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Limits on dynamically generated spin-orbit coupling:
Absence of l = 1 Pomeranchuk instabilities in metals

Egor I. Kiselev,1 Mathias S. Scheurer,1 Peter Wölfle,1,2 and Jörg Schmalian1,3
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An ordered state in the spin sector that breaks parity without breaking time-reversal symmetry, i.e., that can be
considered dynamically generated spin-orbit coupling, was proposed to explain puzzling observations in a range
of different systems. Here, we derive severe restrictions for such a state that follow from a Ward identity related to
spin conservation. It is shown that l = 1 spin-Pomeranchuk instabilities are not possible in nonrelativistic systems
since the response of spin-current fluctuations is entirely incoherent and nonsingular. This rules out relativistic
spin-orbit coupling as an emergent low-energy phenomenon. We illustrate the exotic physical properties of
the remaining higher-angular-momentum analogs of spin-orbit coupling and derive a geometric constraint for
spin-orbit vectors in lattice systems.
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I. INTRODUCTION

Fermi liquid (FL) theory [1–4] forms the intellectual
foundation of our understanding of quantum fluids such as
3He, fermionic atomic gases, and simple metals and numerous
strongly correlated systems. The inherent instability of the FL
state was analyzed early on by Pomeranchuk [5], who derived
the threshold values −(2l + 1) for the phenomenological
Landau parameters F

s,a
l beyond which newly ordered states

are expected to emerge. Here, l corresponds to the angular mo-
mentum channel under consideration, and s (a) refers to order
in the charge (spin) sector. These criteria were derived from
an analysis of the quasiparticle contribution to the energy of a
FL. Famous examples of Pomeranchuk instabilities are phase
separation for F s

0 → −1, ferromagnetism for Fa
0 → −1,

and charge and spin nematic order for F
s,a
2 → −5. Our main

interest here will be the behavior for Fa
1 → −3, which was

proposed by Wu and Zhang [6] and which would lead to a
state with order in the spin sector that breaks parity while
time-reversal symmetry remains intact. Such order has been
invoked to explain the behavior in systems as diverse as
chromium [7,8], Sr3Ru2O7 [9], the hidden order in URu2Si2
[10], and the physics in the vicinity of a ferromagnetic quantum
phase transition [11]. The associated dynamic generation of
spin-orbit coupling of [6] was analyzed in great detail in [12].
Even 3He was argued to be in the vicinity of a corresponding
instability [6].

In this paper, we demonstrate that l = 1 Pomeranchuk
instabilities in the spin channel are not possible. Specifically,
the divergence in the quasiparticle susceptibility is canceled by
a vanishing vertex that connects the response of quasiparticles
and bare fermions. As a consequence, the response of the
system is entirely incoherent, and the analysis of the energy
balance of [5] turns out to be incomplete. An identical result
is obtained within FL theory if the proper form of the spin
current in terms of the quasiparticle distribution function is
used. The origin of this peculiar behavior is that the spin
current, which is closely related to the instability, is itself
not a conserved quantity, yet it is the current of a conserved
density. This allows us to draw rigorous conclusions from

associated Ward identities that exclude second-order phase
transitions. At the level of the Hartree-Fock approximation,
this was found earlier in [13]. Our arguments imply that the
absence of a second-order instability for l = 1 is, in fact, exact.
Following an argument by Bloch (see [14,15]), we also show
that a first-order transition is not allowed either. While some
of those conclusions for Pomeranchuk instabilities could have
been drawn from the vast literature on the FL theory and
its microscopic foundations (see in particular the work by
Leggett in [16]), the ongoing discussion of this instability
in [6–12] seems to warrant a detailed analysis of this issue.
In addition, it is shown that relativistic spin-orbit coupling
cannot emerge due to spontaneous symmetry breaking of
the electron liquid at low energies. Spontaneously generated
spin-orbit interactions are expected only in higher-angular-
momentum channels with unconventional residual symmetry
groups exhibiting exotic physical behavior such as enhanced
anomalous Hall conductivities. Finally, the implications of our
findings for lattice systems are discussed.

