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The theory of spin drift and diffusion in two-dimensional electron gases is developed in terms of a random walk
model incorporating Rashba, linear and cubic Dresselhaus, and intersubband spin-orbit couplings. The additional
subband degree of freedom introduces new characteristics to the persistent spin helix (PSH) dynamics. As has
been described before, for negligible intersubband scattering rates, the sum of the magnetization of independent
subbands leads to a checkerboard pattern of crossed PSHs with long spin lifetime. For strong intersubband
scattering we model the fast subband dynamics as a new random variable, yielding a dynamics set by averaged
spin-orbit couplings of both subbands. In this case the crossed PSH becomes isotropic, rendering circular (Bessel)
patterns with short spin lifetime. Additionally, a finite drift velocity breaks the symmetry between parallel and
transverse directions, distorting and dragging the patterns. We find that the maximum spin lifetime shifts away
from the PSH regime with increasing drift velocity. We present approximate analytical solutions for these cases
and define their domain of validity. Effects of magnetic fields and initial package broadening are also discussed.
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I. INTRODUCTION

Brownian motion [1,2] provides an elegant description of
diffusion processes. A simplified model can be elaborated as
a trajectory that consists of successive random steps, where
the step size and direction vary according to a given statistical
distribution. The extension to spin drift and diffusion [3] of
such a random walk model is a powerful tool to describe the
spin dynamics in solid state systems. Spin drift and diffusion
can also be described in terms of the quasiclassical kinetic
equation [4–7] and Monte Carlo simulations [8,9].

Tuning the spin-orbit couplings (SOCs) in a two-
dimensional electron gas (2DEG) due to structural (Rashba)
and bulk (Dresselhaus) inversion asymmetry is an intensely
studied method for the coherent control of spin dynamics,
which is the motivation [10] and one of the central goals
of spintronics research [11–14]. Since the initial proposal
of the ballistic spin transistor [10], generalizations have
been developed to make it robust against spin-independent
scattering [8,15–17], in order to preserve the spin at a certain
orientation.

Persistent spin helix (PSH) states were shown to exhibit
long spin lifetimes even in the presence of cubic Dresselhaus
SOC [9,18–22]. The PSH was first experimentally observed
via transient spin-grating spectroscopy [19,23]. Time-resolved
Kerr rotation experiments successfully mapped the diffuse
dynamics of optically pumped spin packets [9,24–27] in
the PSH regime. Lateral confinement was shown [25,28]
to further suppress spin decay by restricting the diffusion
to one dimension. The Rashba SOC can be controlled via
gate voltages [29,30] to achieve or fine-tune the PSH regime
[31,32]. Signatures of the PSH regime and measurements
of the SOC were also investigated in weak-localization
measurements [33] and Raman scattering [34].

The effects of a drift field [3,5] on the dynamics of the
PSH states were recently observed [26], allowing a direct
measurement of the cubic Dresselhaus coupling β3. More
recently, for two-subband systems, it was shown [35] that a

crossed-PSH regime (Rashba SOC with opposite sign in each
subband) leads to nontrivial spin patterns, which may lead to
a topological Hall effect [36].

In this paper we extend the random walk model for spin
drift and diffusion [3] to incorporate effects of an external
magnetic field B and two subbands, including the intersubband
spin-orbit couplings [17,35,37–41] (� and η), as well as the
usual intrasubband Rashba (α) and linear (β1) and cubic
(β3) Dresselhaus terms for [001]-oriented 2DEG in zinc-
blende semiconductors (e.g., GaAs). We identify two possible
scenarios regarding the intersubband scattering (ISS) rate. For
weak ISS, the subbands are effectively uncoupled, yielding
independent ensembles. The precession pattern is given by
an incoherent sum of the magnetization of the individual
subbands, which shows a checkerboard pattern with long
spin lifetime in the crossed-PSH regime, in agreement with
Ref. [35]. On the other hand, for strong ISS, the resulting
dynamics is dominated by subband-averaged SOCs, which
will be driven out of the PSH regimes by the fast subband
dynamics, yielding a circular (Bessel) pattern with short spin
lifetime.

Before discussing the two-subband systems, we first revisit
the single-subband random walk model [3] to investigate
the effects of magnetic fields, drift velocity, and the initial
broadening of optically pumped spin packets. We show that
a finite in-plane drift field (e.g., along y‖[110]) leads to
distinct precession patterns and relaxation rates for the PSH
regimes α = ±(β1 − β3), which we label as PSH+ and PSH−,
respectively. Our PSH+ solution matches previous discussions
in the literature [3,4,18,19,26]. More interestingly, for the
PSH− regime, the drift velocity shifts the maximum spin
lifetime away from the precise PSH tuning. The resulting
precession pattern is also strongly affected by the initial
broadening of the spin packet. We derive analytical solutions
for the narrow and wide packet limits and compare with
numerical simulations. Additionally, we show that a magnetic
field combined with a finite drift velocity adds corrections to
both the precession frequency and the spin pattern wavelength.
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This paper is organized as follows. In Sec. II we introduce
the random walk model to establish the notation and identify
its main aspects and limitations. Next, in Sec. III, we discuss
in detail the diffusive dynamics for the single-subband case.
We present analytical approximate solutions valid for a wide
range of parameters near the PSH regimes. These are compared
with exact numerical solutions. Here we also discuss the
expected effects of finite magnetic fields. The two-subband
case is discussed in Sec. IV. We consider a two-subband
2DEG with intraband Rashba and Dresselhaus SOCs, as well
as intersubband SOC. We close the paper with general remarks
and the conclusions.

II. RANDOM WALK FOR SPIN DIFFUSION

The random walk [1–3] (RW) is characterized by the
random motion of a particle, which here is an electron that
scatters via different processes (e.g., impurity sites, defects,
electron-electron scattering, phonons). In between scattering
events the electron ballistically travels a distance �r = vτr ,
where both the velocity v and the scattering time τr are random
variables. Here, v = vF θ̂ + vd , where θ̂ is a uniformly random
direction (along the xy plane), vF is the Fermi velocity, and
vd = τeE/m is the drift velocity due to the electric field E.
Since the scattering events are independent, the scattering time
τr is expected to obey a Poissonian distribution, such that
〈τr〉 = τ and 〈τ 2

r 〉 = 2τ 2.
Throughout the ballistic motion, the electron spin precesses

due to external magnetic fields or internal velocity-dependent
spin-orbit fields. The average scattering time τ is considered
to be short compared with the spin precession period, which
allows us to describe below the ballistic spin evolution
perturbatively. Considering only nonmagnetic scattering, the
spin is preserved at each collision, but its precession direction
changes due to the SOC. This description leads to a model
that is consistent with the Dyakonov-Perel dynamics, which is
adequate for typical semiconductors, e.g., GaAs, where this is
the dominant mechanism for spin decay.

