one single ring of
the cylinder reads

W [i]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U/Ly c↓ F 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−U/Ly c†↓ 0 F 0 0 0 0 0 0 0 0 0 0 0 0 0

U/Ly c↑ 0 0 F 0 0 0 0 0 0 0 0 0 0 0 0

−U/Ly c†↑ 0 0 0 F 0 0 0 0 0 0 0 0 0 0 0

U/Ly c†↓c↓ c†↓F c↓F 0 0 1 0 0 0 0 0 0 0 0 0 0

−U/Ly c↑c↓ −c↑F 0 c↓F 0 0 1 0 0 0 0 0 0 0 0 0

U/Ly c↑c†↓ 0 −c↑F −c†↓F 0 0 0 1 0 0 0 0 0 0 0 0

U/Ly c†↑c↓ c†↑F 0 0 c↓F 0 0 0 1 0 0 0 0 0 0 0

−U/Ly c†↑c†↓ 0 c†↑F 0 −c†↓F 0 0 0 0 1 0 0 0 0 0 0

U/Ly c†↑c↑ 0 0 c†↑F c↑F 0 0 0 0 0 1 0 0 0 0 0

U/Ly c↑c†↓c↓ c↑c†↓F c↑c↓F c†↓c↓F 0 c↑ c†↓ c↓ 0 0 0 F 0 0 0 0

−U/Ly c†↑c†↓c↓ −c†↑c†↓F −c†↑c↓F 0 c†↓c↓F −c†↑ 0 0 c†↓ c↓ 0 0 F 0 0 0

U/Ly c†↑c↑c↓ c†↑c↑F 0 −c†↑c↓F −c↑c↓F 0 −c†↑ 0 −c↑ 0 c↓ 0 0 F 0 0

−U/Ly c†↑c↑c†↓ 0 c†↑c↑F c†↑c†↓F c↑c†↓F 0 0 −c†↑ 0 −c↑ −c†↓ 0 0 0 F 0

U/Ly c†↑c↑c†↓c↓ c†↑c↑c†↓F c†↑c↑c↓F c†↑c†↓c↓F c↑c†↓c↓F c†↑c↑ c†↑c†↓ c†↑c↓ c↑c†↓ c↑c↓ c†↓c↓ c†↑F c↑F c†↓F c↓F 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A6)

Note that fermionic-sign operators must be applied to all
elements of the matrix, which have an odd number of operators
to the right within the MPO, i.e., all elements in columns 2 to
5 and 12 to 15. Since the sum (3c) is local in the x direction,
the MPO for the complete cylinder can be constructed by
connecting Lx MPOs for single rings only through their initial
and final channels.

In order to restore momentum conservation, we now split
each of the 14 one-, two-, and three-operator channels into
Ly separate channels, which correspond to the individual
momentum sectors. Only the initial and target channels must
have zero momentum and thus do not need to be split. The
original matrix (A6) must then be transformed in the following
way: the corner elements of the matrix remain unaltered, the
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other elements within the first and last row or column become
1×Ly and Ly×1 submatrices, respectively, and all remaining
elements become Ly×Ly sub matrices. Within these sub
matrices, the local operators must be arranged according to
their momentum and the momenta of the column and row
channels, i.e., the combined momentum of the row channel and
the operator must match the momentum of the column channel
(modulo system width). Precisely, if we label the new channels
with increasing momenta, an operator with momentum k is
placed on the kth upper and (Ly − k)th lower diagonal. For
example, a creation operator on a site with momentum k = 2
within a width-6 cylinder becomes a 6×6 submatrix

c†↑ →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 c†↑ 0 0 0

0 0 0 c†↑ 0 0

0 0 0 0 c†↑ 0

0 0 0 0 0 c†↑
c†↑ 0 0 0 0 0

0 c†↑ 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A7)

The resulting MPO is indeed momentum-conserving, and its
structure encodes the factorization described in Sec. II B, with
the one-, two-, and three-operator channels corresponding to
all possible composed operators to the left and the right side
of each bond.

This completes the steps that are necessary to assemble a
complete MPO for the hybrid-space Hamiltonian. The MPOs
for the different parts of the Hamiltonian can be combined
by simply using distinct sets of channels for each part, except

TABLE IV. Zero-truncation-error extrapolated ground-state en-
ergies of Hubbard cylinders for U/t = 4.0 at n = 0.875 filling
for different system sizes and transverse boundary conditions. For
width 6, a pinning field was used to stabilize the different stripe
configuration during the initial DMRG sweeps.