II. POMERANCHUK INSTABILITY

The phenomenological formulation of FL theory is based
on the celebrated parametrization of the energy change due
to quasiparticle excitations [1,2] δEqp = ∑

kσ ε∗
kσ δn

qp
kσ , with

single-particle energy

ε∗
kσ = vF (|k| − kF ) + μ + 1

ρF

∑
k′,σ ′

F
σ,σ ′
k,k′ δn

qp
k′σ ′ , (1)

where μ, kF , vF = m
m∗ v

0
F , ρF = m∗

m
ρ0

F , and m∗/m denote,
respectively, the Fermi energy, momentum, velocity, the
density of states, and the mass renormalization. For the
interaction function we use the usual expansion for isotropic
Fermi surfaces in the absence of spin-orbit coupling, F

σ,σ ′
k,k′ =

F s
k,k′ + σσ ′Fa

k,k′ , F r (θ ) = ∑∞
l=0 F r

l Pl(cos θ ), with Legendre
polynomials Pl and cos θ = ek · ek′ . Here, r = s and r = a

for the symmetric (charge) and antisymmetric (spin) channels,
respectively. Pomeranchuk concluded that an instability with a
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FIG. 1. Distortion of the spin-up (green) and spin-down (blue)
Fermi surface for the l = 1 Pomeranchuk instability in the (a) charge
and (b) spin channels.

spontaneous deformation of the Fermi surface (see, e.g., Fig. 1)

kF → kF + δks
F,l(ϕkF

) + σδka
F,l(ϕkF

) (2)

occurs when F
s,a
l → −(2l + 1). Here, ϕkF

is the angle of the
Fermi wave vector relative to some arbitrarily chosen axis.
Specifically, the energy change due to quasiparticle excitations
was found to be [5]

δEqp = 1

ρ0
F

m

m∗
∑

l,r={s,a}

∣∣δnqp,r

l

∣∣2
(

1 + F r
l

2l + 1

)
+ O((δnqp)4).

(3)
Here, δn

qp,r

l is the change in the quasiparticle occupation in
momentum space caused by δkr

F,l(ϕkF
) and acts as an order

parameter of the new phase. If m/m∗ remains finite and the
coefficient of |δnqp,r

l |2 becomes negative, an instability to a
state with δn

qp,r

l �= 0 is energetically favored. This happens
once F r

l reaches the above threshold value. The response of
quasiparticles can also be characterized by the quasiparticle
susceptibility [6]

χr
qp,l = ρF

1 + F r
l

2l+1

. (4)

For l = 0 this corresponds to the well-known expressions for
the charge and spin susceptibilities for the symmetric (s)
and antisymmetric (a) channels, respectively. χr

qp,l diverges
as F r

l → −(2l + 1), which coincides with the Pomeranchuk
instability criterion.

Below we demonstrate that the leading-order expansion
of the full energy with respect to the electron momentum
distribution δnr

1 is rigorously given by

δEr
l=1 = 1

ρ0
F

∣∣δnr
1

∣∣2 + O
((

δnr
1

)4)
, (5)

ruling out the corresponding Pomeranchuk instability and
demonstrating that the analysis of the energy (3) of quasi-
particles is not sufficient. This is closely related to the fact that
the susceptibility of the system is not adequately expressed in
terms of its quasiparticle contribution in Eq. (4).

In the microscopic foundation of FL theory [17], one di-
vides the single-particle Green’s function Gk(ω) in a coherent
quasiparticle contribution and an incoherent background,

Gk(ω) = Z

ω + i0+ − ε∗
k

+ Ginc.
k (ω). (6)

Z is the spectral weight, and ε∗
k is the single-particle energy in

Eq. (1). A detailed analysis of the susceptibilities of a many-
body system was given by Leggett [16], who found

χr
l = (

γ r
l Z

)2
χr

qp,l + χr
inc,l . (7)

Here, χr
qp,l is the quasiparticle response of Eq. (4), and γ r

l

is the vertex that connects the response of quasiparticles and
bare fermions. Finally, χr

inc,l is the incoherent response of the
system, a contribution that is directly related to the incoherent
part Ginc.

k (ω) of the single-particle Green’s function (6). The
incoherent response of the system can now be expressed as

χr
inc,l = χ

r(ω)
l ≡ lim

ω→0
lim
q→0

χr
l (q,ω), (8)

taking into account that χr
qp,l vanishes in this limit.

