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Partition-free approach to open quantum systems in harmonic environments: An exact stochastic
Liouville equation

G. M. G. McCaul, C. D. Lorenz, and L. Kantorovich
Physics Department, King’s College London, The Strand, London WC2R 2LS, United Kingdom
(Received 16 December 2016; published 21 March 2017)

We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to
a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich
transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open
system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous
work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact,
closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability
of this model and the potential for numerical implementations are also discussed.
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I. INTRODUCTION

Much of the work in the canon of physics has been derived
under an assumption of isolation, where the system of interest
has no interaction with its environment. Often, particularly in
the classical regime, this approximation has been successful in
generating accurate predictions. There are however numerous
systems whose behavior cannot be explained by their actions in
a vacuum [1]. In these cases stochastic terms are used, often as
an a priori part of the model (and without proper justification),
to capture the effect of the environment. Brownian motion is
the most famous case of this technique in classical physics,
but quantum physics and its applications have many examples
where a similarly careful treatment of external effects is
required [2—4]. These systems can collectively be termed open
dissipative quantum systems, and the problem of how to most
accurately model them remains an active field of research.

Approaches to these systems can be split into two broad
categories. The first method uses the paradigmatic example
of a damped system, where the damping is an effective
loss mechanism that approximates the environment’s effect
and fluctuations are neglected. A typical example of this is
the early work of Kerner and Stevens on sets of damped
harmonic oscillators [5,6]. The basis of this method in
classical, phenomological equations means that it is capable
of providing exact solutions for some simple systems, such
as the damped harmonic oscillator. These solutions are
however undermined by being fundamentally incompatible
with quantum mechanics. This can be illustrated by the fact that
there are no time-independent Hamiltonians that can replicate
the equation of motion for a damped oscillator,

mi + ax + mo’x =0, (1)

which has frequency w and friction . While there exists a time-
dependent Hamiltonian that leads to this equation of motion
[71, after quantization the fundamental commutation relation
becomes time dependent [8]. This unphysical result means that
another approach to dissipative systems, to be detailed below,
is the method of choice.

In this approach, pioneered by Callen, Welton, Senitzky,
and Lax, dissipative systems are modeled as a primary system
(the “open system”) of interest coupled to an explicit secondary
system (the “environment” or “heat bath”), which together
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describe the overall system being modeled (the “total system”)
[8—10]. In comparison to the first method, this model is lossless
when considering the total system, and incorporates both the
dissipation and fluctuations experienced by the open system
as a consequence of its explicit coupling to the environment.
Combining this model with appropriate approximations (e.g.,
weak coupling between the open system and environment)
allows quantum master equations to be derived, which retain
the correct behavior in the classical limit [11-15].

The general scheme then is to treat the coupled systems as
a single closed system which can be straightforwardly quan-
tized. The environmental coordinates can then be eliminated in
order to obtain an equation of motion for the primary system.
In practice the functional form of the environment (secondary
system) and its coupling must be chosen subject to several
conditions. For example, in the high-temperature classical
limit, we expect to recover a classical Brownian motion. In
addition, if the summation over environmental coordinates is to
be exact, yet analytically tractable, the choice of environment
is largely restricted to a set of harmonic oscillators, with a
bilinear coupling to the open system. A particularly popular
model is the Caldeira-Leggett (CL) Hamiltonian [16]:

1 )
H = H,(q)+ E lZ (mixi2 + m,wllez)
2

2
_chixi+q7Z S )

i m;;

This model couples the open system (described by the
coordinate ¢) to an environment of independent harmonic
oscillators (masses m;, frequencies w;, and displacement
coordinates x;) with each oscillator being coupled to the open
system with a strength ¢;. The final term is a counterterm
included to enforce translational invariance on the system and
eliminate quasistatic effects [17].

Recently, a more general Hamiltonian of the combined
system (the open system and harmonic environment) was
introduced [18] which is only linear with respect to the
environmental variables, but remains arbitrary with respect
to the positions of atoms in the open system (this model is
detailed in Sec. II). In this Hamiltonian, interactions within
the environment are not diagonalized. This is convenient
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because all parameters of the environment and its interaction
with the open system can then be extracted by expanding the
Hamiltonian of the combined system in atomic displacements
in the bath and keeping only harmonic terms, i.e., the open
system can be considered as a part of the expansion of the total
system. This rather general choice of total system Hamiltonian
enables one to derive classical equations of motion [in the
form of the generalized Langevin equation (GLE)] for the
atoms in the open system [18] and propose an efficient
numerical scheme for solving them [19-21]. This method
has been recently generalized to the fully quantum case [22]
where it was shown, using the method based on directly
solving the Liouville equation, that equations of motion for
the observable positions of atoms in the open system have the
GLE form with friction memory and non-Gaussian random
force terms. Although this method enables one to develop the
general structure of the equations to be expected for the open
system, this method lacks an exact mechanism for establishing
the necessary expressions for the random force correlation
functions.

In the study of quantum Brownian motion, the path-integral
representation has been perhaps the most fruitful. Some
specific successful applications include tunneling and decay
rate calculations (Kramer’s problem) [3,4,23-26] as well as
recent first-principles derivations for the rate of processes in
instanton theory [27,28]. In particular the Feynman-Vernon
influence functional formalism [29] can be used to exactly
calculate the effect of the environment on the open system
using path integrals. Approximations such as weak coupling
between the primary system and environment are no longer
necessary. Path integrals also remove the need for an explicit
quantization of the system Hamiltonian, as in this formalism
quantum-mechanical propagators are represented as phase-
weighted sums over trajectories, where the phase associated
to each trajectory is proportional to the action of that path
in the classical system [30]. A useful consequence of this
is that the classical limit is easily obtained [31], and the
quantization of the system is automatic when choosing this
representation. Finally, and probably most importantly, bath
degrees of freedom can be integrated out exactly if the
environment is harmonic and interacts with the open system
via an expression that is at most up to the second order in its
displacements.

The key simplification of the Feynman-Vernon approach is
that initially the density matrix of the total system ﬁgOt can be
partitioned,

A%t = ho ® By 3)
i.e., it can be expressed as a direct product of the initial density
matrices of the open system gy and the environment ,65( , where
each subsystem has equilibriated separately.

