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It is long known that the best single-site coherent potential approximation falls short of describing Anderson
localization. Here, we study a binary alloy disorder [or equivalently, a spinless Falicov-Kimball (FK)] model and
construct a dominantly analytic cluster extension that treats intracluster (1/d, d = spatial dimension) correlations
exactly. We find that, in general, the irreducible two-particle vertex exhibits clear nonanalyticities before the
band splitting transition of the Hubbard type occurs, signaling onset of an unusual type of localization at strong
coupling. Using time-dependent response to a sudden local quench as a diagnostic, we find that the long-time
wave-function overlap changes from a power-law to an anomalous form at strong coupling, lending additional
support to this idea. Our results also imply such “strong” localization in the equivalent FK model, the simplest
interacting fermion system.
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I. INTRODUCTION

Anderson’s seminal paper [1] spawned the fertile field of
localization in disordered systems. While all states in spatial
dimension d = 1,2 are long known to be localized for any
arbitrary disorder in the “weak” localization sense, strong
enough disorder is generally expected to lead to exponential
localization in all d. In a distinct vein—the exact and oth-
erwise successful mean-field theory of Anderson localization
(AL)—the coherent potential approximation (CPA) cannot, by
construction, describe AL, since it cannot account for coherent
backscattering processes that underpin AL. Nevertheless, CPA
has been used in the Vollhardt-Wölfle theory to obtain a phase
diagram with AL and metallic phases [2]. Other schemes marry
the CPA with typical medium theory to study AL [3]. However,
given the necessity of including nonlocal correlations, several
heavily numeric-based cluster approaches [4–6] have also been
devised with mixed success. In addition, the simplest model
of correlated fermions on a lattice, the Falicov-Kimball model
(FKM), is isomorphic to the binary alloy Anderson disorder
model, and exhibits a continuous metal-insulator transition of
the Hubbard band splitting type [7]. One might thus expect
the above issues to be relevant for the FKM as well. To our
knowledge, a dominantly analytic approach to cluster-based
techniques in such contexts remains to be attempted, and is
potentially of great interest.

Recent work on many-body localization [8] suggests that at
strong disorder the localization length is of the order of lattice
constant (ξ � 1). In this limit, an exact treatment of intersite
“disorder” (1/d) correlations beyond dynamical mean-field
theory (DMFT) may thus be adequate to describe “strong”
localization. Nonlocal response to a sudden local quench (a
suddenly switched-on localized hole) in this regime exhibits
a statistical orthogonality catastrophe, also studied earlier in
the context of correlated impurity potentials in a Fermi gas
[9]. Thus, qualitative change in the long-time response of a
system to a sudden local quench, wherein the explicit long-time
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wave-function overlap undergoes a qualitative change at strong
disorder, can be a novel diagnostic of strong localization.
Can we study how the long-time response to a sudden local
quench evolves across the metal-insulator transition (MIT) in
the FKM, and can such an endeavor provide deeper insight into
strong localization at a continuous metal-insulator transition?

In this paper, we develop an analytic cluster DMFT
(CDMFT) for the noninteracting Anderson disorder or FK
model

HAM = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) +

∑
i,σ

vic
†
iσ ciσ (1)

on a Bethe lattice. The vi are random variables with a
binary alloy distribution: P (vi) = (1 − x)δ(vi) + xδ(vi − U ),
relabeling vi = Unid where nid = d

†
i di is the occupation

number of a spinless nondispersive fermion state (nid = 0,1
for all i). The mapping between the two models implies that
the ni,d are randomly distributed according to the above binary
alloy distribution. We extend earlier two site cluster DMFT
[10] (we use the same notations here as in Ref. [10]), wherein a
crucial advance is to go beyond the DMFT-like site-local Weiss
field to one that explicitly incorporates full intracluster disorder
correlations (see below for details) via a matrix Weiss field.
This is a nontrivial step, and is necessary to obtain the correct
causal cluster propagators and self-energies. A unique and
very attractive aspect of our CDMFT is that we obtain explicit
closed-form expressions for the cluster propagators (thus
self-energies and irreducible charge vertices): while HAM is
known to be analytically solvable in d = ∞ [11], a dominantly
analytic cluster extension has remained elusive, though the
problem has been tackled numerically [4–6]. Remarkably, one
just needs to solve two coupled nonlinear algebraic equations
for a two site cluster (N equations for a N -site cluster) leading
to extreme computational simplification, even with finite alloy
short-range order (SRO). This makes it very attractive for
use for real correlated systems in conjunction with multiband
DMFT or CDMFT. We will be specifically concerned with
studying quantum critical aspects at the the Hubbard type of a
continuous MIT accompanied by band splitting. Extensions to
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study Anderson localization within the formalism developed
in this paper are very interesting, but this is deferred for the
future.

II. MODEL AND SOLUTION

The Hamiltonian for the noninteracting Anderson disorder
model or equivalently the FKM within alloy-analogy approx-
imation is

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) +

∑
iσ

viniσ . (2)

Here, vi is taken as diagonal disorder with binary distribution,
i.e.,

P (vi) = (1 − x)δ(vi − vA) + xδ(vi − vB) (3)

with vA = 0 and vB = U . We further consider SRO between
two nearest-neighbor sites (i,j ) as fij = 〈vivj 〉 − 〈vi〉〈vj 〉 =
C, a constant parameter, although in real materials fij depends
on the x, temperature, and other physical variables and this
dependence should be considered explicitly.