Next, we discuss implications for susceptibilities that are
caused by conservation laws, i.e., associated with a Hermitian
operator � that commutes with the Hamiltonian H of the
system, [�,H ] = 0. An example is charge or particle-number
conservation (� = N ). In a nonrelativistic system with the
Hamiltonian

H =
∫

rα
ψ†

α(r)

(
−h̄2∇2

2m
− μ + U (r)

)
ψα(r)

+ 1

2

∫
rα,r ′β

ψ†
α(r)ψ†

β(r ′)V (r − r ′)ψβ(r ′)ψα(r), (9)

the conservation of the components of the total spin � = Sj

is another example. Here, we use ψα (ψ†
α) to represent the

annihilation (creation) of a bare fermion of spin α and apply
the convention

∫
rα · · · = ∫

ddr
∑

α · · · . Let us first focus on
the case without crystal potential U (r), which yields the bare
dispersion εk = h̄2k2

2m
− μ, and comment on the implications of

a finite crystal potential at the end.
We write � = ∫

ddrρφ(r) with density ρ
φ
q =

1
V

∑
k,αβ ψ

†
k+ q

2 α
φ

αβ

k ψk− q
2 β

in momentum space and form

factor φ
αβ

k . The charge density corresponds to φ
αβ

k = δαβ ,
and a spin density amounts to φ

αβ

k = σ
j

αβ , j = 1,2,3, with

Pauli matrices σ j . Let us assume that ρ
φ
q commutes with the

interacting (nonquadratic) part Hint of the Hamiltonian,[
ρφ

q ,Hint
] = 0. (10)

This is the case, e.g., for interactions of the form Hint =
f [{ρφ

q }], such as Hint = ∑
q Vqρ

φ
q ρ

φ
−q . Most importantly, this

also holds for both the spin and charge density in the case of
the nonrelativistic solid-state Hamiltonian (9) with electron-
electron Coulomb interaction. If Eq. (10) applies, we can
derive a Ward identity (see Appendix A) that implies

χρ(q = 0,ω �= 0) = 0 (11)

for the susceptibility χρ of the conserved density ρ
φ
q and

χ
(q)ij
J ≡ χ

ij

J (q → 0,0) = −
∑
k,γ δ

(
φ

γδ

k

)2 ∂nk

∂ki

∂εk

∂kj

(12)

for the susceptibility χJ of the current Jφ associated with ρ
φ
q .

In Eq. (12), nk denotes the momentum occupation, and the
limit q → 0 has to be performed along the ith direction after
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the limit ω → 0, which is indicated by the superscript (q).
Note that Eq. (12) is valid for an arbitrary dispersion εk and
not limited to Galilean-invariant systems. The fact that the
susceptibility of Eq. (12) is finite also excludes critical phases
that might exist without a finite order parameter.

The implication of Eq. (11) for susceptibilities of conserved
quantities is obvious and well established. Let the form factor
be φ

αβ

k = σ
j

αβ , j = 0,3. Then it follows from Eq. (11) that

χ
s,a
inc,0 = χ

s,a(ω)
0 = 0; that is, the entire response of the system

is coherent. The same Ward identity can also be used to show
that γ

s,a
0 = Z−1 and leads to the well-known relation χr

0 =
χr

qp,0 with quasiparticle susceptibility given in Eq. (4). This
means that the susceptibility of a conserved density is fully
determined by the quasiparticle response. Using the formalism
of [16], one can also determine the next order corrections in
q/ω,