Let us start with a discrete time dynamics labeled by the
step index n. The position of the electron at the time step
n + 1 is then rn+1 = rn + vnτn. The velocity vn and the time
interval τn depend on the step n as they are randomized at
each collision. During τn the motion is ballistic and the spin
evolution is given as

∂

∂t
s = � × s. (1)

Typically, the precession term � is given by external magnetic
fields and the SOCs. But for now let us keep it arbitrary, with
the only constraint that the equation above is linear in s. An
approximate solution for |
nτn| � 1 is obtained iterating the
equation above up to second order, yielding

sn+1 ≈ sn + τn�n × sn + τ 2
n

2
�n × (�n × sn). (2)

Here �n ≡ �(vn) varies in each time step because the SOC
depends on vn.

For an ensemble of spins, the magnetization profile mn+1(r)
at time step n + 1 can be written in terms of a joint probability
Pn+1(r; s) of finding an electron at time step n + 1 at position
r having spin s,

mn+1(r) =
∫

sPn+1(r; s)d�, (3)

where the integral runs over the Bloch sphere. Since the
scattering process is random, the joint probability can be
written as the average result of all possible paths from n to
n + 1 that lead to an electron at r with spin s,

Pn+1(r; s) = 〈Pn(r − vnτn; s − �sn)〉, (4)

where �sn = sn+1 − sn, and 〈· · · 〉 denotes the average over
the momentum direction θ̂ and the scattering time τn.

To recover a differential equation for m(r,t), one expands
the average above around 〈Pn(r; s)〉 up to second order in vnτn

and zero order in �sn. Combining all expressions above and
converting the discrete time back to the continuum, we get

∂

∂t
m(r,t) = (�dd + �pr )m(r,t),

�dd = −vd · ∇ + τ∇2
v ,

�pr =

⎛
⎜⎝

−τ
〈

2

y

〉
τ 〈
x
y〉 
y

τ 〈
x
y〉 −τ
〈

2

x

〉 −
x

−
y 
x −τ
〈

2

x

〉 − τ
〈

2

y

〉
⎞
⎟⎠,

(5)

where the diagonal term �dd drives the drift and diffusion
process, while the matrix �pr dictates the spin precession and
relaxation. The new terms above read

∇2
v = 〈

v2
x

〉
∂2
x + 〈

v2
y

〉
∂2
y , (6)


x = 〈
x〉 − 2τ [〈vx
x〉∂x + 〈vy
x〉∂y], (7)


y = 〈
y〉 − 2τ [〈vx
y〉∂x + 〈vy
y〉∂y], (8)

where we have assumed 
z = 0 for simplicity. This is the
case in a [001]-oriented 2DEG, where Rashba and Dresselhaus
SOC contributions are in-plane. The extra terms for a finite 
z

are shown in Appendix A.
The resulting Eq. (5) differs from those of Ref. [3] as we

consider here the Poissonian distribution of the scattering time,
such that 〈τn〉 = τ and 〈τ 2

n 〉 = 2τ . Moreover, we keep Eq. (5)
in a general form that will allow us to include the external
magnetic field and consider two subbands.

A. Numerical implementation and q space

The averages that define Eq. (5) are simple expressions of
the system parameters (see next section and the Appendices).
Therefore, the only numerical task remaining is to properly
solve the initial value problem. Applying a spatial Fourier
transform (r → q), the derivatives become ∂x/y → −iqx/y ,
and the solution in q space is simply

m̃(q,t) = e�̃t m̃(q,0), (9)

where m̃(q,0) is the Fourier transform of the initial packet,
and �̃ is the Fourier transform of the matrices �dd and
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�pr in Eq. (5). Namely, �̃ is obtained with the replace-
ments −vd · ∇ → ivd · q,∇2

v → ∇̃2
v = −(〈v2

x〉q2
x + 〈v2

y〉q2
y ),

and � → �̃ = 〈�〉 + 2iτ 〈(v · q)�〉. Hereafter we use the
symbol ∼ to refer to quantities in q space.

The matrix exponential e�̃t can be easily calculated in
terms of its eigenvalues and eigenvectors. Therefore, the only
relevant numerical [42] task is to perform the two-dimensional
inverse Fourier transform (q → r) at different times t to obtain
m(r,t). Since no extra approximations are involved, we shall
consider the numerical evolution as exact solutions of Eq. (5).

B. Initial broadening

In optical pump-probe experiments, the initial magnetiza-
tion packet is set by the laser spot, which here is characterized
by the initial broadening �0. Therefore, in general we shall
consider isotropic Gaussian packets polarized along z, i.e.,
m(r,0) ∝ e− 1

2 (r/�0)2
ẑ, as the initial condition for Eq. (5).

For analytical solutions, we also use initial delta packets,
m(r,0) = δ(r)ẑ, which corresponds to the limit �0 → 0.

Intuitively, one would expect that the δ-packet solution
could be used to obtain the dynamics of any other initial packet
via convolution. However, for the PSH− regime, we derive
two different analytical but approximate solutions of Eq. (5)
by neglecting distinct terms in �pr . While one approximation
is compatible with a narrow packet, the other is appropriate
for broad packets. Consequently, since we do not have a
general exact solution for a δ packet, one cannot convolve
the approximate δ-packet solution to broad packets.

III. SINGLE SUBBAND

The theoretical analysis of the drift field on the diffuse
spin dynamics were first presented in Refs. [3,5] for a single-
subband system, and recently observed experimentally [26].
In this section we explore and extend these results using the
RW model. We show new analytical solutions for the PSH−

regime (α ≈ −β1 + β3), and include the effects of external
magnetic fields. Additionally, we compare the solutions for
spatially wide and narrow initial packets. Away from these
limits, we solve the RW model numerically for comparison.

The Hamiltonian for the single-subband 2DEG is H = ε1 +
h̄2

2m
k2 + h̄

2σ · �, where the SOC is given by the Rashba (α) and
linear and cubic Dresselhaus (β1 and β3) terms as

� = 2

h̄

⎛
⎜⎜⎜⎜⎜⎝

(+α + β1)ky + 2β3
k2
x − k2

y

k2
ky

(−α + β1)kx − 2β3
k2
x − k2

y

k2
kx

0

⎞
⎟⎟⎟⎟⎟⎠. (10)

Here x‖[11̄0] and y‖[110]. Treating the SOC as a weak
perturbation to the band structure, the velocity is simply
v(k) = h̄k/m. Therefore the averages 〈· · · 〉 over the random
motion direction θ̂ shall be read as an average of k over the
Fermi circle |k| = kF . Considering the drift velocity vd = vd ŷ

we find 〈
y〉 = 〈
x
y〉 = 〈vx
x〉 = 〈vy
y〉 = 0. The other
averages remain finite and are shown in Appendix B 1. Within
this section we will use the parameters shown in Table I.

TABLE I. Parameters considered for the single-subband discus-
sion. The value of the Rashba coefficient α varies from the PSH−

to the PSH+ regime in the range −(β1 − β3) � α � (β1 − β3). The
cubic Dresselhaus term near the Fermi level is β3 ≈ γπns/2, and

γ = 11 eV Å
3

is the bulk Dresselhaus coefficient.