In the context of open, dissipative quantum systems, much
work has been done using this formalism, expanding the
methodology of the Feynman-Vernon influence functional for
both exact and approximate results [32—34]. Using this model,
quantum Langevin equations for the reduced density matrix
have been rigorously derived using path integrals [16,35-39].
Further analytical results have also been obtained by Kleinert
[40,41] and Tsusaka [42]. Generalizations of these results
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to anharmonic baths produce approximate but more realistic
models [43,44], while time-dependent heat exchange can
also be exactly included [45]. Parallel to this is the work
of Stockburger, exactly deriving a stochastic Liouville-von
Neumann (SLN) equation, and applying it to two-level systems
[46]. Approaches based on influence functionals have also
found use in the real-time numerical simulations of dissipative
systems [47-53]. With this corpus of techniques, path integrals
(and specifically influence functionals) represent a powerful
and flexible formalism that can be used to attack the problem
of open quantum systems.

So far, we have been discussing methods based on initially
partitioning the total system. The initial condition of Eq. (3)
is however unphysical, as it is impossible in a real experiment
to “prepare” a quantum system with the interaction between
the open system and environment switched off, prior to
any perturbation being applied. As a result, the transient
behavior we predict for perturbations away from a partitioned
initial condition will always be spurious due to the artificial
equilibriation of each system separately. If we wish to extract
the exact transient dynamics of an open system, we must
therefore use a more realistic, nonpartitioned initial condition.

Fortunately, the influence functional formalism has the
capacity to naturally generalize the initial conditions of the
overall system and environment, rendering the assumption
of a partitioned initial state unnecessary. This possibility
was first noted by Smith and Caldeira [32], before being
properly explored by Grabert et al. [54], who derived the
time-dependent expression for the reduced density matrix of
an open system where all path integrals associated with the
environment are fully eliminated. In this partition-free case,
the limits on our ability to describe the reduced dynamics via a
Liouville operator have been derived by Karrlein and Grabert
[55]. In this work, however, no differential equation for the
reduced density matrix was derived, and the authors still used
a simplified CL Hamiltonian. We also note that a differential
equation for the equilibrium reduced density matrix for the CL
Hamiltonian was obtained using path integrals in Ref. [56] and
is consistent with our results.

In this paper, we derive, using the path-integral formalism,
a set of stochastic differential equations for the reduced density
matrix of an open system which describe its dynamics exactly.
The derived equation does not have the GLE form obtained
previously in Ref. [22]. Indeed, it does not have a clearly
defined friction term and the stochastic fields it contains
are Gaussian. Nevertheless, our Hamiltonian is identical to
the one used in Ref. [22], which is more general than the
CL Hamiltonian. Using it, we obtain a system of first-order
stochastic differential equations over real and imaginary time
that exactly describe the evolution of the state of a dissipative
quantum system for partition-free initial conditions. These
equations, which we term the Extended Stochastic Liouville—
von Neumann (ESLN) equation, represent both a synthesis and
extension of the work outlined above, allowing for a simple
and exact closed-form description of an arbitrary open system
evolving from realistic initial conditions.

The derivation of the ESLN (and therefore the paper itself)
will be organized as follows: Section II details the model
employed and the class of applicable initial conditions. In
Sec. III the path-integral representation for the density matrix

125124-2



PARTITION-FREE APPROACH TO OPEN QUANTUM ...

Environment (X)
290000000000
00000000000
290000000000
N @00
oeoeccoco
000Q @ %90
0009 Qooo
0900 00 )
90000000000
090000000000
90000000000

Open System (Q)

FIG. 1. Schematic of the system. The Q system will be described
by the ¢ coordinates, and its environment, the X system, with &
coordinates (x in normal modes).

of the primary system will be introduced, along with the
influence functional and its explicit evaluation. In Sec. IV
the two-time Hubbard-Stratonovich transformation is applied
to the influence functional found in the previous section,
introducing the corresponding complex Gaussian stochastic
fields. Section V presents the path integral describing the
reduced density matrix of the primary system and the operator
ESLN equations of motion that it implies, which represent the
central result of this work. These equations account for both the
generalized Hamiltonian and partition-free initial conditions.
Finally, Sec. VI concludes the paper with a discussion of the
ESLN, its connection to previous results, and the potential for
numerical implementations.

II. MODEL

Consider a many-body phonon system of the type shown
in Fig. 1. It consists of a general central system (the open
system), described by coordinates ¢, acting under an arbitrary
Hamiltonian H,(q). The secondary system (the environment)
is composed of M harmonic oscillators (with masses m;)
coupled both internally and with the open system. The open
system may be subjected to time-dependent external fields.
The environment uses displacement coordinates & and the
interaction between the two systems is linear in £ = {§;} but
arbitrary in g:

1 M ) 1 M
Hi(g.€) = Hy(q) + 5 3 mif} + 5 3 Aiji&;
i=1

ij=1

M
- fi@E. “

This Hamiltonian differs from the standard CL Hamiltonian
in Eq. (2) in two important respects. First, the interaction
between the primary and secondary systems is no longer
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strictly bilinear, but can depend arbitrarily on ¢. In addition,
the atomic displacements that form the environment are now
coupled to each other as well as the system, with the coupling
described by the force-constant matrix A;;. These alterations
will have a material effect on our results. We also note the
counterterm found in Eq. (2) has been dropped as it is no longer
needed, since when the Hamiltonian of an arbitrary combined
system is expanded in the power series in terms of atomic
displacements §;, this kind of term does not appear. In this
sense, our model Hamiltonian is the second-order expansion
of any conceivable system-bath Hamiltonian.