We mapped the Hamiltonian using CDMFT technique to
an effective Anderson impurity model with impurity as a two
site cluster embedding by an effective dynamical bath.

The Hamiltonian for the Anderson impurity model is given
as

Himp = −t
∑

σ

(c†0σ cασ + H.c.) + U
∑

i∈{0,α}σ
xiniσ

+
∑

i∈{0,α},k,σ

(vkic
†
iσ ckσ + H.c.) +

∑
k,σ

εkc
†
kσ ckσ . (4)

The first term is the hopping between two sites (0,α) of the
cluster impurity; the second term corresponds to the interaction
of the impurity; the third term describes the hybridization
between the impurity and the bath and fourth term describes the
dispersive bath. Here, xi ≡ nid is the occupation of localized
fermions in FKM.

The two-site cluster impurity Green’s function is given in
matrix form:

Ĝ =
(

G00(ω) Gα0(ω)
Gα0(ω) G00(ω)

)
.

Here, the element of Ĝ is defined as Gσ
ij (ω) := 〈ciσ ; c†jσ 〉 with

σ the spin indices, i.e., σ ∈ {↑,↓}.
The equation of motion (EOM) for Gσ

ij (ω) is

ωGσ
ij (ω) = δij − t

∑
l 
=i

Gσ
lj (ω) + U 〈xiciσ ; c†jσ 〉

+
∑

k

vkiG
σ
kj (ω), (5)

where we use the identity for fermions, ω〈Â; B̂〉 =
〈[Â,B̂]+〉 + 〈[[Â,Ĥimp]; B̂]+〉. Similarly, the EOM for the
higher-order Green’s function 〈x0ciσ ; c†jσ 〉 is

ω〈x0ciσ ; c†jσ 〉 = 〈x0〉δij − t
∑
l 
=i

〈x0clσ ; c†jσ 〉 + U 〈x0xiciσ ; c†jσ 〉

+
∑

k

vki〈x0ckσ ; c†jσ 〉 (6)

and the EOM for 〈xαciσ ; c†jσ 〉 is

ω〈xαciσ ; c†jσ 〉=〈xα〉δij − t
∑
l 
=i

〈xαclσ ; c†jσ 〉+U 〈xαxiciσ ; c†jσ 〉

+
∑

k

vki〈xαckσ ; c†jσ 〉. (7)

Again, the EOM for 〈x0xαciσ ; c†jσ 〉 is

(ω − U )〈x0xαciσ ; c†jσ 〉
= 〈x0xα〉δij − t

∑
l 
=i

〈x0xαclσ ; c†jσ 〉

+
∑

k

vki〈x0xαckσ ; c†jσ 〉. (8)

Here, 〈x0xα〉 = 〈xαx0〉 ≡ 〈x0α〉.
The EOM for the 〈A0αckσ ; c†jσ 〉 is

(ω − εk)〈A0αckσ ; c†jσ 〉 =
∑

i

v∗
ki〈A0αciσ ; c†jσ 〉. (9)

Here, A0α ≡ 1,x0,xα,x0α .
We derive the generalized form of the cluster Green’s

function by solving Eqs. (5)–(9):

Gij (ω) =
[

1 − 〈x0〉 − 〈xα〉 + 〈x0α〉
ξ2(ω)

+ 〈x0〉 − 〈x0α〉
ξ2(ω) − U

]

×
[
δij − F2(ω)

[t − �α0(ω)]
(1 − δij )

]

+
[ 〈xα〉 − 〈x0α〉

ξ1(ω)
+ 〈x0α〉

ξ1(ω) − U

]

×
[
δij − F1(ω)

[t − �α0(ω)]
(1 − δij )

]
. (10)

Here, ξ1(ω) = [ω − �00(ω) − F1(ω)], ξ2(ω) = [ω − �00(ω)
− F2(ω)], F1(ω) ≡ [t−�α0(ω)]2

ω−�00(ω)−U
, and F2(ω) ≡ [t−�α0(ω)]2

ω−�00(ω) . We
obtain renormalized ξ1(2) and t in the diagonal Green’s
function [G00(ω)] as compared with the results of Ref. [10].
ξ1(2) and t are renormalized by ξ̃1(2) = [ξ1(2) − �00(ω)] and
t̃ = [t − �α0(ω)], respectively. The bath function �̂(ω) in the
two site cluster model is a 2 × 2 matrix:

�̂(ω) =
(

�00(ω) �α0(ω)
�α0(ω) �00(ω)

)
.

Here, �̂(ω) is computed from matrix generalization of the
dynamic Weiss field [11]:

G(ω) =
∫ +W

−W

ρ0(ε)dε

G−1(ω) + �(ω) − ε
, (11)

where ρ0(ε) is the unperturbed DOS.

III. GENERAL FORMALISM FOR THE TWO SITE
CLUSTER METHOD

We can also exactly estimate the cluster irreducible vertex
functions and (charge) susceptibility by generalizing the
well-known procedure employed in DMFT studies [11]. It
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turns out that exploiting cluster symmetry is particularly useful
in this instance, and markedly simplifies the analysis. The
solution of the two site cluster impurity problem gives the
following matrix Green’s function and the self-energy:

Ĝ =
(

G00 Gα0

Gα0 G00

)
, 
̂ =

(

00 
α0


α0 
00

)
.