Parameter Value Description

m 0.067m0 Effective mass (GaAs)
−(β1 − β3) � α � (β1 − β3) Rashba SOC

β1 3.7 meV Å Linear Dresselhaus SOC
β3 0.7 meV Å Cubic Dresselhaus SOC
ns 4 × 1011 cm−2 2DEG density
τ 1 ps Average scattering time

To go forward and find analytical solutions of Eq. (5)
we must make approximations. We will consider the PSH+

(α ≈ β1 − β3) and PSH− (α ≈ −β1 + β3) regimes. These
regimes are different because we keep the drift velocity fixed
along ŷ. Equivalently, for a fixed set of SOC coefficients one
could alternate between the PSH± regimes switching the drift
velocity direction[26] between x̂ and ŷ.

A. PSH+: α ≈ β1 − β3

To establish the approximations for the PSH+ regime, let
us compare the nondiagonal terms 
̃x and 
̃y in the Fourier
space of Eq. (5). The intensity of 
̃x = 〈
x〉 + 2iτqy〈vy
x〉
scales with (α + β1), while 
̃y = 2iτqx〈vx
y〉 scales with
(α − β1); see Appendix B 1. Since our initial packages are
always isotropic, the ranges of qx and qy are similar, which
allow us to approximate both |qx | and |qy | � 1/�0 to compare
the intensities of 
̃x and 
̃y . For α ≈ β1 − β3 and β3 � α +
β1, we have |
̃x | � |
̃y |.

We can split the matrix in Eq. (5) in two blocks: a
one-dimensional block composed of the mx(r,t) component
only, and a two-dimensional block composed of the remaining
components, my(r,t) and mz(r,t). These blocks are coupled
by 
̃y . If the difference between eigenvalues of these blocks
is large compared to their coupling, one can neglect 
̃y . The
approximate eigenvalues of the yz subspace are then

λ̃±
yz ≈ λ̃0 − τ

(〈

2

x

〉 +
〈

2

y

〉
2

)
± i 
̃x, (11)

where we have used |τ 〈
2
y〉| � |
̃x |, which follows from the

scaling of these quantities with (α ± β1). The eigenvalue of
the x subspace is λ̃x = λ̃0 − τ 〈
2

y〉. The common diagonal
term λ̃0 = ivdqy − τ ∇̃2

v dictates the drift and diffusion. In
terms of these eigenvalues, the condition to neglect the
coupling 
̃y reads |λ̃±

yz − λ̃x | � |
̃y |. This is satisfied near
the PSH+ regime, but fails near the PSH− regime. Therefore
we can always neglect 
̃y near the PSH+ regime, and the
precession is dominated by the lower block of the matrix in
Eq. (5), corresponding to the (my,mz) subspace. The numerical
solutions in Fig. 1 and Fig. 2 show a transition between these
two regimes near α = −0.7 meV Å.

The approximation 
̃y → 0 allows us to write the q-
space solution, Eq. (9), in simple terms and calculate the
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FIG. 1. Transition from PSH− to PSH+ as a function of α for an
initially narrow packet, mz(r,0) = δ(r). Each panel is for a different
value of α, which ranges from the (a) PSH− to (e) PSH+ regime. The
labels indicate the value of α in meV Å. These and the following
images are saturated for better visualization of the magnetization
patterns.

inverse Fourier transform to obtain the z component of the
magnetization profile, which reads

m+
z (r,t) = ρ(r,t)e−γpt cos(κyy + ωt), (12)

ρ(r,t) = 1

�x,t�y,t

e
− x2

2�2
x,t e

− (y−vd t)2

2�2
y,t , (13)

where the broadenings are �2
x,t = 2Dt, �2

y,t = 2(D + τv2
d )t

and the diffusion coefficient is D = τv2
F /2. The term ρ(r,t)

drives the drift and diffusion, and it is common to all following
solutions discussed hereafter. The wave vector κy , frequency
ω, and relaxation rate γp are defined by 
 averages (see
Appendix B 2). In terms of the SOC coefficients, up to leading
order in vd/vF , these are

κy ≈ 2m

h̄2

[
α + β1 − β3 − 8β3

v2
d

v2
F

]
, (14)

ω ≈ −2m

h̄2 vdβ3

(
1 − 6

v2
d

v2
F

)
, (15)

γp ≈ τm2

h̄4 v2
F

[
3β2

3+(α−β1+β3)2 − 4
v2

d

v2
F

(α − β1 − 9β3)β3

]
.

(16)

FIG. 2. (a) Wave number κy and (b) frequency ω extracted from
Fig. 1. For α < −0.7 meV Å the stripes vanish accompanied by
discontinuities in κy and ω. The PSH+ solutions given by Eq. (14)
and Eq. (15), shown as thick dashed lines, match well the numerical
data for α > 0.

FIG. 3. (a), (b) Decay time 1/γ as a function of α for different
vd (in nm/ps). The circles were extracted as exponential fits to the
numerical solutions in Fig. 1. The analytical solutions (solid lines)
match the numerical data for α < 0 using the PSH− 1/γn [Eq. (23)],
while for α > 0 it matches the PSH+ 1/γp [Eq. (16)]. (c), (d) Peak
position (α) and intensity (1/γ ) as a function of vd for the PSH±

peaks, respectively.

The κy, ω, γp, and D above match those of Refs. [26,43]
for small vd . In contrast, our relaxation rate γp and diffusion
constant D are twice those of Ref. [3] due to the Poissonian
distribution of the scattering time τr considered here.

The resulting pattern of m+
z (r,t) is shown in Fig. 1(e),

where we compare it with the numerical solutions beyond the
PSH± regimes. The stripes of oscillating spins constitute a
magnetization wave moving along y with velocity −ω/κy ≈
vdβ3/2β1, and an envelope profile ρ(r,t). Figure 2 shows that
the analytical solution above is valid over a wide range of α

beyond the PSH+ regime.
Figures 3(a) and 3(b) show the decay time 1/γp as a function

of α, comparing the analytical solution of Eq. (16) with the
numerical simulations for different vd . The precise agreement
validates the approximations above. With increasing vd , the
peak of maximum lifetime shifts to larger α and looses
intensity, as seen in Fig. 3(d). This effect is more pronounced
for the PSH− regime, which we discuss next.

B. PSH−: α ≈ −β1 + β3

While the PSH+ regime was already introduced in Ref. [3],
in this section we show that the PSH− regime presents novel
solutions for the random walk problem. Particularly, the spin
precession pattern in this regime is sensitive to the initial
package broadening, and the relaxation rate strongly depends
on the drift velocity.