The density matrix evolves in the usual manner according
to the Liouville equation,

PONr) = U(t;10) 9 (1)U (8 10), (5)
where
. t
U(t:10) = exp [—;; / dr Flmt(t’)] ©)
fo

is the corresponding evolution operator. Importantly, we
need not assume that the system Hamiltonian H,(q) is time
independent, i.e., H,(q) = H,(g,t). The dynamics of the open
system are found by tracing the full density matrix over the &
coordinates,

A(t) = Tre[ (1], (N

while the total and reduced density matrices in coordinate
space are, respectively,

p"(q.639" ") = (4.£10°' (DIq.&"), ®)

pi(q.q") = {qlp®lq"). ®

The propagators in this space are given by

U(q.£,1:.8.10) = (q.61U(1;1)1G,&), (10)
<Q7§|I/]\T(l»t0)|qvg> = (Cisé'ﬁ(to’t)lqsé) = U(q’éJo;Q’ést)-
(11)

The second equality has been constructed to demonstrate that
in coordinates, U has the form of a backward propagation in
time. Setting #y = O for convenience, the open system density
matrix in the coordinate representation is

pi(g.q") = /d§ dE dg dg' dg dg' (5 — &)
x U(q.&,1:4.£,0005(4.€:G &)

x U7 ,E ,0;q",&,1). (12)

At this point, we transform to a normal-mode representation
& — x = {x,}, where

M Moo
X, = Z\/mieu‘fi, & = Z —¢€i3 X,
i S Vi

and e; = {e,;} are eigenvectors of the dynamical matrix
D = {Dy;}, where D;; = A;;/./mim;, with eigenvalues @3.
The eigenvectors satisfy the usual orthogonality, e} e, = 83/,
and completeness, Y, e;e] = 1, conditions (the superscript
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T stands for transpose). Applying these transformations, the
Hamiltonian can be expressed as

M
Hi(q,x) = Hy(q) + % ; (45 + wixy) ng(q)xx,
B (13)
where
M
2.(q) = Z ——eifiq), filg)=mi ) engi(q).
~/_ y
(14)

The reduced density matrix is now given by

0:(q,q9) = /d)?di’dx dgdg' U(q,x,t;3,%,0)

x py(q,%:¢" FHUG ¥ ,0:q" x,0).  (15)
Before Eq. (15) can be solved, we must specify the form of the
initial density matrix py”. As was explained in Sec. L, in most
systems of interest the interaction between the primary system
and its environment is an integral part of the system and hence
one cannot assume the two systems are initially partitioned.
One solution employed by Grabert et al. [54] is to consider
the full interacting system as being allowed to equilibrate
with some time-independent Hamiltonian Hj before applying
any time-dependent perturbation. In this case, the initial state
would then be described by the canonical density matrix,
t

= 5, — 1 —BHo

= pp = Zﬂe , (16)
where B =1/kpT is the inverse temperature and Zg =
Tr(e~#H0) is the corresponding partition function of the entire
system. Note that a class of more general initial density
matrices can be considered [54]; however, here we shall limit
ourselves only to the canonical density matrix.

Having specified the initial conditions, the goal is now
to derive an equation of motion that will describe the exact
evolution of the reduced density matrix p,(gq,q") as given by
Eq. (15). To do this, we will utilize the influence functional to
eliminate the environmental degrees of freedom in Eq. (15).

III. THE PATH-INTEGRAL REPRESENTATION AND
INFLUENCE FUNCTIONAL

To proceed we will insert the path-integral representation
of both propagators and the initial density matrix into Eq. (15).
The expression for the forward propagator U(q,x,tr;4,%,0)
as a path integral up to a time ¢ is given by
x(ty)=x

Dx(t)

q(tr)=q

Dq(1)
0)=q x(0)=x

U(q,x,t5;4,%,0) = /
q
X exp { ,%S[q(t),x(t)]}, a7

with a similar definition for the backward propagator,

q'(0)=g x'(0)=x
U@ .2.0:q x.t7) = f Dg'(1) / DX (1)

q'(tp)=q’ x'(t)=x

X exp {—%S[q’m,x’(r)]}. (18)
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The limits of the path integral in the second propagator are
reversed as compared to the first one to emphasize its backward
nature, as in Eq. (11).

In both expressions, the integration is performed with
respect to both the open system (g,¢’) and environment (x,x")
variables between the boundaries indicated. Here, S is the
action corresponding to the Hamiltonian in Eq. (13) describing
the total system. It is defined in both propagators in the usual
manner (i.e., the time integral of the Lagrangian from 0 to 7¢),
hence the extra negative in the exponent of the backwards
propagator. Integration over the environmental variables can
be performed exactly as the environment and interaction
Hamiltonians added together have the form of a set of displaced
harmonic oscillators in the environment variables. This means
the path integral over environmental trajectories is Gaussian
and can be evaluated (see, e.g., [29,30,54]). The propagator
therefore becomes a path integral over the trajectories of the
open system only,

U(qg,x,tr;q,x,0)

(tr)=q i
= A/ Dq(t) exp {;TlStot [q(t); x,X; tf]}- (19)
q(0)=g

Here, A is a fluctuating factor that corresponds to a closed-loop
path integral,

W),
A=A =] /|—2—, 20
l:[ * 1:[ 27ifi sin(w 1) (20)

while the action Si,; is the composition of the action of
two systems, which is functionally dependent only on g(t).
Explicitly,

Stot [q(0);x, 3511 = Sglg ()] + Sxlg(@); x,x51¢],  (21)

where S, is the open system action,
ty
Sla1 = [ dri,tq
0

Iy
_ /O d{TIgO] - Vgl (22)

and S, is the classical action of a set of displaced harmonic
oscillators for an external “force” given by g[¢(¢)]. This has no
functional dependence on the x coordinates; S, only depends
on the limits of the path integral over the environment,

Sxlg(@); x,x;1¢]

X
+_
wy Jo

! (xf + .f)%) COS(C())Ll‘f) — X)X
sin a)xtf 2

i
dt g, (1) sin (w;t)

X,
+_
wy Jo

lf t
L / drdt’ g, (g (t)
0 0

Iy
dt g.(t) sin[w; (ty —1)]

x sin[wy(t; — 1)] sin(w,\t’)i| } (23)
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In the final equation above, we have abbreviated by setting
glq(®)] = g(t) = {g,.(1)}, in addition to the limits x(t;) = x =
{X)L} and X(O) =X = {EA}

The backward propagator has a similar expression as
compared to the forward propagator in Eq. (19),

U@q'.x',0:q" x,ty)

q'(0)=q i ,
= A*/ Dq'(t) exp {—-Sm [q (z);x,f/;tf]}, (24)
q'(tr)=q' h

with the same expression (21) for the action, but using
the substitution X — X’. The abbreviation g[q'()] = g'(t) =
{g;(1)} will also be used when referring to the backward
propagator.