χr
0 (q,ω) = q2

ω2

m

m∗

(
1 + F r

1

3

)
+ O

((
q

ω

)4)
. (13)

Let us next exploit the Ward identity (12) for the current. If
the Fermi energy is the largest energy scale, we can replace ∂εk

∂ki

by kF

m
cos ϕk in the current operator Jφ , showing that the charge

(φk = σ 0) and spin (φk = σ 3) current susceptibilities corre-
spond to l = 1 instabilities with r = s and r = a, respectively.
Analyzing Eq. (12) yields our key result, χ

s,a
1 = ρ0

F , which,
via Legendre transformation, leads to Eq. (5). A Pomeranchuk
instability in the l = 1 channel is therefore not possible.

If one further uses the continuity equation ω2

q2 χρ(q,ω) =
χJ (q,ω) − χJ (q,0), one can identify the vertex and incoherent
contribution for the spin-current susceptibility [16]

γ r
1 = Z−1 m

m∗

(
1 + 1

3
F r

1

)
,

χr
inc,1 = ρ0

F

[
1 − m

m∗

(
1 + 1

3
F r

1

)]
, (14)

where we used Eq. (13). Let us analyze Eq. (14) for the charge
and spin responses separately. For a Galilean-invariant system,
the charge current is itself a conserved quantity, and Eq. (11)
implies that χs

inc,1 = 0. Thus, we recover the celebrated result
m∗
m

= 1 + 1
3F s

1 . In addition, it follows that γ s
1 = Z−1 and

χs
1 = χs

qp,1 = ρ0
F . While no Pomeranchuk instability will take

place in the l = 1 charge channel, these results are fully
consistent with the analysis of [5] as the entire response in the
l = 1 charge channel of Galilean-invariant systems is coherent
and captured by quasiparticle excitations.

The situation is different for currents that are themselves
not conserved quantities, such as the spin current. If one
approaches the Pomeranchuk threshold value, the vertex γ a

1
vanishes, and there is no contribution of the susceptibility
due to quasiparticles. The divergence of the quasiparticle
contribution of the susceptibility is suppressed by the vanishing
vertex. As a consequence, the entire response becomes
incoherent, and the energetic analysis that led to Eq. (3) is
not applicable, leading to Eq. (5) instead.

It is interesting to note, however, that the correct result
for the physical spin current susceptibility may be obtained
within FL theory if the proper form of the spin current is used

(see Appendix B). In Appendix B we also derive the response
of the spin (charge) momentum current density to an external
field of l = 2 symmetry, which is again very different from the
l = 2 quasiparticle susceptibilities of Eq. (4), i.e., χ2 �= χqp,2.

The arguments given so far exclude critical behavior in
the l = 1 channel with diverging susceptibility. To exclude a
state with finite order parameter δnr

1 that might be reached via a
first-order transition, we first note that δna

1 (δns
1) is proportional

to the expectation value of Jφ with φ = σ 3 (φ = σ 0). We can
then apply the arguments of [14,15] to show that, given any
state with finite expectation value of Jφ , there is always a state
with lower energy. Consequently, there is also no first-order
transition to an l = 1 Pomeranchuk phase.

III. CONSTRAINTS ON SPONTANEOUS GENERATION
OF SPIN-ORBIT COUPLING

The results presented above yield strong restrictions on the
interaction-induced generation of spin-orbit coupling,

�H =
∫

k,αβ

ψ
†
kα g(k) · σ αβψkβ, g(k) = −g(−k), (15)

with order parameter g(k). Assume that the Hamiltonian [such
as the nonrelativistic Hamiltonian in Eq. (9) with U = 0] has
a symmetry group that is a direct product SO(d)L ⊗ SO(3)S
in orbital and spin space, with d = 3 (d = 2) for three-
dimensional (two-dimensional) systems. We can then expand
g(k) in terms of basis functions (spherical harmonics Yl,m for
d = 3 and e±ilϕk for d = 2) transforming under the irreducible
representations of SO(d)L. Noting that the basis functions
of l = 1 are superpositions of {kj }, we conclude that the
l = 1 channel can be discarded. Since l ⊗ 1 = (l + 1) ⊕ l ⊕
(l − 1), Eq. (15) cannot contain a term that is invariant under
SO(d)L+S , the set of simultaneous spin and orbital rotations
which is the point group of a system with relativistic spin-orbit
coupling. In this sense, relativistic spin-orbit coupling cannot
occur as an emergent low-energy phenomenon.