For the PSH− regime, α ≈ −β1 + β3, we get now |
̃y | �
|
̃x |, due to their scaling with (α ± β1). This suggests a
splitting of the matrix in Eq. (5) into an xz block weakly
coupled to the x term by 
̃x . However, one can only
consider the coupling to be weak if the difference between the
eigenvalues of the blocks is much bigger than their coupling.
Noticing that 〈
2

x〉 � 〈
2
y〉, the eigenvalues of the uncoupled
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FIG. 4. Magnetization pattern at the PSH− regime for initially
wide packets for different initial broadenings �0, as indicated in each
panel in μm. Figure 1(a) corresponds to the �0 → 0 limit. The spin
flip only occurs for �0 � �C ≈ 2 μm. In panel (a), for �0 = 1 μm,
the magnetization fades away for t > 3000 ps, but does not flip, while
in panel (b) a node forms around t = 3000 ps. From panels (c) to (f)
the transition instant tc shifts towards smaller t with increasing �0.
Equation (27) defines tc ≈ 100 ps in the limit �0 → ∞. Black line
contours are guides to the eye.

blocks (
̃x = 0) are

λ̃y = λ̃0 − τ
〈

2

x

〉
, (17)

λ̃±
xz ≈ λ̃0 − τ

〈

2

y

〉 ± i 
̃y. (18)

Therefore, the decoupling condition becomes |λ̃y − λ̃±
xz| �

|
̃x |. As in the PSH+ regime, the range of qx and qy is about
|qx | = |qy | � 1/�0, which we use to estimate 
̃x and 
̃y . We
find two possible scenarios to satisfy the decoupling: (i) narrow
initial packages, �0 � �C , and (ii) wide initial packages,
�0 � �C . The critical initial broadening �C , around which
the transition occurs, is

�C ≈ 2〈vx
y〉〈

2

y

〉 ≈ h̄2

2mβ1

[
1 + β3

β1

]
. (19)

For the set of parameters used here we find �C ≈ 1.8 μm;
see Fig. 4. Next, we discuss the narrow (�0 � �C) and wide
(�0 � �C) initial packet cases separately.

1. Initially narrow packet: �0 � �C

For �0 � �C the precession is set by the xz block of Eq. (5),
since |
̃y | ∝ 1/�0 in λ̃±

xz becomes large. Within this subspace,
we can solve Eq. (5) analytically to find

m−
z (r,t) = ρ(r,t)e−γnt cos(κxx), (20)

where ρ(r,t) is the same drift-diffusion term from the PSH+

regime, γn is the relaxation rate, and the wave number κx =
〈vx
y〉/〈v2

x〉, which up to leading order in vd/vF reads

κx ≈ 2m

h̄2

[
−α + β1 − β3 + 2β3

v2
d

v2
F

]
. (21)

This magnetization profile is shown in Fig. 1(a) as a function
of y and time t for x = 0 and vd = 30 nm/ps. In accordance
to the equation above, there is no precession along y.

For typical parameters we find that, although small, the
coupling 
̃x ≈ 〈
x〉 ∝ vd has to be included to properly
describe γn for finite vd . We include this coupling into the
solution using second-order perturbation theory to correct the
eigenvalue λ̃±

xz → λ̃±
xz + δλ̃xz, where

δλ̃xz ≈ 1

2τ

〈
x〉2〈

2

y

〉 − 〈

2

x

〉 , (22)

and the resulting relaxation rate reads

γn ≈ τ

(〈

2

y

〉 +
〈

2

x

〉
2

− 〈vx
y〉2

〈v2
x〉

)
+ δλ̃xz, (23)

which strongly depends on the drift velocity as shown in
Figs. 3(a)–3(c). The resulting expression for γn in terms of
the SOCs is long (not shown). In contrast to the PSH+ regime,
for increasing vd the PSH− peak of maximum lifetime strongly
shifts away from α = −(β1 − β3).

2. Initially wide packet: �0 � �C

For �0 � �C we cannot split the matrix in Eq. (5) into
simpler blocks. Here, both 
̃x and 
̃y are relevant. However,
a qualitative description can be found in the limit �0 → ∞,
such that 
̃x → 〈
x〉 and 
̃y → 0. The precession dynamics
is given by the yz block. Although small, the only relevant
coupling remaining is 
̃x ≈ 〈
x〉 ∝ vd . Consequently, a small
yet finite drift velocity is required to observe this regime.

Within these approximations, it is easy to solve Eq. (5) in
Fourier space and return with the inverse transform to obtain

m−
z (r,t) = ρ(r,t)e−γwt

×
[

cosh(ξ t) − τ
〈

2

y

〉
2ξ

sinh(ξ t)

]
. (24)

Here the broadenings in ρ(r,t) are approximately constant,
�x,t = �y,t ≈ �0, due to the large initial broadening �0. The
relaxation rate γw and hyperbolic frequency ξ are shown in
terms of the 
 averages in Appendix B 3. For α ≈ −(β1 − β3)
and up to leading order in β3/β1 and vd/vF , γw and ξ coincide,

γw ≈ ξ ≈ m2

h̄4

[
4v2

F + 8
(
v2

d − v2
F

)β3

β1

]
τβ2

1 . (25)

Asymptotically for t → ∞, Eq. (24) becomes m−
z (r,t) ≈

ρ(r,t)e−(γw−ξ )t (1 − τ 〈
2
y 〉

2ξ
). The factor (1 − τ 〈
2

y 〉
2ξ

) < 0 implies
that the magnetization should flip at some instant, as we
discuss below. The total relaxation rate in this asymptotic limit
becomes

γw − ξ ≈ 2m2

h̄4

(
v2

F + 18v2
d

)
τβ2

3 + 1

2τ

(vdβ3)2

(vF β1)2
, (26)

which is of the same order as the relaxation rates γn and γp of
the narrow PSH− and the PSH+ regimes, respectively.

The magnetization [see Fig. 4(f)] will have a single nodal
line at a time t = tc set by the transcendental equation

tanh(ξ tc) = 2ξ

τ
〈

2

y

〉 ≈ 1 − h̄4

8m2τ 2

(vdβ3)2

(vF β1)4
, (27)
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where the approximate value is taken up to leading order
in vd/vF and β3/β1. For vd = 0 there is no nodal line,
i.e., tc → ∞.

For our set of parameters in Table I and vd = 30 nm/ps
we find tc ≈ 115 ps. However, the analytical solution above
is only valid in the limit �0 → ∞. More precisely, this limit
requires |
̃x | � |
̃y |, which yields

�0 � �W = 2τ 〈vx
y〉
〈
x〉 ≈ 2τ

v2
F β1

vdβ3
, (28)

with �W ≈ 30 μm. This is much wider than the typical laser
spot used in recent experiments, where �0 is ∼(sub)micron.
Nonetheless, the numerical solutions for �0 near the transition
from the narrow to the wide PSH− regimes are shown in Fig. 4.
The single nodal line is already visible for �0 = �C � 2 μm,
while its instant tc strongly depends on �0. For �0 > 30 μm
the numerical data matches tc = 115 ps (not shown).

C. Beyond the PSH regimes and general discussion

To guide our discussion, let us consider a one-subband
system similar to the sample discussed in Ref. [26]. The
relevant parameters are shown in Table I, for which we get the
Fermi velocity vF ≈ 274 nm/ps, and the diffusion constant
D ≈ 38 μm2/ps.

Starting with a δ packet, mz(r,0) = δ(r), the numerical drift
and diffusion pattern of mz(y,0) at x = 0 is shown in Fig. 1
for vd = 30 nm/ps and different values of α. The exact PSH+

occurs in panel (e), while the exact PSH− is shown in panel
(a). These match Eq. (12) and Eq. (20), respectively.

For α � −0.7 meV Å the stripes in the magnetization
pattern are clearly visible. We can track the node lines to
extract the wave number κy and frequency ω to compare with
the zeros of the cosine in Eq. (12). These are shown in Fig. 2.
In the experiment of Ref. [26] the authors measure κy and
ω for a fixed α near the PSH+ regime and vary the electric
field strength (or vd ). The numerical data in Fig. 2 show
that the PSH+ solutions remain valid for a wide range of α

around the exact PSH+ regime. Far from the PSH+ regime,
near α = −0.7 meV Å both κy and ω diverge as the stripes
vanish. In Fig. 2 we calculate κy and ω only for magnetization
maps that have enough nodal lines to establish a periodicity
(α > −0.7 meV Å), otherwise we set κy = ω = 0 (α < −0.7
meV Å).