As well as the propagators, the initial density matrix may
also be expressed as a path integral over both the open system
and environmental coordinates. After performing the same

J

where the system and bath contributions are given as follows:

LB hp
SE[G(o)] = fo dt LE[g(v)] = fo dt{T[§)] + VIg(o))

and

Erzc.\. 5 3/ = 1 ray
Sy lg(r); x.x5hB] = ; { sinh (w,/ip) | 2

5 hiB

). Jo
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integration over the environment as for the propagators, we
obtain

pp(G.%;q',x")
_AE [aep= 1,
Dg(t) exp {——Swt[é(r);f,i’;ﬁﬁ]},
 Zg Jao-q h
(25)
E _ l_[Af — 1_[ L_ (26)
N N 27th sinh (wy/i B)

Here, Zg is the partition function for the total system, while
SE, is the Euclidean action, defined as the Wick rotation
of St [G(1); X,%";/B]. Using the notation g[g(t)] = g(¢) =
{g, ()}, x@B) = ¥ = {X,}, and X(0) = X’ {)_Cx} we obtain a
familiar (albeit Wick rotated) definition for S, E (see,e.g., [54]):

SELG(r): %5181 = SE[G(D] + SE[q(r): %.X:hB],

@7

W), 1 o) )E)L hp
|: (¥ + ) cosh (wiB) — 5%, — o /0 dt g,(7) sinh(w, 1)

hB T
A dt g, (v)sinh [ (B — ©)] — iz/ / drdt’ ,(1)g:(7) sinh [w; (i — 7)] sin(w,\r’):| }
wy Jo 0

(28)

Following Ref. [54], we now also define a new partition function Z = Zg/Zp in terms of the partition functions of the total

system Zg and the (isolated) environment,

Zp =

1
1_[ 2 sinh ( wxhﬁ)

(29)

After substituting the path-integral and partition function expressions into Eq. (15), we obtain an expression for the reduced
density matrix after integrating over the environmental trajectories,

1
o (q:q") = z/dc}dé/Dq(t)Dc?(t)Dq/(t)f[q(t),q/(t),c?(r)]

i (v i [ 1 "B -
xexp{ﬁfo dtLq[q(t)]—ﬁ[) dtLq[q’(t)]—ﬁ/0 erq[cj(t)]}.

(30)

The limits of the path integrals here are the same as above. The normalizing constant Z in the equilibrium density operator is not

generally known, and this issue will be discussed in Sec. V.

The influence functional F[q,q’,q] contains the full path integral over the environment. It is fully factorized over the normal
modes A, and for each mode is composed of a product of three terms:

1
f[Q(l)vq/(t),q_(T)] = Z_B H/dxkdildxi F)L[q)n(t)sx)»»X)L]F)LE[ql(r)ri)wi;\]F;[q;(t)axlyx)/h]v (31)
A
where
— Lw;, 1 ) _ X s .
Flq).(t),x,,%.] = Aj exp m E(x/\ + %7) cos(wty) — 3.5, + o dt g, () sin (wy.1)
WEf
+5)—'\ dt g,(t) sin[w, (ty — 1)] ——/ / dtdt’ gk(t)gk(t)SIH[wx(tf—t)] sin(w; t )“ (32)
% J0
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’ = iw; 1 2 ) -/
Filg.(®),x,,%x.] = A¥exp{ ———————| =(x7 + ¥7) cos(w, t7) — x; %
A[QA() A k] A p{ hsin(thf) |:2( A )L) ( Af) A

.X)‘ ty ,f/ tr
—i——/ dt g, (1) sin(w; 1) + i/ dt g (1) sin[w; (ty — 1)]
W) Jo W) Jo

_Lz / ! / didt’ g, ()g; (t') sin[w; (ty — 1)] sin(a),\t/):| } (33)
W= Jo Jo
1
F)\E [qk(f),fk,fi] = Af eXp {—m |:§()E)ZL + )E;LZ) cosh (a))flﬂ) — f)‘f;
5, [ =/ (hp
-2 dt g,(t)sinh (w,7) — =2 / dt g, (t)sinh [w, (i — 1)]
w; Jo W) Jo
1 nhp T
-— [ dtdt’ g,(1)g,(t") sinh[w, (i — 1)] sin(wm:’)] } (34)
Wy Jo 0

In order to calculate the influence functional, we notice that the calculation can be performed for each mode X separately.
Then, the integrand in the triple integral over x;, X3, and X, contains an exponential function with a quadratic polynomial over
these variables, and is hence a Gaussian. This can therefore be directly integrated. We first note that all pre-exponential factors
in the influence functional after the integration multiply exactly to one. Indeed, the introduction of the partition function of the
environment Zp in Eq. (31) is to ensure that in the case of no interactions between the system and the environment, the influence
functional F[q,q’,g] is unity. If P; is the pre-exponential factor appearing after the triple integration over x;, X;, and X/ in
Eq. (31) for one mode, then the overall exponential prefactor J for the influence functional after some simple algebra is one:

]‘[ Po=1. (35)

After performing the complete integration of Eq. (31), we find the following exponential expression for the influence functional
(cf. [29,54]):

1 1
Flq.4'.q1 = exp <—gfb[q,q’,ci]) = exp (—;l > %[q,q',oﬂ), (36)
A

where ® = ), @, is the influence phase:

hp T B ty
®,1¢.4'.] = — / dr f dv' Ko (it — i0)g()gn(t) — i / dr / dt Kot — i@ (™[0 — g,(1)]
0 0 0 0

s [N [ ar oo - gk - 60 - K16 - gL G37)
The term multiplying the various g; within the integrals is the kernel,
cosh [a)k (%ﬂ — i0>]
KO = sinh (W) %)

Note that the kernel appears in three forms, depending on purely imaginary times, K; (it — it), real times, K, (t —t’), and
complex times, K; (¢ —it). It will be useful later in the derivation to split the kernel into its real KX and imaginary K parts.
For real times, this produces

1 1
KR(t) = — coth | =hBw; | cos (w;1), (39)
260)\ 2
1
K}l (t) = — = sin(w;1), (40)
26())L
and for complex times,
1 1
KAR(I —i7) = 2—[coth <§wlh,8> cosh (w; t) — sinh (a),\r)] cos (wyt), 41)
),
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K){(t —it) = —ﬁ [cosh(mxr) + sinh (w; ) coth (%a)ﬁﬂ)] sin (w; 1), 42)

while for purely imaginary times the kernel is real,

Ki(it) = K$(v) + KJ(2), @3)
and consists of even and odd components,
1
K{(t) = — sinh (w, 1), (44)
26();\

1 1
K3 (t) = — cosh(w, 1) coth [ —wyip ). 45)