To go over to a representation where these matrices are
diagonal in the cluster momenta, K points KI = (0,0, . . .)
and KII = (π,π, . . .), we divide the Brillouin zone into two
subzones as done in CDMFT studies for the Hubbard model
[12]. For brevity, we label regions I and II by S and P,
respectively. Now, self-energy and Green’s-function matrices
take on the diagonalized forms

Ĝ =
(

GS 0
0 GP

)
, 
̂ =

(

S 0
0 
P

)
,

where

GS = G00 + Gα0, GP = G00 − Gα0

and


S = 
00 + 
α0, 
P = 
00 − 
α0

with

GS(P )(ω) =
∫

ρ0
S(P )(ε)dε

ω + μ − ε − 
S(P )
. (12)

The partial density of states, which are now nothing other than
the K-dependent spectral functions, are given by

ρ0
S(P )(ε) = 2 ×

∫
k∈S(P )

dkδ(ε − εk). (13)

In this representation, it turns out to be easier to com-
pute the irreducible vertex functions. Specifically, the only
quantity relevant for the disorder problem is the irreducible
particle-hole (p-h) vertex function �̂ given as �̂ = δ
̂

δĜ
(the “spin fluctuation” and “pairing” vertex appear in the
FKM, but are irrelevant for the disorder problem). Since both
self-energy and Green’s-function matrices are diagonal in the
S(P ) basis, the vertex function is separable with respect to the
S or P channel as well:

�S(P ) = δ
S(P )

δGS(P )
. (14)

IV. CALCULATION OF CHARGE SUSCEPTIBILITY

With explicit knowledge of the p-h irreducible vertex as
above, the momentum-dependent susceptibility corresponding
to the S(P ) channels is evaluated using the Bethe-Salpeter
equation:

χS(P )(q,iωm,iωn; iνl)

= χ0
S(P )(q,iωm; iνl)δmn − T

∑
n′

χ0
S(P )(q,iωm; iνl)

×�S(P )(iωm,iωn′ ; iνl)χS(P )(q,iωn′ ,iωn; iνl). (15)

To make progress, we proceed along lines similar to those
adopted in DMFT studies [11].

(i) The full susceptibility is found by summing
over the fermionic Mastubara frequencies, χS(P )(q,iνl) =
T

∑
mn χS(P )(q,iωm,iωn; iνl).

(ii) The vertex functions �S(P )(iωm,iωn′ ; iνl) are evaluated
as

�S(P )(iωn,iωm; iνl) = 1

T


S(P )
n − 


S(P )
n+l

G
S(P )
n − G

S(P )
n+l

δm,n. (16)

As χS(P ) are diagonal in the S or P channel, we keep only
the channel index S, with the understanding that an identical
calculation holds for the P channel. Using � from Eq. (27) we
find

χS(q,iωm,iωn; iνl)

= χS
0 (q,iωm; iνl)δmn − T χS

0 (q,iωm; iνl)

×�S(iωm,iωm; iνl)χ
S(q,iωm,iωn; iνl) (17)

⇒ χS(q,iωm,iωn; iνl) = χS
0 (q,iωm; iνl)δmn

1 + χS
0 (q,iωm; iνl)


S
m−
S

m+l

GS
m−GS

m+l

.

(18)

(iii) Now, the full lattice susceptibility with q replaced by X(q)
is given by

χS(X,iνl 
= 0) = T
∑
m,n

χS(X,iω; iνl)

= T
∑
m,n

χS
0 (X,iωm; iνl)δmn

1 + χS
0 (X,iωm; iνl)


S
m−
S

m+l

GS
m−GS

m+l

(19)

where X(q) = limd→∞
∑d

i=1 cos( qi

d
)

⇒ χS(X,iνl 
= 0) = T
∑
m

χS
0 (X,iωm; iνl)

1 + χS
0 (X,iωm; iνl)


S
m−
S

m+l

GS
m−GS

m+l

.

(20)

(iv) For q = 0(X = 1), we find that

χ (1; iνl 
= 0) = −T
∑
m

Gm − Gm+l

iνl

= 0. (21)

This just reflects conservation of the total c-fermion
number, and thus vanishes by symmetry.

(v) For generic q(X = 0), we calculate the sum over
Matsubara frequency by contour integration. The bare sus-
ceptibility for X = 0 is given as χS

0 (0,iωm; νl) = −GS
mGS

m+l

⇒ χS(X = 0,iνl 
= 0) = −T
∑
m

GS
mGS

m+l

1 − GS
mGS

m+l


S
m−
S

m+l

GS
m−GS

m+l

.