The relaxation rate γ is minimum (1/γ is maximum) at the
PSH regimes, as shown in Fig. 3 for vd = 0. There we compare
γ extracted from the numerical solutions of Fig. 1 with the
analytical expressions of our PSH± approximate solutions,
Eq. (16) and Eq. (23). For any vd , the strength of the PSH+

and the PSH− peaks are similar. However, their position shifts
away from the PSH± conditions, i.e., α = ±(β1 − β3), with
increasing vd . This new feature is more pronounced for the
PSH− regime, and cannot be neglected if one desires to explore
this case experimentally.

The magnetization dynamics may strongly depend on the
initial broadening �0 of the packet, which is set by the laser
spot of the pump beam. For the PSH+ regime, a wide packet
solution can be extracted from the δ packet by convolution, as
was done in Ref. [26]. In contrast, for initially wide packets,
the dynamics of Eq. (24) may dominate in the PSH− regime.

Figure 4 shows the transition between the narrow and wide
PSH− regimes from the numerical solutions of Eq. (5).

In the narrow PSH− regime (�0 � �C) the spin precession
is static, given by cos(κxx) in Eq. (20). For x = 0, the
magnetization is constant and one only observes the drift
and diffusion process along y. For �C < �0 < �W , the
system is transitioning from the narrow to the wide regime.
Within this range we only have numerical solutions, which
qualitatively match the wide PSH− regime (�0 > �W ); i.e.,
the magnetization flips only once. As seen in Fig. 4 for �0

within the transition range, the nodal line moves to smaller
t with increasing �0. It matches the wide PSH− regime for
�0 > �W ∼ 30 μm (not shown).

The magnetization flip of the PSH− regime requires a finite
drift velocity; see Eq. (27). Here we always consider vd � vF ,
introducing the drift as a small shift of the Fermi circle. For
the wide PSH− regime, the drift velocity appears in 〈
x〉 ∝
vd (see Appendix B 3), and affects ξ = 1

2

√
τ 2〈
2

y〉 − 4〈
x〉2.
For large vd , the square root would become negative and ξ

purely imaginary. This indicates that for large vd , the wide
PSH− regime would show oscillations and stripes as in the
PSH+ regime. However, a large vd is not consistent with the
RW model. Nonetheless, we interpret the single nodal line of
the wide PSH− regime as the first node of these speculative
drift-induced oscillations.

D. External magnetic field

Consider the Zeeman term from an in-plane magnetic
field B = (Bx,By,0). It adds to the Hamiltonian as HZ =
1
2gμB B · σ , and complements the spin precession adding
�B = gμB B/h̄ to � in Eq. (10), i.e., � → � + �B . Here
g is the effective g factor and μB is the Bohr magneton.
Consequently, the magnetic field yields corrections to the 


averages in Eq. (5); see Appendix B 4. Particularly, a finite By

makes 〈
x
y〉 and 〈vy
y〉 finite, while the previous analytical
PSH solutions require them to be zero. Therefore we shall
focus on cases where only the Bx component is finite, i.e., an
in-plane magnetic field transverse to the drift velocity.

For B = Bxx̂, the corrected 
 averages are 〈
x〉 →
〈
x〉 + 〈�
x〉, 〈
2

x〉 → 〈
2
x〉 + 〈�
2

x〉, 〈vy
x〉 → 〈vy
x〉+
〈�vy
x〉, where the corrections are

〈�
x〉 = gμB

h̄
Bx, (29)

〈
�
2

x

〉 =
(

gμB

h̄
Bx

)2

+ 4m

h̄2

gμB

h̄
Bxvd (α + β1 − 2β3),

(30)

〈�vy
x〉 = vd

gμB

h̄
Bx. (31)

1. PSH+ and Bx

For gBx > 0, the 
-average corrections above will not
affect the approximations used to get the analytical PSH+

solution. But for gBx < 0, the corrections will reduce the
intensity of 
̃x , which may invalidate the condition |
̃x | �
|
̃y |. In general, our PSH+ solution will hold for positive gBx ,
and for small negative gBx that does not break the inequality.
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The corrected wave number κy → κy + κB and frequency
ω → ω + ωB are

κB = gμBBx

h̄

(
2vd

v2
F + 2v2

d

)
≈ gμBBx

h̄

(
2vd

v2
F

)
, (32)

ωB = gμBBx

h̄

(
v2

F

v2
F + 2v2

d

)
≈ gμBBx

h̄

(
1 − 2v2

d

v2
F

)
.

(33)

For vd � vF , only ω is affected by Bx : the Zeeman
frequency simply adds to the frequency of the cubic SOC. This
can be understood because in the PSH+ situation the effective
SOC magnetic field is mostly aligned with Bx . Therefore, Bx

leads to an additional tilt of the oscillation stripes, which has
been used in Ref. [9] to determine the SOC.

2. PSH− and Bx

In general, for a system near the PSH− regime, a strong
Bx will invalidate the approximations used to obtain analytical
solutions. However, a small Bx can be used to manipulate the
nodal line in the single magnetization flip of the wide PSH−

regime. The magnetic field adds a term to ξ → ξ + ξB , with

ξB ≈ − h̄2

8m2

β1 + 2β3

τv2
F β3

1

(gμBBx)2

+ h̄

2m

vdβ3

τv2
F β2

1

gμBBx. (34)

For vd = 0, the magnetic correction of ξ modifies the
transcendental equation for tc [Eq. (27)], yielding

tanh(ξ tc) ≈ 1 − h̄6

32m4τ 2

(gμBBx)2

v4
F β4

1

. (35)

Therefore a small Bx can play the role of the drift velocity and
induce a magnetization flip for the wide PSH− regime.

IV. TWO SUBBANDS

The inter- and intrasubband SOCs were extensively studied
in Refs. [35,37–41], including a proposal for a crossed per-
sistent spin helix [35] (cPSH) and an intrinsic mechanism for
edge spin accumulation [44,45]. In this section we investigate
this cPSH within the RW model. The cPSH occurs when
the subbands are set to opposite PSH regimes; e.g., the first
subband is on the PSH+, while the second is on the PSH−

regime. The magnetization profile of this crossed regime is
not yet explored experimentally.

Here we find two possible scenarios for the two-subband
RW model. In the first case, Sec. IV B, we consider the
intersubband scattering (ISS) to be weak, such that the
dynamics of the electrons of the first and second subband
are independent. The resulting magnetization is an incoherent
sum of the magnetization of each subband, and leads to a
checkerboard pattern similar to the cPSH of Ref. [35]. The
second scenario, Sec. IV C, corresponds to a regime of strong
ISS. The random scattering events allow the electrons to
quickly visit the Fermi circles of both subbands, allowing us
to consider the subbands as semiclassical random variables. In

TABLE II. Parameters for the two-subband system.