26())L 2

If for real times we also define new sum and difference interaction functions [40],

1
() =g.()— g () and y, (1) = z[gm) + g,®)]. (46)

and substitute these expressions into Eq. (37), the single-mode influence phase can now be expressed as
/ ﬁﬁ ﬁﬁ / 1 / / /
@ilg.gal=- [ dr [ ar Sk -0 - KO0 - ]aoa)
0 0
hip tr
—i / dr f di [K{(tit) + i K] (t —i1)]gu(0)ex(t)
0 0

+ % / ' dt/ ' dt' KXt — e, (en(t') + 2i / ' dt/ ' dr' [0t —t)K(t — t)]e(t)yi(t). (C9))
0 0 0 0

The final two terms in this expression are a generalization of the well-known Feynman-Vernon influence functional [29], with
the remaining terms arising from the incorporation of a nonpartitioned initial density matrix. Note that, compared to Eq. (37),
the above expression was modified to ensure identical limits in the double integrals over the times ¢,#’ and 7,7’.

The influence phase still contains the normal-mode interaction term g;. Using Eq. (14), we can re-express the phase in terms
of the original interaction given in the site representation. The normal-mode transformation did not change the g coordinates
themselves, so there is no difference between representations in the path-integral measure or action S, in Eq. (30). The system-bath
interaction term contained in the influence functional will have a different form, however, and hence the influence phase has a
nontrivial alternative representation in terms of functions f;(t) = f;(¢q(¢)) rather than g;(g(¢)). In this representation, the sum
and difference functions

1
vi() = fit) — f{(®) and r;(1) = E[fi(t) + fi0] (48)

can conveniently be introduced, using f/(t) = f;(¢’(¢)). Substituting Eq. (14) into these, we can relate the sum and difference
functions (46) between the normal-mode and site representations,

1 1
vi(1) = N ;emm and ri(t) = N ;em(r). (49)

The influence phase in the site representation is most easily expressed by defining new kernels from those derived using
normal modes,

1
LR 1) = e KR @), 50
0] W;emx] 0] (50)
1
Lij(t —it) = eie Kit —it), (51)
LE(7) ! 3 ot Lip h(w7) (52)
c(T) = CO — w cosn(wy7),
Y mim; - 2w, 2 * *
1 erienj .
Lo(7) = h (w7), 53
O = e ; 2, Sinh@.7) (53)
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so that the influence phase can be re-expressed in terms of the site interactions,

®lq.q.q) =Y _ ®ijlq.q.q], (54)
ij

hp hp 1 - _
oyla.q.al=- [ dr [ dv Si@[LyE -0 - Ly - o))
0 0

hp ty _
—i/ dr/ drvi(t)L;j(t —it) fi(7)
0 0

+%/fdt//dt’ vi(OLE (@ —t’)vj(t’)+2i// dt/fdt’ vi[0 — 1)L}t — )], (55)
0 0 0 0

where an obvious shorthand notation f(G(7)) = f;(t) has also been introduced.

The influence phase expressed here contains additional
complexity compared to one derived using a standard CL
model (which does not require a normal-mode transformation)
[54]. After allowing the environment to contain internal
couplings, we find that the effect of this generalization on the
form of the influence phase is not trivial: instead of a single
sum over the bath lattice in the CL model, we have double sums
in Eq. (54), and this will have a profound effect on the
dimensionality of the stochastic field to be introduced below.

In principle, having found the influence phase, Eq. (30) can
be used to describe the exact dynamics of the open system
at all times. Path integrals are however awkward to evaluate
outside of certain special cases. The goal now is to use Eq. (30)
to derive an operator expression, and hence a Liouville—von
Neumann-type equation for the reduced density matrix instead.
Unfortunately, the influence phase contains double integrals in
two time variables (¢ and t), meaning there is no simple method
to construct a differential equation directly out of Eq. (30).
Here we will follow previous work [13,40,42,46], and use a
transformation to convert this nonlocal system into a local one
exactly, at the cost of introducing stochastic variables.

IV. THE TWO-TIME HUBBARD-STRATONOVICH
TRANSFORMATION

In order to progress, we will use a statistical technique
known as the Hubbard-Stratonovich (HS) transformation
[57]. We shall consider the most general form of such a
transformation based on a complex multivariate Gaussian
distribution (cf. [46]).

Consider a Gaussian distribution over N complex random
variables (“noises”), z' = {1;}, and their N complex conju-
gates, 72 = {nj},

. . o™V 1,
Wln.nf,...oovy] = T exp |:—§z Ez}, (56)
where
4
= 22 57)
%

is the vector of complex variables (¢ = 1) or their conjugate
(o« = 2). The total vector z is therefore of size 2N and is given

[
by

7!
z= <Z2>. (58)

The covariance matrix X can also be decomposed into a block

form,
o 2]1 212
Y= <Eijﬂ) = (221 222>, (59)

and the correlation functions are given by the usual Gaussian
identity,

(cef) = (=Y. (60)

The Fourier transform of this distribution is the complementary
distribution which can be calculated exactly,

k[k] = /dZW(Z) exp(iz' k) = exp (—%kTE_'k) (61)

where k is a 2N -fold vector, consisting of two size N vectors
k' and k2.

This equation can be interpreted as an average (with respect
to the Gaussian distribution W) of the exponential function,
(exp (iz"k)) .- Using the distribution W, one can also calculate
the correlation function between any two stochastic variables.
Hence, the elements of the inverse matrix ¥ ! appearing in
Eq. (61) can be written via the correlation functions. The HS
transformation is essentially the relation between these two
representations of the complementary distribution,

(exp(iz” k). = <exp (z’ Zz?‘k?>>

Z

1
=oxp | =5 k() k). @
ijop

So far, we have considered a finite set of discrete stochastic
variables {n;,n}}. The preceding derivation can be extended
to (continuous) Gaussian stochastic processes if different
stochastic variables are now associated with time instances
t; separated by some small time interval A, i.e., z¥ — zJ (#).
Here, f; = kA with k running from O to n, so that nA = t.
Now in the limit of A — 0, we obtain the HS transformation
for a set of continuous Gaussian stochastic processes as
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follows:

<exp |:i Z/o f dt Z?(l)k,q(t)]>
ia 2(1)

= exp —-Z f di / EOCADADIAD

ijep
(63)

Note that integration over the noises z(#) = {z7(#)}, appearing
in both sides of the above equation, becomes the corresponding
path integral in the continuum limit.