(22)

As mentioned before, a similar analysis holds for the P channel
at every step in the procedure above.
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After performing analytical continuation from Matsubara frequency to real frequency in the standard way, the final expression
for the susceptibility corresponding to the S or P channel becomes

χS(P )(X = 0,ν 
= 0)

= 1

2πi

∫ ∞

−∞
dω

{
f (ω)

GS(P )(ω)GS(P )(ω + ν)

1 − GS(P )(ω)GS(P )(ω + ν)[
S(P )(ω) − 
S(P )(ω + ν)]/(GS(P )(ω) − GS(P )(ω + ν))

− f (ω + ν)
G∗

S(P )(ω)G∗
S(P )(ω + ν)

1 − G∗
S(P )(ω)G∗

S(P )(ω + ν)[
∗
S(P )(ω) − 
∗

S(P )(ω + ν)]/(G∗
S(P )(ω) − G∗

S(P )(ω + ν))

− [f (ω) − f (ω + ν)]
G∗

S(P )(ω)GS(P )(ω + ν)

1 − G∗
S(P )(ω)GS(P )(ω + ν)[
∗

S(P )(ω) − 
S(P )(ω + ν)]/[G∗
S(P )(ω) − GS(P )(ω + ν)]

}
(23)

where we have replaced the retarded Green’s function GR
S(P ) by

GS(P ) and the advanced Green’s function GA
S(P ) by the complex

conjugate of the retarded Green’s function G∗
S(P ).

The procedure (i)–(v) allows us to exactly estimate the
cluster p-h irreducible vertices and the charge susceptibility
in the FKM to O(1/d).

V. RESULTS

A. One-particle spectral response

We now present our results. We work with a semicircular
unperturbed density of states (DOS) as appropriate for a
Bethe lattice in high d, given by ρ0(ε) = (2/πD)

√
D2 − ε2

where D = 2t = 1 is the c-fermion half-bandwidth. We begin
with a “particle-hole symmetric” case with 〈nic〉 = 1/2 and
a probability distribution P (vi) = 1/2[δ(vi) + δ(vi − U )] or
in the FKM context with a half-filled c-fermion band. In
Fig. 1, we show the local DOS (LDOS) as U is increased
through a critical Uc = 1.8, where a continuous MIT of the

FIG. 1. The local density of states (LDOS) of the binary alloy
disorder model for p-h symmetry (upper panel) and p-h asymmetric
case (lower panel). A clear continuous band splitting transition of
the Hubbard (or Falicov-Kimball model-like) variety is seen in both
cases. At Uc = 1.8 (red curve), the LDOS exhibits a critical |ω|1/3

singular behavior in both cases.

Mott-Hubbard type occurs via the Hubbard band splitting.
Comparing with the exact DMFT solution [11], we see that
incorporation of dynamical effects of 1/d correlations in
our two site CDMFT gives rise to additional features in
the LDOS. These features arise from repeated scattering of
the electrons off spatially separated scattering centers and
are visible even for the totally random case, defined as
f0α = 〈x0xα〉 − 〈x0〉〈xα〉 = 0. In the lower panel, we show the
LDOS for the asymmetric FKM, with 〈ni,d〉 = 〈xi〉 = 0.45,
wherein loss of particle-hole symmetry is faithfully reflected
as an asymmetric LDOS. It is clear that the MIT is associated
with a genuine quantum critical point (QCP). The advantage
of CDMFT is that cluster spectral functions, defined as
A(K,ω) with K = (0,0),(π,π ), can be explicitly read off.
In Fig. 2, we exhibit A(K,ω) as a function of U . It is
obvious that ρS(ω) = A(K = (0,0),ω) = ρP (−ω) = A(K =
(π,π ), −ω) for the particle-hole symmetric case, as it must be.
For the Bethe lattice, we find that the LDOS ρ(ω) = C|ω|1/3

(shown in Fig. 4) exactly at the QCP (Uc = 1.8), a result
similar to that found for the same model in DMFT [13]. The
spectral functions also exhibit these singular features, albeit
in a K-dependent fashion. Notwithstanding these similarities,
we stress that our extension of DMFT faithfully captures

FIG. 2. The cluster-momentum resolved one-electron spectral
functions for the same parameters as in Fig. 1. For the p-h symmetric
case, the symmetry relation ρS(ω) = ρP (−ω) is clearly satisfied as it
must be (upper panel).
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FIG. 3. 
00(ω) (both real and imaginary part) vs U for the
binary-alloy disorder problem for the same parameters as in Fig. 1. For
small U , our results agree with self-consistent Born approximation
[constant Im
00(ω)]. As U increases, Im
00(ω) develops marked
low-energy structure, and at Uc = 1.8 (red curve), Im
00(ω) �
|ω|1/3, reflecting the nonperturbative nature of the “Hubbard III”
quantum criticality. The Re
00(ω) shows discontinuity at ω = 0 at
the critical U.

the feedback of the nonlocal (intracluster) correlations on
the single-particle DOS and the self-energies (see below) in
contrast to DMFT, where such 1/d feedback effects are absent.
In the left panels of Fig. 3, we exhibit the imaginary part of
the cluster-local self-energy, Im
00(ω) for the same parameter
values as above. For small U , Im
00 weakly depends on ω, and
is sizable only near ω = 0. However, it has the wrong sign, i.e.,
a minimum, instead of a maximum characteristic of a Landau
Fermi liquid, at ω = 0. Thus, the metallic state is incoherent
and not a Landau Fermi liquid. This is again a feature in
common with DMFT studies. In DMFT, it is well known
that this feature becomes more prominent as U increases, and
diverges at the MIT [11]. In CDMFT, however, Im
00 develops
marked structure already at U = 1.0: it develops a maximum at
ω = 0, which progressively sharpens up with increasing U in
the incoherent metallic regime. Interestingly, right at Uc (red
curve), Im
00(ω) = c|ω|1/3 (shown in Fig. 4), reminiscent of
what is expected in a power-law liquid, in strong contrast to
what happens in DMFT, where it diverges. The real part of local
self-energy [Re
00(ω)] is shown in the right panels of Fig. 3.
For the p-h symmetric case (shown in the upper right panel of
Fig. 3), Re
00(ω) is U/2.0 at ω=0 for all values of U. If we see
Re[
00(ω)] − U