Parameter Value Description

m 0.067m0 Effective mass (GaAs)
ns 8 × 1011 cm−2 2DEG density
�12 = 2ε− 7 meV Subband energy splitting
(n1,n2) (5.0,3.0) × 1011 cm−2 Density per subband
β1,1 ≈ β1,2 3.7 meV Å Linear Dresselhaus SOC
(β3,1,β3,2) (0.86,0.52) meV Å Cubic Dresselhaus SOC

−5 � (α2 = −α1) � 5 meV Å Rashba SOC
η ±1 meV Å intersubband SOC
� ±1 meV Å intersubband SOC
τ 1 ps Average scattering time

this case each electron feels an average field that now includes
an average over the subbands.

Particularly, we will discuss situations where one subband
is near the PSH+ regime, while the other is near the PSH−. This
can occur in wide quantum wells, where the Hartree repulsion
creates effective triangular wells with opposite slopes at each
side of the heterostructure [45]. In Ref. [45] the symmetric and
antisymmetric wave functions are nearly degenerate, allowing
a rotation towards wave functions located on the left and
right triangular wells. Another possibility is to have a slightly
asymmetric well, breaking the degeneracy between left and
right states.

The random walk model for two subbands will, in general,
give finite values for all averages in Eq. (5). Consequently,
the approximations presented for the single-subband cases
will break. Moreover, the introduction of subband-dependent
SOC, as well as intersubband SOC, leads to a large number
of variables to analyze. Instead, for simplicity, the following
discussion uses the representative parameters of Table II.

A. Subband and spin precession vectors

The effective Hamiltonian [35] for a two-subband 2DEG
with SOC is H = H0 + HSOC , with

H0 =
(

h̄2k2

2m
+ ε+

)
− ε−λz, (36)

HSOC = h̄

2
σ · [�+ − λz�− + λx�12], (37)

where ε± = (ε2 ± ε1)/2 is defined in terms of the first (ν = 1)
and second (ν = 2) subband energies εν, σ = (σx,σy,σz) are
the spin operators, similarly λ = (λx,λy,λz) act on the subband
subspace, �± = (�2 ± �1)/2, and m is the effective mass.

The spin-orbit fields for each subband ν and the intersub-
band field are

�ν = 2

h̄

⎛
⎜⎜⎜⎜⎜⎜⎝

(+αν + β1,ν)ky + 2β3,ν

k2
x − k2

y

k2
ky

(−αν + β1,ν)kx − 2β3,ν

k2
x − k2

y

k2
kx

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (38)

�12 = 2

h̄

⎛
⎝+(η − �)ky

−(η + �)kx

0

⎞
⎠. (39)
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Here we consider the Rashba αν , linear β1,ν and cubic β3,ν

Dresselhaus contributions for each subband ν = {1,2}, and
the intersubband SOCs, η and �. In general we shall consider
�ν and �12 as perturbations, such that the energy dispersion
remains approximately parabolic near the Fermi level. The �

vector that defines the spin precession frequency for the RW
model in Eq. (5) is now � = �+ − λz�− + λx�12, which is
coupled to the subband operators λ.

If the subband energy difference �12 = ε2 − ε1 is large
compared to the HSOC correction, we can use Löwdin
perturbation theory to decouple the subbands. This is shown in
Appendix C. Consequently, at each subband the electron spin
feels an effective precession vector �eff

ν = �ν + �(3)
ν , where

the small corrections �(3)
ν are given by


(3)
ν,x = −h̄2

4�2
12

[
ν̄,x[(
12,x)2 − (
12,y)2]

+ 2 
ν̄,y 
12,x 
12,y], (40)


(3)
ν,y = −h̄2

4�2
12

[
ν̄,y[(
12,y)2 − (
12,x)2]

+ 2 
ν̄,x 
12,x 
12,y], (41)

where ν̄ refers to the complementary subband.

B. Weak intersubband scattering

The ISS might be weak for large subband splitting 2ε−
and low temperatures, such that ISS events that require
large momentum transfer are suppressed. In this regime,
sets of electrons initialized at different subbands constitute
independent ensembles with well defined 〈λ〉 = (0,0,±1).
Each ensemble follows the dynamics of a single subband, as
in Sec. III. The total magnetization is then an incoherent sum
of the magnetization mν(r,t) from each occupied subband,

m(r,t) =
∑

ν

mν(r,t). (42)

1. Crossed PSHs

The dynamics of each mν(r,t) depends on the parameters of
subband ν. A particularly interesting case is when one subband
is at the PSH+ regime and the other is on the PSH− regime.
This leads to the crossed-PSH (cPSH) regime, or persistent
skyrmion lattice (PSL), first discussed in Ref. [35].

Consider the parameters from Table II, where subband
ν = 1 is near the PSH+ regime with α1 ≈ β1,1 − β3,1, while
the other subband ν̄ = 2 is near the PSH− regime with
α2 ≈ −β1,2 + β3,2. The z components of the magnetizations
for each subband are

m1(r,t) = ρ(r,t)e−γy,1t cos(κy,1y + ω1t), (43)

m2(r,t) = ρ(r,t)e−γx,2t cos(κx,2x). (44)

The resulting magnetization will have oscillations along
x and y, yielding the checkerboard pattern of the cPSH; see
Fig. 5. For x = 0 the pattern on the yt map is approximately
given by [1 + cos(κy,1y + ω1t)], which renders the PSH+

stripes shifted to positive magnetization. This is a consequence

y
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FIG. 5. Magnetization patterns for two-subband crossed PSHs
in the weak-ISS regime. The first (second) subband is in the
PSH+ (PSH−) regime. (a) At x = 0 the magnetization profile is
always positive, but shows the PSH+ stripes between zero and finite
magnetization. (b) At y = 0 the x-t map shows a zigzag pattern.
(c) Checkerboard pattern [35] at t = 1000 ps centered at y = vd t . In
panel (b) the colors are highly saturated for better visualization of the
pattern.

of the incoherent superposition of the PSH+ of subband ν = 1,
Eq. (43), and the PSH− of subband ν̄ = 2, Eq. (44), which
gives a positive background to the PSH+ stripes. On the xy

map for fixed t , the superposition of oscillations along x and
y leads to the checkerboard pattern in Fig. 5(c).

The drift velocity vd sets a finite ω1, which drives a motion
of the checkerboard pattern with velocity vy = −ω1/κy,1 ∝
vd . Additionally, the drift velocity affects the relaxation rates
of the PSH+ and PSH− subbands differently, hence γy,1 �= γx,2

and for large t one mode will prevail. In Fig. 5(c) this is seen as
slight preference to form stripes rather than the checkerboard
pattern at the center of the package.