However, spin-orbit coupling in higher-angular-momentum
channels (l � 3) can be generated spontaneously, and if this
does occur, some rather exotic behavior follows, as we discuss
next. Focusing for simplicity on d = 2, the remaining possible
spin-orbit vectors are of the form

g(k) = g0( cos(lϕk), ± sin(lϕk),0)T, l = 3,5, . . . , (16)

with residual symmetry group SO(2)L3/l±S3 generated by the
combination L3/l ± S3 of the out-of-plane components L3 and
S3 of the orbital and spin angular momentum operators. For
the upper (lower) sign, Eq. (16) can be seen as generalizations
of the Rashba (Dresselhaus) spin-orbit term with g winding
w = l (w = −l) times on the Fermi surface. The generalized
Dresselhaus term with l = 3 is illustrated in Fig. 2(a).

The unconventional form (16) of the spin-orbit coupling has
interesting physical consequences: The Berry curvature (finite
in the presence of a Zeeman term

∑
k ψ

†
khσ3ψk) is enhanced

by a factor of l compared to the usual Rashba-Dresselhaus
scenario which affects many electronic properties [18]. For
example, the anomalous Hall conductivity σxy [19], relating
an applied electric field to a perpendicular electric current for
h �= 0, is enhanced by a factor of l, σxy = lσxy |l=1. To illustrate
another consequence of a spin-orbit vector of the form (16), let
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FIG. 2. Two examples of complex trajectories z(t) that are
allowed by Eq. (17) are shown in (b) and (d), with corresponding
spin textures (for η = +1) given in (a) and (c), respectively. In the
limit of a spherical Fermi surface, the texture of (a) coincides with
the l = 3 Dresselhaus coupling in Eq. (16).

us assume that, in analogy to the proposal of [20], the system
shows superconductivity in the s-wave channel. Describing
the latter on the mean-field level by �

2

∑
k ψ

†
k↑ψ

†
−k↓ + H.c.

and focusing on the relevant regime [20] where the chemical
potential lies in the Zeeman-induced gap at k = 0, we follow
[21] and project the theory onto the lower, effectively spinless,
band. We find that this low-energy model exhibits (k1 ∓ ik2)l-
wave pairing. Recalling that l � 3, this not only corresponds
to very exotic pairing but also leads to a topological class-D
invariant ν = l and thus l chiral Majorana modes at the edge
of the system.

IV. LATTICE EFFECTS

Finally, let us discuss the modifications in the presence of
a lattice, i.e., when the periodic potential U (r) in Eq. (9) is
finite. Since this additional term again commutes with the
spin and charge densities, we can still exclude all phases
with an order parameter of the form Ojj ′ = ∑

k ψ
†
kσ

jkj ′ψk,
j = 0,1,2,3, j ′ = 1, . . . ,d. Note that this holds even when
ions are taken into account as dynamical degrees of freedom
since all interactions are functions of the electron and ion
density alone. The main difference is that we cannot rule out
any of the irreducible representations of the lattice point group
Gp since kj and kjf (ϕk) transform identically under Gp for
any function f that is invariant under Gp. Nonetheless, our
results still lead to significant restrictions. To see this, let
us first introduce fermionic operators cnq , with band index
n and crystal momentum q, diagonalizing the noninteracting
part H0 of the Hamiltonian with resulting band structure
Enq . Assuming that only one band n = n0 is relevant, it
holds that Ojj ′ = ∑

q c
†
n0qσ

jvj ′ (q)cn0q , where the summation
is restricted to the first Brillouin zone and vj (q) ≡ ∂qj

En0q .