2 it changes sign according to the ω near the
Fermi level and at the transition point (U ∼ Uc) it shows steep
discontinuity at ω = 0. The source of gap opening comes from
the divergence of ∂

∂ω
Re
00(ω) at ω = 0. For U > Uc, opening

up of a “Mott” gap in the LDOS goes hand in hand with the
divergence of ∂

∂ω
Re
00(ω) and vanishing Im
00(ω) in the gap.

In all cases, we also find power-law falloff in self-energies at
high energy and, more interestingly, clear isosbestic points
[where Im
00(ω) is independent of ω] at � = ±0.2t . We
also find (see lower panels of Fig. 3) that moving away

FIG. 4. Exponent of ρ00(ω) and Im
00(ω) closed to the Fermi
energy at critical value of U with symmetric alloy.

from p-h symmetry does not qualitatively change the above
features.

Finally, CDMFT allows a direct evaluation of the K-
dependent self-energies, which we exhibit in Figs. 5 and 6. As
a cross-check, we find that Im
(K = (0,0),ω) = Im
(K =
(π,π ), −ω), as required by particle-hole (p-h) symmetry for
〈ni,d〉 = 0.5.

In Fig. 7, we exhibit the imaginary parts of the cluster-
momentum-resolved irreducible particle-hole vertex functions
as functions of U . It is clear that both Im�(K,ω) with
K = (0,0) (called “S”) and with K = (π,π ) (called “P”) show
nonanalyticities precisely at ω = 0 at Uc = 1.8 (red curves).
Thus, for the completely random case, we find, as expected,
that the “Mott” QCP is signaled by a clear nonanalyticity
in the momentum-dependent (irreducible) p-h vertices at the

FIG. 5. Same as Fig. 3, but now for the cluster-momentum re-
solved self-energies. It is clear that the symmetry relation Im
S(ω) =
Im
P (−ω) holds in the p-h symmetric case.
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FIG. 6. Same as in Fig. 5, but for the p-h asymmetric case. Though
no symmetry is expected nor found here, the critical features are
unaffected, since Im
S,P (ω) indeed exhibit the same nonanalytic
feature (�|ω|1/3 behavior) for ω < 0(S) and ω > 0(P ).

Fermi energy (ω = 0). This nonanalytic feature goes hand
in hand with a power-law variation of Im
S(P )(ω) in the
vicinity of the Fermi energy (ω = 0). Along with spectral
functions and self-energies, the vertex functions also satisfy
the “symmetry” relation, Im�(K = (0,0),ω) = −Im�(K =
(π,π ), −ω) for the p-h symmetric case. Clearly, the anomalous
infra-red behavior of the irreducible vertices is directly related
to the clear nonanalytic structures in the cluster self-energies
discussed above.

Additional notable features characteristic of 1/d effects
captured by CDMFT become apparent upon repeating the

FIG. 7. Imaginary parts of the irreducible particle-hole vertex
functions in the S,P channels as a function of U for the binary alloy
disorder model. Clear nonanalyticities in �S,P (ω) at ω = 0 occur
precisely at Uc = 1.8 (red curve), where the continuous Hubbard
band splitting transition occurs. In addition, the results confirm the
symmetry Im�S(ω) = −Im�P (−ω).

FIG. 8. Cluster-momentum resolved one-electron spectral func-
tions as a function of U for the short-range ordered binary alloy
in the p-h symmetric case. As expected, the continuous “Hubbard”
transition is now obtained at a smaller Uc = 1.35 (red curve), due
to enhanced suppression of itinerance by the “anti-ferro” alloy
short-range order (f0α = −0.15 < 0). As for the totally random alloy,
the symmetry relation for the spectral functions still holds. The LDOS
shows very similar quantum-critical singular features at low energy
at Uc.

above procedure for the case of finite “alloy” SRO, namely,
when f0α = 〈x0xα〉 − 〈x0〉〈xα〉 
= 0.

In Figs. 8–10, we exhibit the cluster spectral functions,
self-energies, and p-h vertices for the case of f0α = −0.15,
which represents the physical situation with short-range
“antiferro” alloy correlations on the two site cluster. Now,
the MIT occurs at a critical Uc1 = 1.35, smaller than for the
completely random case. The reason is simple: on very general
grounds, short-ranged antiferro alloy correlations suppress the
one-electron hopping by a larger amount compared to the
random case (this is also reflected in the deeper pseudogap
in the incoherent metal for f0α < 0), simply because the
probability for an electron to hop onto its neighbor on the
cluster is reduced when there is more probability of having
a local potential U on the neighboring site. In this case,
Im
(K,ω) shows, on first glance, a behavior similar to the case
with f0α = 0 described before. Upon closer scrutiny of Fig. 9,
however, we find that Im
(K,ω) already diverges for U = 1.3,
slightly before Hubbard band splitting occurs (cyan curve).
Also, Fig. 9 also clearly shows the power-law divergence of
the self-energy (cyan and red curves), with Im
00(ω) � |ω|−η,
with η = 1/3 at the MIT. This feature is very different from
the pole divergence of the self-energy in the Hubbard model
within DMFT, but is indeed seen in the DMFT solution for the
FKM when the self-energy and the vertex function are treated
consistently at the local level [14]. A related nonanalyticity
in Im�(K,ω) also correspondingly occurs at precisely the
same value in Fig. 10. Thus, in this case, we find that the
irreducible p-h vertex diverges before the actual MIT occurs.
Such features are also known for the d = 2 Hubbard model
within the dynamical vertex approximation [15]. However,
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FIG. 9. Imaginary parts of the cluster-momentum resolved one-
particle self-energies as a function of U for the short-range ordered
binary alloy. The symmetry relation for the cluster self-energies still
holds, as does the fact that both show critical power-law behavior at
Uc (see text).