2. Intersubband SOC corrections

The intersubband SOCs are introduced via the effective
precession vector �eff

ν (see Appendix C). For overall weak
SOC, the new terms in �eff

ν do not break the approxi-
mations used to obtain the PSH± regimes. Consequently,
the intersubband SOC simply introduces corrections to the
wave vectors κx,ν̄ → κx,ν̄ + δκx,ν̄ , κy,ν → κy,ν + δκy,ν , and
frequency ων → ων + δων . Up to leading order in vd/vF they
read

δκy,ν = − 2m3

�2
12h̄

4 v2
f,ν[η(−2� + η)αν̄ − �(� − 2η)β1,ν̄

+ (� − η)2β3,ν̄], (45)

δων = −2m3v2
F vd

�2
12h̄

2 [η(η − 2�)αν̄ + �(� − 2η)β1,ν̄

− 2(� − η)2β3,ν̄], (46)

δκx,ν̄ = 2m3

�2
12h̄

4 v2
f,ν̄[η(2� + η)αν − �(� + 2η)β1,ν

+ (� + η)2β3,ν]. (47)

Additionally, the intersubband SOC will lead to corrections
to the relaxation rates (γn, γp, and γw) and frequency ξ .
However, these are large expressions that we choose not to
show explicitly.
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C. Strong intersubband scattering

For the strong-ISS regime we consider that both intra- and
intersubband scattering times are comparable, and both are
much shorter than the spin precession period. Therefore, the
random walk process allows the electron to wander throughout
the Fermi circles of all occupied subbands. Consequently,
here we include an average over the subbands into the 〈· · · 〉
averages of the RW model. For a generic term Oν(θ ), the
average now reads

〈O〉 = 1

2πNν

Nν∑
ν=1

∫ 2π

0
Oν(θ ) = 1

Nν

Nν∑
ν=1

〈O〉ν, (48)

where Nν is the number of occupied subbands. The short
form on the right-hand side expresses the subband average
contracting the θ average into 〈O〉ν .

The θ averages 〈O〉ν are equivalent to the ones of
the single-subband cases, but calculated with �eff

ν , which
introduces subband-dependent parameters (αν, β1,ν , β3,ν , and
kF,ν), as well as the intersubband couplings (η and �). For
a drift velocity along y, these averages remain null 〈
y〉 =
〈
x
y〉 = 〈vx
x〉 = 〈vy
y〉 = 0. The others can be easily
calculated algebraically, but now yield long expressions (not
shown); namely, these are 〈
x〉, 〈vx
y〉, 〈vy
x〉, 〈
2

j 〉, for
j = {x,y}. Overall, the precession is dominated by 〈�〉 =
1
2 (〈�〉1 + 〈�〉2), yielding subband-averaged SOCs α+ =
1
2 (α1 + α2), β1,+ = 1

2 (β1,1 + β1,2), and β3,+ = 1
2 (β3,1 + β3,2),

plus perturbative corrections.
Considering the parameters of Table II, we find that the

RW averages are nearly isotropic for vd = 0 and α1 = −α2 =
0, with 〈�〉 = 0, 〈vx
y〉 � 〈vy
x〉, and 〈
2

x〉 � 〈
2
y〉. The

strict isotropic dynamics would be equivalent to the pure
Dresselhaus case discussed for a single subband in Ref. [4],
where the magnetization follows a Bessel pattern given by

mz(r,t) ∝ e−γ0t

√
t

J0(κ0r), (49)

where the wave number κ0 and the relaxation rate γ0 are

κ0 = 2〈vy
x〉〈
v2

y

〉 , (50)

γ0 = 3τ

2

〈

2

x

〉 − τ 〈vy
x〉2〈
v2

y

〉 . (51)

For α1 = −α2 = 0 and vd = 0 the Bessel pattern is shown
in Fig. 6(b) and matches well the approximate isotropic
solution above. Beyond the isotropic limit (i.e., for finite but
small α1 = −α2 and vd ), the precession pattern still resembles
the isotropic Bessel solutions. A finite vd drives the Gaussian
envelope drift along y, but the inner magnetization pattern
drifts with a slower velocity, as seen in Figs. 6(d)–6(f).
An equivalent effect was discussed previously for the
single-subband PSH+ case, where the precession pattern
∝ cos(κyy + ωt) yields a pattern velocity −ω/κy . A finite
α1 = −α2 distorts the pattern vertically [Figs. 6(a) and 6(d)]
or horizontally [Figs. 6(c) and 6(f)], for α1 > 0 and α1 < 0,
respectively.

Since the dynamics is dominated by the subband-averaged
SOCs, even though the subbands are set to the cPSH regime,
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FIG. 6. Magnetization patterns for the two-subband crossed PSH
in the strong-coupling limit. The drift velocity vd and the subband-
dependent Rashba SOC α1 = −α2 are indicated in each panel in units
of nm/ps and meV Å, respectively. The maps are taken at t = 1000
ps and other parameters are set in Table II. The isotropic case in panel
(b) matches the Bessel solutions. For finite α1 the Bessel pattern is
distorted. A finite vd induces the drift of the packet (envelope), but the
inner pattern moves with a slow velocity. Due to the large relaxation
rate γ0 of the Bessel solutions, the colors here had to be strongly
saturated for clear visualization of the patterns.

the averaged SOCs deviate from this regime. Indeed α+ = 0
for α1 = −α2, while β1,+ �= 0. Consequently, the strong-ISS
regime for the cPSH setup shows a short lifetime γ −1

0 ∼ 0.1 ns,
much shorter than the single-subband PSH regimes (∼1 ns in
Fig. 3).

V. FINAL REMARKS AND CONCLUSIONS

A. Limitations of the random walk model

The RW model provides an elegant description of the spin
diffusion process. However, there are limitations. To go from
the symbolic definition of the joint probability, Eq. (4), to the
differential equation for the magnetization, Eq. (5), we have
performed a Taylor expansion for small �r = vnτ and �sn.
Additionally, we use sn+1 from Eq. (2) in Eq. (3). We combine
these keeping only terms that are linear in s; otherwise it is not
possible to recover the definition of the magnetization, Eq. (3),
and write the differential equation for m(r,t). As shown
here, this approximation is remarkably good for samples
with small SOC coefficients, like GaAs quantum wells [26].
However, for strong SOC one cannot neglect the spin-orbit
locking that couples the spin with the (Fermi) velocity. This
condition would lead to a spin-dependent �r (zitterbewegung
[37,46–48]), thus breaking the conditions required to recover
the magnetization in the expansion approach. With a different
approach, in Ref. [20] the authors consider the strong-SOC
regime, and show that the PSH arises from Rabi oscillations.
Additionally, the RW model does not account for spin-charge
coupling, which is discussed in Refs. [4,5] for single-subband
systems.

B. Conclusions

We have analyzed the spin diffusion dynamics in two-
subband systems, extending the random walk model to account
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for the subband dynamics. Our model includes the Rashba,
linear and cubic Dresselhaus, and the intersubband spin-orbit
couplings. Additionally, we have discussed the effects of initial
packet broadening and external magnetic fields.

For the dynamics of two-subband systems, two possible
scenarios were identified regarding the ISS rates. For weak ISS,
the subbands are effectively uncoupled and the magnetization
dynamics is essentially an average of the magnetization of
the individual subbands (incoherent sum). Consequently, if
the subbands are set into the crossed-PSH regime, both
magnetizations will show a long lifetime, resulting in the
checkerboard pattern [35]. We show that for a finite drift
velocity, the single-subband relaxation rates for the PSH+

and PSH− are different. Therefore, in the weak-ISS regime, a
finite drift velocity could lead to different relaxation rates,
such that for large t only one of the magnetizations will
prevail, returning to the single-subband striped pattern. For
strong ISS, we have seen that the fast subband dynamics
introduces subband-averaged spin-orbit couplings, rather than
a subband-averaged magnetization (as in the weak-ISS case).
Consequently, even if the individual subbands are set into the
crossed-PSH regime, their averaged SOC will not be close to a
PSH. Instead, we obtain a nearly isotropic Bessel pattern with
short lifetime.