Using the HS transformation defined above, clear progress
can be made. Indeed, the exponent in the right-hand side of
Eq. (63) is of the same form as the Feynman-Vernon terms of
the influence phase in Eq. (55). The correlation functions and
k variables in Eq. (63) can be mapped to the terms appearing in
the integrands of the Feynman-Vernon influence phase. The HS
transformation can therefore be used to equate a deterministic
nonlocal integral exponent to a local phase involving auxiliary
stochastic terms, that must be averaged over the distribution
W. In a more physical sense, we can also consider the HS
transformation as converting a system of two-body potentials
into a set of independent particles in a fluctuating field. The
difficulty using this transformation is that Eq. (55) contains
two time dimensions—one real and one imaginary, with one
term involving an integration over both dimensions—requiring
a generalization of the transformation.

When we consider how the HS transformation is derived,
continuous processes and multiple variables are incorporated
through the addition of extra indices, partitioning the arbitrary
sum of random complex variables. The same procedure can
be applied to introduce different time dimensions. Starting
from a discrete representation, we introduce two sets of
times, {t;,k =0, ..., M} and {7,k =0, ..., M’}, so that the
exponent on the left-hand side of the HS transformation (62)
has the form

HEDD [Zz?(tk>k?<tk)+Zz:?‘<rk>E§‘(rk)}, (64)
o ik ik

J
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where we assign ty =1ty and 1y =/p, and we place a
bar above quantities associated with the second set of times
(denoted with the real time 7;). Note that the number of
stochastic variables in each set (as counted by the index i for the
given time index k) may be different for barred and unbarred
fields. In the continuum limit M, M’ — oo, we obtain for the
left-hand side of the HS transformation,

K[k(t),k(t)] = <exp|: Z/ dt 8 (0)k (1)

dr z;?‘(r)lé;*(z)D . (65)
{z(0),z2(0)}

Correspondingly, the exponent on the right-hand side of Eq.
(62) (after the time labels are introduced) in the continuous
limit becomes

K[k(t),E(T)]
—exp|—= [ f dt / dr' k)" AL (K ()

aﬂl]

hip hif _ _
+ / dr / dv' B (2) A% (r, 0P (')
0 0

ty hp _
+2 / dt f drk 0" AT (D) [ . (66)
0 0

where, because of the three possible combinations of times,
we introduce three types of correlation functions,

A1) = (2 OB ), 2o 67)
ap N _ |sa =B/
Aij (T9T ) - <Zi (T)Zj (T )>{Z(f) z(w}? (68)
af
AL (T) = (O O) Ly o (69)

In the full multivariate form, the two-time transformation is
therefore given by

t hip
exp1i Z |:/ ' dt zZ{ (ki (1) + f dr z‘i“(r)/E?‘(r)]
i /O 0 {2(),2(0)

=exp{—- [/ d;/ dr' k(DA (1, ()

l] jof

i 7iB i
/ dr/ dt’ k“(r)A“ﬁ(”)kﬁ(er/ dt/ dr k()AL G, r)kﬁ(r)i| . (70)

The connection between the influence phase and the two-
time HS transformation should now be transparent. Notice that
here in the exponential all time integrals have either 77 or i
as their upper limits, exactly as in the influence functional
expression (55) for the phase. The choice for the second time
dimension to run up to /8 has been made to highlight the

(

closeness between the influence phase in Eq. (55) and the
two-time HS transformation presented here.

Now we would like to apply the HS transformation to the
influence functional expression given by Egs. (36), (54), and
(55). It is clear from the structure of the exponent in the
influence functional in Eq. (55) that auxiliary stochastic fields
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should be introduced separately for each lattice site index i.
Moreover, there should be two pairs of the stochastic processes
for the set associated with the real time ¢,

n: (1)
n; (1)
vi(®) |’
vi(t)

and one such set for the imaginary time i t,

5 = (Z%) @)

zi(t) = (71)

where we have redefined the size M (number of environmental
oscillators) complex vector z = {z;} to include two noises and
their conjugates. Next, we make the following correspondence
between the functions k;(¢) in the HS transformation (70) and
the functions v;(¢), r;(t), and 7,- (t) appearing in the phase,
Eq. (55):

vi(t)/h
GG A 73
0
and
k(1) = (ifi(()’)/ﬁ>. (74)

The three pairs of stochastic processes we have introduced
must ensure that the influence functional given by Egs. (36),
(54), and (55) coincides exactly with the right-hand side of the
HS transformation (70). Therefore, comparing the exponents
in the right-hand side of Eq. (70) and Eq. (55), explicit formulas
can be established for the correlation functions A?‘f between
the noises. These are

(003 oy mey = BLEE = 1), (75)
(i @Ov; (1)) gy 2oy = 2100 =Lt = 1), (76)
(mOR;O) 4 2oy = | LEC — i) +iL],(t —iT)|,
{z(®),2(0)} J J
n
(i (DT 20,200y =B[L§; (T — ') = LY (It — 7)),
(78)

WiV i),z = WiOR(T)) 2,200y = 0. (79)

Note that the correlation functions (75) and (78) are to be
symmetric functions with respect to the permutation i,z <> j,#’
and i,7 <> j,t’, respectively, and the corresponding functions
LE and LY} provide exactly this.

Taking the above results and applying them to Eq. (55), we
find that the influence functional can be described as an average
over multivariate complex Gaussian processes as follows:

i i
Flg.q.q1 = {exp 52{/0 dt [n;()v; () + hv;(@)r:(1)]

B
+i/ dt ﬁi(f)ﬁ(t)}>> ; (80)
0 20,70}
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where the averaging is made over three pairs of complex noises
(or, equivalently, over six real noises) per lattice site of the
environment.

Importantly, the two-time HS transformation is a purely
formal one, and we are free to stipulate that the noises are
pure c-numbers; this enables us to avoid the complication of
operator-valued noises. Promoting noises to operators has been
previously shown to have no effect on the final result, as shown
in Refs. [40,42].

Finally, it is worth mentioning that the influence phase given
above does not uniquely define the Gaussian processes that
the influence functional is averaged over after performing the
mapping. The influence phase viewed as the right-hand side of
the HS transformation does not involve every possible correla-
tion defined under the Gaussian distribution. In particular, the
conditions we impose on some correlation functions to map the
physics to the auxiliary noises do not constrain the correlations
between the complex conjugate noises, e.g., (n;k(t)n;f(t’)).
Therefore any distribution that satisfies Egs. (75)—(79) may
be used in this transformation.