Lx×Ly boundary conditions λ E0/t

16×4 PBC 8.0 − 1.018413(2)
16×4 ABC 8.0 − 1.001587(4)
32×4 PBC 8.0 − 1.028614(6)
32×4 ABC 8.0 − 1.010893(3)
48×4 PBC 8.0 − 1.032078(7)
48×4 ABC 8.0 − 1.013997(5)
64×4 PBC 8.0 − 1.033814(4)
64×4 ABC 8.0 − 1.015549(5)
∞×4 PBC 8.0 − 1.03891(3)
∞×4 ABC 8.0 − 1.020202(5)
16×6 PBC 8.0 − 1.0097(5)
16×6 ABC 8.0 − 1.0088(1)
32×6 PBC 8.0 − 1.0191(2)
32×6 ABC 8.0 − 1.0184(1)
48×6 PBC 8.0 − 1.0223(2)
48×6 ABC 8.0 − 1.0214(2)
64×6 PBC 8.0 − 1.0240(3)
64×6 ABC 8.0 − 1.0230(4)
∞×6 PBC 8.0 − 1.0286(4)
∞×6 ABC 8.0 − 1.0277(3)

for the initial and final channels. In total, one initial channel,
one final channel, 4 Ly channels for the longitudinal hopping
(3a), and 14 Ly channels for the nonlocal Hubbard interaction
(3c) are required, resulting in a total virtual bond dimension
of 2 + 18 Ly .

The final MPO contains many superfluous nonzero ele-
ments, which should be eliminated to prevent unnecessary
calculations. Since the initial and final channels have zero
momentum, many paths through the MPO described above
are dead ends that cannot contribute to the final results in any
meaningful calculation, i.e., they are either not connected to
the initial channel to the left or have no connection to the target
channel to the right. One can eliminate all elements that are part
of such dead ends and thus significantly reduce the effective
average virtual bond dimension of the MPO (see Table I).
Furthermore, it is possible to reuse the one-operator channels
of the interaction MPO to implement the longitudinal hopping
in a more economical way; however, this makes the structure of
the MPO more complicated and results only in minor savings
(≈5%) of computational time and memory costs.

APPENDIX B: COMPLETE ENERGY TABLES

Tables IV and V list the ground-state energies for the two-
dimensional Hubbard model at n = 0.875 and U/t = 4.0 and
8.0, respectively.

TABLE V. Zero-truncation-error extrapolated ground-state en-
ergies of Hubbard cylinders for U/t = 8.0 at n = 0.875 filling
for different stripe patterns, system sizes, and transverse boundary
conditions. For width 6, a pinning field was used to stabilize
the different stripe configuration; the energy contribution of the
pinning-field was subtracted afterwards.

Lx×Ly boundary conditions λ E0/t

16×4 PBC 8.0 − 0.75114(2)
16×4 ABC 8.0 − 0.74712(2)
32×4 PBC 8.0 − 0.75841(2)
32×4 ABC 8.0 − 0.75382(3)
48×4 PBC 8.0 − 0.76079(2)
48×4 ABC 8.0 − 0.75604(4)
64×4 PBC 8.0 − 0.7621(5)
64×4 ABC 8.0 − 0.75725(6)
∞×4 PBC 8.0 − 0.7657(3)
∞×4 ABC 8.0 − 0.76057(7)
16×6 PBC 8.0 − 0.7481(2)
16×6 PBC 5.3 − 0.74745(2)
32×6 PBC 8.0 − 0.7556(7)
32×6 PBC 5.3 − 0.754702(3)
48×6 PBC 8.0 − 0.7577(3)
48×6 PBC 5.3 − 0.75727(1)
64×6 PBC 8.0 − 0.7591(2)
64×6 PBC 5.3 − 0.75842(4)
∞×6 PBC 8.0 − 0.7627(5)
∞×6 PBC 5.3 − 0.76210(5)
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C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V.
Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F.
Tocchio, I. S. Tupitsyn, S. R. White, S. Zhang, B.-X. Zheng, Z.
Zhu, and E. Gull (Simons Collaboration on the Many-Electron
Problem), Phys. Rev. X 5, 041041 (2015).

[5] B.-X. Zheng and G. K.-L. Chan, Phys. Rev. B 93, 035126
(2016).

[6] S. R. White and D. J. Scalapino, Phys. Rev. Lett. 91, 136403
(2003).

[7] G. Hager, G. Wellein, E. Jeckelmann, and H. Fehske, Phys. Rev.
B 71, 075108 (2005).

[8] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and
S. Uchida, Nature (London) 375, 561 (1995).

[9] Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Phys. Rev.
Lett. 88, 137005 (2002).

[10] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
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