To proceed, we focus on d = 2 and treat the interaction-
induced spin-orbit coupling on the mean-field level, i.e., add∑

q c
†
n0q g(q) · σcn0q , with g(q) = (R1(q),ηR2(q),0)T , to the

Hamiltonian where R1 (R2) transforms as x (y) under Gp and
η = ±1. Evaluating the constraint 〈Ojj ′ 〉 = 0 in the regime
where the Fermi energy is the largest relevant energy scale of
the system, we obtain the equivalent condition∫ ϕir(Gp)

0
dϕ w(ϕ)|R(ϕ)| eiα(ϕ) = 0, (17)

where ϕ is the polar angle parameterizing the Fermi surface
[restricted to the irreducible part of the Brillouin zone,
0 < ϕ < ϕir(Gp)], w(ϕ) = k2

F (ϕ)/|n̂F (ϕ)kF (ϕ)| is a Fermi
surface weight function, depending on the Fermi momentum
kF and the Fermi surface normal n̂F , and α(ϕ) denotes
the angle between R(ϕ) and n̂F (ϕ) [see Fig. 2(a)]. Upon
defining z(t) := ∫ t

0 dϕ w(ϕ)|R(ϕ)| eiα(ϕ), we see that any spon-
taneously generated spin-orbit texture must lead to a closed
trajectory {z(t)|0 < t < ϕir(Gp)}. This restriction is illustrated
in Figs. 2(b)–2(d) for the point group Gp = C4, where
ϕir = π

2 and the boundary condition α(0) = α(ϕir) mod 2π is
dictated by rotational symmetry. Most importantly, we see in
Figs. 2(c) and 2(d), that, as opposed to the continuum limit
Gp = SO(2)L, spin-orbit vectors with net winding w = ±1
are possible, albeit with much more complex structure than
the conventional Rashba or Dresselhaus spin-orbit coupling as
dictated by Eq. (17).

V. CONCLUSION

In summary, we have shown that neither a charge nor
a spin Pomeranchuk instability with l = 1 can occur in a
nonrelativistic metallic solid-state system. The divergence
of the quasiparticle susceptibility in the l = 1 spin channel
and even the complete quasiparticle contribution are, in fact,
removed by the vanishing of the vertex coupling quasiparticles
and real electrons. The actual response may be calculated
exactly and is found to be completely nonsingular. The
identical result follows within FL theory if care is taken that the
quasiparticle spin current receives a correction term induced
by the quasiparticle energy change. Our findings imply that
relativistic spin-orbit coupling with residual symmetry group
SO(3)L+S cannot be spontaneously generated. Furthermore,
any realistic lattice model involving spontaneously generated
spin-orbit vectors g(q) = (R1(q),±R2(q),0)T must satisfy the
severe constraint in Eq. (17) which is illustrated geometrically
in Fig. 2.
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APPENDIX A: WARD IDENTITY AND ITS
RELATION TO SUSCEPTIBILITIES

In this Appendix, we discuss how the Ward identity leading
to Eqs. (11) and (12) of the main text is derived.

We first note that if Eq. (10) holds, the dynamics of the
density will be governed by the noninteracting part H0 of
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the Hamiltonian, ∂tρ
φ
q = i[H0,ρ

φ
q ], and leads to a continuity

equation with current Jφ = ∑
kαβ

∂εk
∂k ψ

†
kαφ

αβ

k ψkβ . In order to
determine the associated susceptibilities χρ and χJ , we analyze
the correlator

L
αβγ δ

k,k′,q(τ,τ ′)

= 〈
Tτ ψ

†
k+ q

2 α
(τ )ψk− q

2 β
(τ )ψ†

k′− q
2 γ

(0)ψk′+ q
2 δ

(τ ′)
〉
, (A1)

where τ denotes imaginary time and Tτ is the time-ordering
operator. Following [22], one obtains from the Heisenberg
equation of motion of ρ