V. THE EXTENDED STOCHASTIC LIOUVILLE-VON
NEUMANN EQUATION

Now that the influence functional F[q,q’,G] has been
evaluated, we are able to write the expression for the reduced
density matrix in Eq. (30) explicitly. First, having introduced
stochastic variables into the equation for the density matrix, we
must define a new object ;(g; ¢’) to act as an effective, single-
trajectory density matrix defined for a particular realization of
the stochastic processes z(¢) and zZ(t) along its path. Inserting
Eq. (80) into Eq. (30), we obtain

1
bi,(q:q") = E/dédé/Dq(t)Dé(t)Dq/(t)
Por _laerent_ Ler
X exp{hs lg@] - =S [¢'®)] =5 [q(r)]},
(81)

so that the exact reduced density matrix is recovered as an
average over all noises,

00,(q39") = (P1,(q9)) )20 (82)

Above, three effective actions have been introduced,

; ty i
Stg()] =/O dt {Lq[q(t)] +Xi: |:77i(t)+ Evi(t)}fi(t)}

_ / " dr LYg(ol, (83)
0
- i h
§S[d'0] = [0 dl{Lq[q/(t)]"‘Z[ﬂi(t)_Evi(t)j|fi/(t)}
ty
- /0 d L [g' 1), (84)

i i i
§F1g(0)] = /0 dr!Lf[é(f)]JrZﬁi(f)ﬁ(f)}. (85)
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In the definitions of the effective actions, we have reinserted
the original forces f;(t), f/(t), and ?i(t) via Eq. (48). It can
be seen that the actions S* and §~ correspond to two different
effective Lagrangians,

-~ ~ h A
L*(1) = L,() + Xl: [ni(t) + Evi(f)]fi(q), (86)

which in turn are associated with two different effective
Hamiltonians,

H* (1) = Hy(t) — 2,: [ni(t) + %vi(t)} filg). (87
As was mentioned in Sec. IV, the noises are not promoted to
operators but remain as c-numbers.

All three path-integral coordinates have now been decou-
pled from each other, and as coordinate functionals may be
commuted. The density matrix in Eq. (81) can therefore be
expressed as

bi,(q:q") = /dc}dti/ U*(q.1£:3.0)p0(q: YU (G',0:q ,15)

= (q1p(tp)|q), (88)
where
q(tr)=q
U*(q.t7:4.0) = f
q(0)=q
= (q|U* (1)), (89)

Dq(1) exp { ,%S+[q(r>]}

q'0)=q' i

U™(q'.0;q".tf) =f Dq'(t) eXp{—ﬁS[q’(t)]}
q'(tp)=q'

=(7|0-aplq), (90)

1 [a6P=q 1.
P0(G:q) = = / Dg(t)exp {——S%(r)]}
Z J0=¢ h

= (1p0lq"). o1

Notice that the forward propagator is not the Hermitian
conjugate of the backward propagator because of the obvious
difference in the their respective Hamiltonians. The conse-
quence of this is that the equation of motion is no longer
of the Liouville form, i.e., the time derivative of the density
matrix is not solely given by the commutator with some kind
of Hamiltonian.

Within Egs. (89) and (90), we have also introduced the
operators

Ut(ty)=Texp |:—;fl f ' ﬁ+(t)dti|, 92)
0

U (ty) =T exp [é / ' ﬁ_(t)dt:|, (93)
0

which correspond to the forward and backward propagation
performed with the different Hamiltonians H™* anq\ H-,
respectively, with the corresponding chronological T and
antichronological 7' time-ordering operators. It is easy to
see that the coordinate representation (g¢|U*(t;)lg) and
(§’|l7 “(tp)lq’) of such operators gives exactly the paths
integrals in these expressions. The propagator operators satisfy
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the usual equations of motion,
ino,Ut(t) = HT () U (), (94)

ihd, U (t) = —U-()H (t). (95)

Taking Eqgs. (88)—(91), the reduced single-trajectory density
matrix p(ts) of the open system can be written as an operator
evolution,

Bt = U (1)U~ (). (96)

With these definitions, it is possible to generate an equation
of motion for a single-trajectory reduced density matrix by
simply differentiating the above expression with respect to
time,

ihd,p(t) = HT(1)p(t) — p(t)H (1)
= [H,(1),5(1)]_

A h A
- Xl: {m(t)[ﬁ(t),ﬁ(t)] + Evi(t)[ﬁ(t),ﬁ(t)L}-

o7

This, together with an equation for gy, which provides an
initial condition for the reduced density operator p(¢), forms
the ESLN. It bears a great deal of similarity to the equation
derived by Stockburger [46] using the partitioned approach,
and while it may be initially surprising to see a similar (albeit
generalized) equation of motion, it seems that the partition-free
initial density matrix introduced here does not change the
dynamics it evolves under. We also note that, as was mentioned
above, the obtained equation does not have the usual Liouville
form because of an extra anticommutator term in the right-
hand side. This originates from the fact that the forward and
backward propagations of the reduced density matrix in Eq.
(96) are governed by different Hamiltonians. We note that
the same equation of motion for the reduced density matrix
can also be obtained using the method developed by Kleinert
and Shabanov in Ref. [40]. However, their method requires
some care in choosing the correct order of the coordinates and
momenta operators. It is a definite advantage of our method
that such a problem does not arise.