this divergence of the vertex function is not associated with
[ ∂
∂ω

Re
00(ω)]ω=0 = ∞, where the actual “Mott” transition
occurs. Thus, it is not connected to any symmetry breaking
(which would require a divergence in the momentum channel),
nor does it lead to nonanalyticities in the one-particle response
(the LDOS remains smooth for all U < Uc1 = 1.35).

Thus, at the level of spectral functions and self-energies,
our CDMFT for the FKM finds universal features at a
quantum-critical Mott transition that are qualitatively similar
to those found by Janis and Pokorny [14]. We find that the
infrared nonanalytic behavior in �(K,ω) precedes the MIT.

FIG. 10. Imaginary parts of the cluster-momentum resolved
irreducible p-h vertex functions for the p-h symmetric short-range
ordered binary alloy as a function of U . Clear nonanalyticities in
both �S,P (ω) occur slightly before the Hubbard-type band splitting
transition occurs, signifying the onset of a novel kind of localization
(see text).

This was probably to be expected, since both approaches deal
with quasilocal quantum criticality suited to the Mott-Hubbard
problem. The advantages of our extension relate to (i) having
a CDMFT that always respects causality [10] and (ii) enabling
computation of momentum-resolved spectral responses, even
for the hitherto scantily considered cases of explicit “alloy”
short-range order. Importantly, having an almost analytic
cluster extension of DMFT means that we have to simply deal
with N coupled nonlinear algebraic equations to compute the
full CDMFT propagators for a N -site cluster, even with short-
range order. This is an enormous numerical simplification
when one envisages its use for real disordered systems, with
or without strong Hubbard correlations: these issues have long
been extremely well studied using the CPA and DMFT [16].
We anticipate wide uses of such a semianalytic approach as
ours in this context.

It is interesting to compare our results to those obtained
by Shinaoka and Imada [17]. Motivated by disordered and
correlated systems near a MIT, they consider a disordered
Hubbard model, where Hubbard correlations are treated within
static Hartree-Fock (HF), giving rise to local moments, while
disorder effects over and above HF are studied by exact
diagonalization techniques. Their main findings are (i) a “soft”
gap arises even with purely local interactions, in contrast
to that in an Efros-Shklovskii picture, where it arises from
long-range coulomb interactions, and (ii) while the LDOS
A(E) � |E − EF |α with 0.5 < α < 1 for |E − EF | > 0.1,
they see that A(E) � exp[−(−γ log|E − EF |)3] provides a
much better fit for |E − EF | < 0.1. In contrast, we find that
the LDOS ρ(ω) � C|ω|1/3 remains valid up to lowest energies
at the QCP: this is similar to the situation found in single-site
DMFT [13], where precisely the same behavior is found
analytically.

These differences could arise from many factors: (a) there
are no localized magnetic moments in our case, since we
do not have the Hubbard term, and (b) while we focus
on predominantly short-range disorder correlations, Shinaoka
and Imada [17] include longer-range disorder correlations. It
is noteworthy that a “soft power-law gap” already appears
in CDMFT studies, and while it is conceivable that the
low-energy behavior may change upon increasing cluster size,
this remains to be shown. Alternatively, if local moments are
crucial to obtain this behavior, one must study the disordered
Hubbard model within CDMFT. This ambitious enterprise is
left for future consideration.

B. Charge susceptibility and response to a sudden local quench

In addition to universal critical features found in the last
section within an exact-to-O(1/d) CDMFT for the FKM, addi-
tional details regarding the nature of this strong-coupling Mott
transition can be gleaned from examination of the two-particle
response. In particular, the dynamic charge susceptibility of the
FKM can also be precisely computed in our approach by using
the CDMFT propagators [GS(P )(k,ω)] and the irreducible p-h
vertices �S(P )(ω) (notice that the latter have dependence on the
cluster momenta K) in the Bethe-Salpeter equation, as detailed
in the “Model and Solution” section.