Spintronic applications require long spin lifetimes. From
the results presented, this can be achieved in two-subband
systems by setting individual subbands into PSH regimes if the
ISS is sufficiently weak. However, for strong ISS, the subband-
averaged SOC is the main character. It may destroy the long-
lived cPSH. However, one would still recover a long lifetime
if the subband-averaged SOCs fall close to the PSH regime.
Therefore, the extension to two-subband systems provides an
additional handle to fine-tune the dynamics to obtain long
lifetimes.
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APPENDIX A: MAGNETIC FIELD ALONG z

In the main text we have assumed 
z = 0 to express Eq. (5)
in a simple form. However, a finite 
z could be introduced by
an external magnetic field B = Bzẑ, in which case one must
add Wz to the matrices in Eq. (5). Namely

Wz =
⎛
⎝ −τ 〈
2

z〉 −
z +τ 〈
x
z〉

z −τ 〈
2

z〉 τ 〈
y
z〉
τ 〈
x
z〉 τ 〈
y
z〉 0

⎞
⎠, (A1)

where 
z = 〈
z〉 − 2τ [〈vx
z〉∂x + 〈vy
z〉∂y], and 
z =
gμB

h̄
Bz.

APPENDIX B: EXPRESSIONS FOR THE AVERAGES
AND OTHER SECONDARY QUANTITIES MENTIONED

IN THE TEXT

Here we show large or cumbersome expressions that are
not relevant for the main discussion.

1. Averages for the single-subband case without magnetic field

We assume that the drift velocity is along ŷ. The null
averages were already mentioned in the main text, 〈
y〉 =
〈
x
y〉 = 〈vx
x〉 = 〈vy
y〉 = 0. The finite ones are

〈
v2

x

〉 = 1
2v2

F , (B1)〈
v2

y

〉 = 1
2v2

F + v2
d , (B2)

〈
x〉 = 2m

h̄2 vd

(
α + β1 − 2

v2
d + v2

F

v2
F

β3

)
, (B3)

〈vy
x〉 = m

h̄2

[(
2v2

d + v2
F

)
(α + β1)

−
(

v2
F + 10v2

d + 4
v4

d

v2
F

)
β3

]
, (B4)

〈vx
y〉 = −m

h̄2 v2
F

(
α − β1 + β3 − 2

v2
d

v2
F

β3

)
. (B5)

The expressions for 〈
2
x〉 and 〈
2

y〉 are large; therefore here
we choose to show only their series expansion up to second
order in vd/vF ,

〈

2

x

〉 ≈ 2m2v2
F

h̄4

{[
(α + β1)2 − 2(α + β1)β3 + 2β2

3

]

+ 2
v2

d

v2
F

[
(α + β1)2 − 10(α + β1)β3 + 18β2

3

]}
, (B6)

〈

2

y

〉 ≈ 2m2v2
F

h̄4

[
(α − β1)2 + 2(α − β1)β3 + 2β2

3

− 4v2
d

v2
F

(α − β1)β3

]
. (B7)

2. PSH+: γ p, κ y, and ω

γp = τ

(〈

2

x

〉 + 1

2

〈

2

y

〉 − 〈vy
x〉2〈
v2

y

〉 )
, (B8)

κy = 〈vy
x〉〈
v2

y

〉 , (B9)

ω = 〈
x〉 − κyvd . (B10)

3. PSH−: γn and κx

For the narrow initial packet, �0 � �C :

γn = τ

(〈

2

y

〉 +
〈

2

x

〉
2

− 〈vx
y〉2〈
v2

x

〉 )
+ 1

2τ

〈
x〉2〈

2

y

〉 − 〈

2

x

〉 , (B11)

κx = 〈vx
y〉〈
v2

x

〉 . (B12)
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For the wide initial packet, �0 � �C :

γw = τ

(〈

2

x

〉 + 1

2

〈

2

y

〉)
, (B13)

ξ = 1

2

√
τ 2

〈

2

y

〉2 − 4〈
x〉2. (B14)

4. Complement to the single-subband averages due to an
external magnetic field

A finite in-plane magnetic field B = (Bx,By,0) introduces
additional terms to the 
 averages of Sec. B 1. Labeling the
additive terms of each 
 average with a �, e.g., 〈�〉 → 〈�〉 +
〈��〉, the extra terms due to B up to leading order in vd/vF

are

〈��〉 = gμB

h̄
B, (B15)

〈
�
2

x

〉 =
(gμB

h̄
Bx

)2
+ 4m

h̄2

gμB

h̄
Bxvd (α + β1 − 2β3),

(B16)

〈
�
2

y

〉 =
(gμB

h̄
By

)2
, (B17)

〈�
x
y〉 =
(gμB

h̄

)2
BxBy

+ 2m

h̄2

gμB

h̄
Byvd (α + β1 − 2β3), (B18)

〈�vx�〉 = 0, (B19)

〈�vy�〉 = vd

gμB

h̄
B. (B20)

APPENDIX C: EFFECTIVE MODEL FOR EACH SUBBAND

To decouple the subbands we use the Löwdin perturbation
theory. Consider H = H0 + H ′, with the perturbation given by

the SO term H ′ = HSOC . Up to second order in (εν − εν̄)−1

we obtain an effective Hamiltonian H̃ν for each subband ν =
{1,2},

H̃ν =
(

h̄2k2

2m
+ εν

)
+ �(2)

ν + h̄

2
σ · (

�ν + �(3)
ν

)
, (C1)

where �(2)
ν are the spin-independent corrections to the subband

energy, and �(3)
ν = 
(3)

ν,x x̂ + 
(3)
ν,y ŷ are the corrections for the

effective magnetic field. Using ν and ν̄ to refer to opposite
subbands, and taking the approximation E ≈ εν + h̄2k2/2m,
we get

�(2)
ν = (h̄�12)2

4(εν − εν̄)
, (C2)


(3)
ν,x = −h̄2

4�2
12

[

ν̄,x[(
12,x)2 − (
12,y)2]

+ 2 
ν̄,y 
12,x 
12,y

]
, (C3)


(3)
ν,y = −h̄2

4�2
12

[

ν̄,y[(
12,y)2 − (
12,x)2]

+ 2 
ν̄,x 
12,x 
12,y

]
, (C4)

where �12 = ε2 − ε1 is the energy difference between the
subbands.

This effective model can be used to account for the
neglected intersubband SOC effects in Secs. IV B and IV C.
For each subband ν, the effective precession vector from
Eq. (C1) is

�eff
ν = �ν + �(3)

ν . (C5)

Additionally, the subband energy dispersion remains ap-
proximately spin-independent, Eν = εν + �(2)

ν + h̄2k2/2m.
This assures that the Fermi velocity is isotropic and spin-
independent, as required by the RW model of Sec. II.
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