All that remains is to determine the new single-trajectory
initial density matrix pg. This is the true initial (¢ = 0)
single-trajectory reduced density matrix which is obtained
from the canonical density matrix (16) by tracing out the
degrees of freedom of the bath. There is already a path-integral
representation for this density, given by Eq. (91), but it is
unwieldy and unintuitive. Once again it is best to work
backwards to obtain the corresponding effective canonical
initial density matrix operator 0y with the same path-integral
representation. It is easy to see, however, considering an
effective operator Hamiltonian [cf. Eq. (85)],

H(t) = Hy(@) — Y 1i(0) fi(q), (98)

that the path-integral representation of the initial density
matrix in Eq. (91) is formally identical to the one for the
coordinate representation of the evolution operator when time
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is imaginary and t changes between zero and Bh. Therefore,
the initial reduced density operator can be characterized as a
propagator through imaginary time,

po = ()| —pn» 99)

using

— IA 1 ‘ A=
p(t) = ET exp |:_Fl/o dt' H(t ):|. (100)

This has the form of a time-ordered exponent, with T being
the corresponding chronological time-ordering operator. The
latter density operator p(t) is responsible for the thermal-
ization of the open system (when v — ph) and will be
called the quenched initial density operator. It satisfies the
Schrodinger-like equation of motion,
—hd:p(r) = H(D)p(7), (101)
with the initial condition p(z = 0) = Z~'. The initial density
p(t) must be normalized when the final value of T = fh is
reached, i.e., Tr,[p(Bh)] = 1, where the trace is taken with
respect to the open system only. Therefore, the correct initial
condition for p(7) can be fixed by providing this normalization
at the end of the imaginary-time propagation (note that Z, as
a ratio of two partition functions, is time independent). We
also observe that essentially the same result for the reduced
equilibrium density matrix was obtained in Ref. [56].

The Hamiltonian H, and the interaction operators in
H(7) have no temperature dependence; so the temperature
dependence comes entirely from an artificial “propagation” of
the quenched density matrix from zero to the “time” t = ph.
This hard limit relating the time to the system temperature is
important, as unlike in the real-time case, the quenched density
matrix may diverge as we take T — oo. This is a reflection
of the fact that the path-integral description of the canonical
density matrix is itself only defined for finite temperature.

The equations (97), (99), and (101) provide the complete
solution for the real-time evolution of the reduced density
matrix of an open system in our partition-free approach. First
of all, the initial density matrix is obtained by propagating in
imaginary time t the quenched density p(t) up to the final
time t = Bh (the Euclidean evolution). The initial density
is then normalized which fixes the value of the partition
function Z. Using the obtained initial density matrix, the
actual time dynamics of the reduced density matrix p(z)
are elucidated by solving Eq. (97). Figure 2 illustrates the
evolution of trajectories through two times, as governed by the
two differential equations. First the system evolves through
imaginary time according to Eq. (101) and some realization
of the imaginary-time noise trajectory {i;(t)}. This state then
evolves through real time under Eq. (97) using the real-time
noise trajectories {n;(t)} and {v;(¢)}, with the requirement
that upon averaging over realizations of these trajectories,
they satisfy the correlation functions derived in Sec. IV. The
evolution along these two time dimensions is then repeated
many times using various realizations of the stochastic noises,
and averaging over many trajectories yields the physical
reduced density matrix p(¢) appearing in Eq. (82).
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FIG. 2. Representative trajectories for the evolution of the system.
First there is an evolution in imaginary time up to T = fh, before
evolving in real time from this point up to time ;. Different
colors correspond to different simulations associated with particular
manifestations of the noises. The average of the final points gives the
physical density matrix at that time (indicated at time ).

VI. DISCUSSION AND CONCLUSIONS

Having derived the ESLN, we should ask how it differs
from previous work. The Hamiltonian we have used is a
generalization of the Caldeira-Leggett model, allowing for a
solution in either real or frequency space. The form of the
interaction has also been generalized, but is still limited by the
essential need for an interaction to be linear in environmental
oscillator displacements. In fact, our Hamiltonian emerges
naturally from an arbitrary total system Hamiltonian by
expanding atomic displacements of the environment up to the
second order. Therefore, it can be directly applied to realistic
systems.

The fundamental result of our paper is the removal of
the unphysical partitioned initial condition which implied
that the open system and the bath were initially isolated.
Following previous procedures to accommodate a more
physical partition-free approach, we applied the special variant
of the Hubbard-Stratonovich transformation that allowed the
initial condition to be determined via an auxiliary differential
equation. This allows the ESLN to make exact predictions
for the transient behavior of the primary system when it
is perturbed from equilibrium. Additionally, when the total
system is in equilibrium, the imaginary-time differential
equation allows for the exact calculation of the reduced
equilibrium density matrix. This is important, as the stationary
distribution of dissipative systems with finite couplings has
been shown to deviate from that expected under partitioned
conditions [58]. The true distribution is described by the
“Hamiltonian of mean force”, and Egs. (99) and (101) provide
a route to the exact calculation of the stationary distribution.
Indeed, the imaginary-time evolution has been independently
derived by Moix et al. [56] as an exact description of an
open system in interactive equilibrium with its environment.
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This formulation of the equilibrium density matrix has been
used by Tanimura to develop hierarchical equations of motion
for fermionic systems [59] under the assumption that the
environment spectral density is Ohmic.

The ESLN represents a unification and generalization
of the differential equations derived by Stockburger [46]
and Moix et al. [56], resulting in additional and highly
nontrivial constraints on the correlations between the real-
and imaginary-time noises. The connection between these two
pieces of work was not previously apparent, but has emerged
naturally from the simultaneous generalization of the model
Hamiltonian and the initial total density matrix. This is the
ESLN’s principal advantage, and allows for a simpler and
more general closed-form description of the evolution of the
reduced density matrix, as compared to hierarchical equations
of motion [59]. We also note that our approach can easily be
generalized to several environments, e.g., for heat-transport
problems along similar lines to Ref. [21].

Extracting numerical results from the ESLN depends on
the feasibility of generating noises that satisfy the correlations
outlined in Sec. IV. Real-time noises of the same type
can already be efficiently calculated [46], and the outlook
for extending this to include the imaginary-time noise is
promising. Looking forward, a first application of the ESLN
is therefore likely to be a calculation of the time evolution of
the density matrix for a simple system coupled to a harmonic
bath, and the comparison between approximate partitioned and
exact partition-free methods.
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The class of problems that this model may be applied to
is rather broad. This includes a two-level spin boson system,
coupled to a bath with an arbitrary spectrum [46], or the heat
exchange between an arbitrary system and a bath with Ohmic
dissipation [45]. It is possible that this generalization may also
be applied to numerical schemes for anharmonic bath models
[60], and influence functional simulations of complex systems
[61].

To summarize, the influence functional formalism has been
used to generate two stochastic differential equations that
together describe the exact evolution of an open system that
begins in coupled equilibrium with its harmonic environment.
The results presented here are an extension to existing frame-
works for thermodynamic analysis in the quantum regime, as
well as offering a method for accessing the equilibrium states
of arbitrary dissipative systems.
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