In Fig. 11, we show the imaginary part of the full cluster-
local dynamical charge susceptibility as U increases. On first
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FIG. 11. The imaginary part of the local component of the full
dynamical charge susceptibility for the p-h symmetric binary alloy
disorder model in the totally random case (f0α = 0). Up to U1 = 1.4,
Imχ loc

ch (ω) � ω, similar to its DMFT counterpart. However, for 1.5 �
U � Uc = 1.8, Imχ loc

ch (ω) � ων where ν = 1 − κ and 0 < κ(U ) < 1
and κ reduces with increasing U , reaching a value κ = 0.5 at Uc

(red curve). This has very unusual consequences for the long-time
response to a “sudden” local quench at strong coupling (see text).

glance, our results are quite similar to those in earlier DMFT
work [11]. Beginning from small U up to U � 1.2, Imχch(ω)
varies linearly with ω in the infrared, with a maximum at
intermediate energy, followed by a high-energy falloff. How-
ever, closer scrutiny of the strong-coupling (U � 1.4) regime
reveals that this behavior undergoes a qualitative change at
low energies: now Imχch(ω) � ων , with ν = 1 − κ and 0 <

κ(U ) < 1. It is important to notice that the configurationally
averaged DOS does not show any nonanalyticities in this
regime, and the system is close to but not in the Mott insulating
regime. A closer look at the behavior of the cluster self-
energies and irreducible vertex functions in this regime shows
that both begin to acquire nontrivial energy dependence at low
energy when U is close to the critical value needed for the
Mott transition to occur. In fact, as described before, both Im
�S(P )(ω) start exhibiting strong ω dependence, especially near
ω = 0, when U � 1.4, and clear nonanalyticities accompanied
by anomalous power-law variation near ω = 0 when one
is very close to the transition in the range 1.7 < U < 1.8.
Thus, it is clear that the anomalous low-energy behavior of
the collective charge fluctuations is linked to the strong ω

dependence and impending nonanalytic behavior in the cluster
irreducible vertex as the MIT is approached from the metallic
side. Thus, while the fact that the vertex diverges before the
actual MIT does not lead to nonanalyticity in the one-electron
spectral functions, it does qualitatively modify the collective
density fluctuations, reflecting in an anomalously overdamped
critical form. We are unaware of such a connection existing
within earlier DMFT studies [11].

One interpretation of this unusual feature is the follow-
ing. Close to the Hubbard band splitting (Mott) transition,
one generically expects formation of excitons. A simple
way to understand this is in terms of the “holon-doublon”

mapping of the model, which is a partial particle-hole trans-
formation where c† → c†,d → d†. Now U

∑
i ni,cni,d →

−U
∑

i(ni,cni,d − ni,c), whereby the c,d fermions experience
an on-site attraction, leading to formation of local “pair” bound
states (these are excitons in the original model) of the type
〈c†i d†

i 〉. Quite generally, in a Hubbard model, one expects these
bosons to Bose condense. An upshot thereof is the well-known
fact that this is nothing else but antiferromagnetic magnetic
order, now interpreted as a Bose condensate of spin excitons. In
our simplified FKM or binary alloy case, however, such a Bose-
Einsten condensate is explicitly forbidden by the fact that the
local Z2 gauge symmetry, associated with [ni,d ,H ] = 0 for all
i, cannot be spontaneously broken by Elitzur’s theorem. This
still leaves open the possibility of having intersite excitonic
pairing of the c fermions on the two site cluster. Without
global broken symmetry, such a state would be a dynamically
fluctuating excitonic liquid. One would expect that a phase
transition to a “solid” of such excitonic pairs will eventually
occur, perhaps as a Berezinskii-Kosterlitz-Thouless transition
[18], but this is out of scope of the present paper. However,
having strong intersite excitonic liquid fluctuations could cause
the irreducible charge vertices to exhibit precursor features,
and it could be that our finding above is a signal of such an
impending instability. More work is certainly needed to put
this idea on a stronger footing, but this requires a separate
investigation.

Finally, one would expect emergence of anomalous features
in vertex functions and charge fluctuations close to the MIT
to have deeper ramifications. Specifically, we now address
the question outlined in the Introduction: “Can we study the
long-time response of the FKM to a sudden local quench, and
can such an endeavor provide deeper insight into the ‘strong’
localization aspect inherent in a continuous ‘Mott’ transition?”
In other words, if we introduce a local, suddenly switched-on
potential in the manner of a deep core hole potential in metals,
how would the long-time response of the “core hole” spectrum
evolve with U? In the famed instance of a Landau Fermi-liquid
metal, the seminal work of Anderson [19] and Nozieres and
de Dominicis [20] leads to the result that at long times the
core hole propagator, related to the wave-function overlap
between the ground states without and with the suddenly
switched potential, goes like a power law, ρh(t)|t→∞ � t−α

with πα = tan−1[Vhρc(0)] being the (s wave for a local scalar
potential) scattering phase shift. It has also long been shown
that [21] the deep reason for this feature is that the particle-hole
fluctuation spectrum, ρph(ω) (related to the collective charge
fluctuation response), in a Fermi gas is linear in energy. Explicit
evaluation of the core hole response when e-e interactions in
the Landau Fermi-liquid sense are present is a much more
involved and delicate matter [14]. It is clear that qualitative
change(s) in the low-energy density fluctuation spectrum must
qualitatively modify the long-time response to such a sudden
quench.

Answering this question in our case of the FKM is a subtle
matter, since the c-fermion spectral function is not that of a
Landau Fermi liquid, but describes an incoherent non-Landau
Fermi-liquid state. As long as Imχch(ω) � ω holds, however,
we expect that the long-time response will be similar to
that evaluated by Janis and Pokorny [14] using rather formal
Wiener-Hopf techniques. Ultimately, the long-time response
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still behaves in a qualitatively similar way to that for the
free Fermi gas, except that the exponent in the power law
is modified by interactions [thus, Imχch(ω) � ω still holds,
but with sizable renormalization]. In our case, we thus expect
that ρh(t)|t→∞ � t−α still holds for U < 1.3, since we do
find Imχch(ω) � ω in this regime in the infrared. However,
the qualitative change to the form Imχch(ω) � ω1−κ with
0 < κ < 1 in the infrared for U � 1.4 must also qualitatively
modify the long-time overlap and the core hole response.