φ
q the Ward identity for L

αβγ δ

k,k′,q(τ,τ ′).
After Fourier transformation to frequencies, it reads∑

k,αβ

[
i� − (

εk+ q
2
− εk− q

2

)]
φ

αβ

k L
αβγ δ

k,k′,q(i�,i�′)

= φ
γδ

k′
[
Gk′+ q

2 δ(i�′) − Gk′− q
2 γ (i�′ + i�)

]
, (A2)

where Gk(i�) is the exact single-particle Green’s function on
the imaginary axis. Its retarded analytic continuation has been
introduced in Eq. (6).

The Ward identity (A2) allows us to draw conclusions for
the two susceptibilities

χρ(q,i�) = T
∑

k,k′,�′

∑
αβγ δ

φ
αβ

k φ
γδ

k′ L
αβγ δ

k,k′,q(i�,i�′), (A3a)

χ
ij

J (q,i�) = T
∑

k,k′,�′

∑
αβγ δ

φ
αβ

k

∂εk

∂ki

φ
γ δ

k′
∂εk′

∂k′
j

L
αβγ δ

k,k′,q(i�,i�′).

(A3b)

Multiplying both sides of Eq. (A2) by φ
γδ

k′ and φ
γδ

k′
∂εk′
∂k′

j

,

summation over k′, �′ and γ , δ readily leads (after analytic
continuation i� → ω + i0+) to Eqs. (11) and (12), respec-
tively.

APPENDIX B: RESPONSE FUNCTIONS
WITHIN FL THEORY

In this Appendix, we first show that the exact result
for the spin-current susceptibility resulting from the Ward
identity (A2) can alternatively be obtained within FL theory
and then apply this approach to the l = 2 spin and charge
channels.

1. Spin-current susceptibility

To obtain the correct form for the spin current, we use
the fact that the distribution function nkσ (r,t) obeys the
Landau-Boltzmann equation. Linearized in the external field
and Fourier transformed, δnkσ (r,t) ≡ nkσ (r,t) − n0

kσ (r,t) =∑
q,ω δnkσ (q,ω)eiqr−iωt , the latter reads

(ω − q · vk)δnkσ + q · vk
∂n0

k

∂εk
δεkσ = δI, (B1)

where δεkσ =δεext
kσ +ρ−1

F

∑
k′,σ ′ F

σ,σ ′
k,k′ δnk′σ ′ and vk = ∇kεk =

k/m∗ is the quasiparticle velocity, δI is the collision integral,
and n0

k is the equilibrium (Fermi) distribution function.
The applied external field leads to a quasiparticle energy
contribution δεext

kσ . In the case of interest to us (spin-current

response) δεext
kσ = − 1

m
σ k · A, where σ A is a spin-dependent

vector potential.
The spin conservation law ωδnS − q · jS = 0 follows by

multiplying Eq. (B1) by σ and summing over k,σ , where the
collision integral drops out on account of the spin conservation
in two-particle collision processes. The spin density δnS and
the spin current density are defined as

δnS =
∑
k,σ

σ δnkσ ,

jS =
∑
k,σ

σvk

⎡
⎣δnkσ − ∂n0

k

∂εk
ρ−1

F

∑
k′,σ ′

F
σ,σ ′
k,k′ δnk′σ ′

⎤
⎦. (B2)

We observe that the spin current consists of two contributions:
a “direct” term and a “backflow” term. Using the usual
expansion of the Landau interaction function F

σ,σ ′
k,k′ (given in

the main text) and assuming δnkσ ∝ σ k · A, we have

∑
k′,σ ′

F
σ,σ ′
k,k′ δnk′σ ′ � Fa

1

(
m∗

kF

)2

σvk

∑
k′,σ ′

σ ′vk′δnk′σ ′ . (B3)

In the limit of ω,q → 0, it holds that

δnkσ = δ

[
1

exp β
(
εkσ + εext

kσ

) + 1

]