Rather than resort to a direct computation of the long-time
response within CDMFT, we will find it more instructive to
consider this issue by using the low-energy results gleaned
from CDMFT as inputs into an elegant approach first used in
the context of the seminal x-ray edge problem by Schotte and
Schotte [22] and by Müller-Hartmann et al. [21]. To this end,
we have to identify the collective charge fluctuations encoded
in χch(ω) with a bath of bosonic particle-hole excitations
in the incoherent metal. Generally, using the linked cluster
expansion, the spectral function of the localized core hole is

Sh(ω) = 1

2π

∫ ∞

−∞
dteiωt

× exp

[
V 2

h

∫ ∞

0
dEImχph(E)

e−iEt−1

E2

]
(24)

where Vh is the “suddenly switched” core hole potential. As
long as Imχph(E) � E, we estimate, similar to the well-known
result, that the core hole spectral function behaves like Sh(ω) �
ω−α with α = (1/π )tan−1[Vhρ00(0)], with ρ00(0) being the
CDMFT LDOS at the Fermi energy [in a full computation,
this exponent will change a bit because ρ00(ω) has sizable
frequency dependence close to ω = 0 at strong coupling in
the metal as found in Results, but the qualitative features will
survive]. However, when U � 1.4, having Im χch(ω) � ω1−κ

must modify this well-known behavior. In this regime we find
(see also Ref. [21]) the following leading contribution to the
core hole spectral function:

Sh(ω) � V 2
h

EF

(
EF

ω

)1+κ

exp

[
− πV 4

h

(
EF

ω

)2(1−κ)]
, (25)

which is qualitatively distinct from the well-known form, and
corresponds to a long-time wave-function overlap having a
very nonstandard form: ρh(t)|t→∞ � e−t1−κ

. This qualitative
modification of the long-time wave-function overlap is a strong
manifestation of a type of localization at work. It would be
tempting to associate this with a many-body localized regime,
especially since the Landau quasiparticle picture is also
violated within this strong-coupling regime, but more work
is called for to clinch this issue. The basic underlying reason
for this behavior is the same as the one leading to generation
of the anomalous exponent κ in the p-h fluctuation spectrum,
i.e., strong ω dependence and incipient nonanalyticity in the
irreducible p-h vertex close to the MIT.

VI. DISCUSSION AND CONCLUSION

Using the disordered binary alloy analogy extended to a two
site cluster, we have investigated 1/d effects on the continuous
MIT in the “simplified” FKM (by this, we mean a FKM where
the disorder is quenched, rather than annealed, so quantities
like 〈x0〉 and f0α are fixed and given from a binary distribution,
rather than computed self-consistently, as in the true FKM).
In spite of this simplification, we find that quantum critical
features at the level of one-electron Green’s functions and self-
energies are very similar to those obtained from an “Anderson-
Falicov-Kimball” [14] model. This is not so surprising, since
the effect of the FK term U

∑
i nidnic is precisely to generate

a band “splitting” for all U in the FKM as well, and a binary
alloy disorder indeed has exactly a similar effect on the DOS.
Thus, within DMFT or CDMFT approaches such as ours, one
would expect quantitative changes in the spectral functions, but
no qualitative modification of critical exponents in the LDOS
exactly at the band splitting Hubbard-like transition.

However, in strong contrast to the one-electron response,
inclusion of the nonlocal irreducible p-h vertex in computation
of the dynamic charge susceptibility does lead to significant ef-
fects at strong coupling. We have shown that Imχch(ω) � ω1−κ

with 0 < κ < 1 occurs precisely in the same regime where the
nonlocal vertex shows strong frequency dependence and signs
of an impending nonanalyticity (the latter occurs either at the
MIT or precedes it; see above). This feature is quite anomalous,
indicating that an unusual collectively fluctuating state of the
electronic fluid, characterized by infrared critical bosonic p-h
modes, sets in before the MIT occurs. Naturally, one expects
that this feature will drastically modify the charge responses in
the strong-coupling limit: in fact, related effects should reveal
themselves in optical response of the disordered electron fluid.
We leave detailed elucidation of such points for future work.

To summarize, we have analyzed the role of short-ranged
(spatially nonlocal) alloy correlations on the Hubbard-like
MIT in a binary disorder Anderson model at strong coupling
in detail. While quantum critical features at the one-electron
level are exactly similar to recent DMFT results [14] for
the disordered FKM, nonlocal vertex corrections show up
rather dramatically as a qualitative change in character of
the collective p-h spectrum at strong coupling. In contrast
to previous CPA studies, this is a concrete manifestation of
the relevance of dynamical effects associated with 1/d alloy
correlations near the quantum critical point associated with
a continuous MIT of the Hubbard band splitting type. It is
obviously of interest to elucidate the nature and consequences
of this strong-coupling QCP in various transport responses.
This aspect is under study, and will be reported separately.
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