=
(

δεkσ − 1

m
σ k · A

)
∂n0

k

∂εk
, (B4)

with the solution

δnkσ = −∂n0
k

∂εk

1

m
σ (k · A)

1

1 + Fa
1 /3

. (B5)

Substituting into expression (B2) for the spin-current density,
we find

jS = 1

1 + Fa
1 /3

∑
k,σ

σ 2vk
k · A
m

(
−∂n0

k

∂εk

)[
1 + Fa

1

/
3
]

= 1

3

k2
F

m2

m

m∗ ρF A = n

m
A, (B6)

in agreement with the microscopic result following from the
Ward identity.

2. The case with l = 2

The phenomenological derivation using the kinetic equa-
tion may be extended to higher-angular-momentum channels
by employing some additional assumptions. We consider the
case with l = 2. To begin with the spin channel, the change
in the quasiparticle distribution function caused by an external
field in the spin channel of l = 2 symmetry,

δεext
kσ = − 1

m
σkαkβ δDαβ, α �= β, (B7)

is given by

δnkσ = −∂n0
k

∂εk

1

m
σkαkβ δDαβ

1

1 + Fa
2

/
5
. (B8)
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The quasiparticle distribution is not an observable quantity.
A possible observable is the momentum (charge or spin)
current density. Although the (charge or spin) current is not
a conserved quantity, we may still derive an expression for it
from the kinetic equation (B1),

ω jS =
∑
k,σ

σvk

⎡
⎣ωδnkσ − ∂n0

k

∂εk
ρ−1

F

∑
k′,σ ′

F
σ,σ ′
k,k′ ωδnk′σ ′

⎤
⎦

=
∑
k,σ

σvk

⎡
⎣q · vkδn

′
kσ + δIkσ − ∂n0

k

∂εk
ρ−1

F

×
∑
k′,σ ′

F
σ,σ ′
k,k′ (q · vk′δn′

k′σ ′ + δIk′σ ′)

⎤
⎦, (B9)

where we defined δn′
kσ = δnkσ − ∂n0

k
∂εk

δεkσ . The equation
describes the change of the local current density by flow out
of or into the volume element in terms of the divergence of
the momentum spin current density �αβ and by relaxation
processes,

ωjS,α =
∑

β

�αβqβ − i�αjS,α, (B10)

where the momentum spin current tensor is defined by

�αβ =
∑
k,σ

σvkα

⎛
⎝vkβδn′

kσ − ∂n0
k

∂εk
ρ−1

F

∑
k′,σ ′

F
σ,σ ′
k,k′ vk′βδn′

k′σ ′

⎞
⎠.

(B11)

A possible instability of the system with respect to a defor-
mation of the Fermi surface of the d-wave type, as expressed
by the external field δεext

kσ defined above, should show up as a
divergence of the susceptibility,

χa
l=2 = δ�αβ

δDαβ

=
∑
k,σ

σvkα

⎛
⎝vkβ

δn′
kσ

δDαβ

− ∂n0
k

∂εk
ρ−1

F

∑
k′,σ ′

F
σ,σ ′
k,k′ vk′β

δn′
k′σ ′

δDαβ

⎞
⎠.

(B12)

We may calculate χa
l=2 by substituting

δn′
kσ = −∂n0

k

∂εk

1

m
σkαkβ δDαβ, (B13)

where the factor 1/(1 + Fa
2 /5) present in δnkσ has dropped

out. The resulting expression

χa
l=2 = 1

5

kF

m∗
n

m

(
1 + Fa

1

/
3
)

(B14)

does not diverge when 1 + Fa
2 /5 → 0 and is actually in-

dependent of Fa
2 . The susceptibility does, however, diverge

when m∗ = 1 + F s
1 /3 → 0 or vanishes at 1 + Fa

1 /3 = 0, both
signaling an instability of the system.

The analogous derivation for the l = 2 charge susceptibility
gives

χs
l=2 = 1

5

kF

m

n

m
. (B15)
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