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The exchange-correlation hole is a central concept in density functional theory. It not only provides justification
for an exchange-correlation energy functional but also serves as a local ingredient for nonlocal range-separated
density functionals. However, due to the nonlocal nature, modeling the conventional exact exchange hole presents
a great challenge to density functional theory. In this work, we propose a semilocal exchange hole underlying
the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized gradient approximation functional. Our model is
distinct from previous ones not only at small separation between an electron and the hole around the electron
but also in the way it interpolates between rapidly varying and slowly varying densities. Here the interpolation is
determined by the wave-vector analysis on the infinite-barrier model for a jellium surface. Numerical tests show
that our exchange-hole model mimics the conventional exact one quite well for atoms. As a simple application,
we apply the hole model to construct a TPSS-based range-separated functional. We find that this range-separated
functional can substantially improve the band gaps and barrier heights of TPSS, without losing much accuracy

for atomization energies.
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I. INTRODUCTION

Kohn-Sham density functional theory (DFT) [1-3] is a
mainstream electronic structure theory due to its useful
accuracy and high computational efficiency. Formally, it is an
exact theory, but in practice the exchange-correlation energy
component, which accounts for all many-body effects, has
to be approximated as a functional of the electron density.
Development of exchange-correlation energy functionals for
a wide class of problems with high accuracy has been the
central task of DFT. Many density functionals have been
proposed [4-24], and some of them have achieved remarkable
accuracy in condensed-matter physics or quantum chemistry
or both.

According to their local ingredients, density functionals
can be classified into two broad categories: semilocal and
nonlocal. Semilocal functionals make use of the local electron
density, density derivatives, and/or the orbital kinetic energy
density as inputs, such as the local spin-density approxi-
mation (LSDA) [25,26], generalized gradient approximation
(GGA) [10,27,28], and meta-GGA [11,16,17,20,24]. Due
to the simplicity in theoretical construction and numerical
implementation, as well as relatively low computational cost,
semilocal functionals have been widely used in electronic
structure calculations [29-32]. Indeed, semilocal DFT can give
a quick and often accurate prediction of many properties such
as enthalpies of formation or atomization energies [23,33-38],
bond lengths [39,40], lattice constants [40—44], cohesive
energies [45], etc.

Semilocal DFT has achieved a high level of sophistication
and practical success for many problems in chemistry, physics,
and materials science, but it encounters difficulty in the
prediction of reaction barrier heights, band gaps, charge
transfer, and excitation energies. Accurate description of these
properties requires electronic nonlocality [46], which is absent
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in semilocal functionals. Nonlocality can be accounted for
via mixing some amount of exact exchange into a semilocal
DFT. This leads to the development of hybrid [8,13,33,47]
and range-separated functionals [14,48]. The former involve
the exact exchange energy or energy density, while the latter
involve the exact and approximate semilocal exchange holes.

There are three ways to approximate an exchange hole.
It can be constructed from paradigm densities in which the
exact exchange hole is known, such as the slowly varying
density [4,49,50] (the paradigm of condensed-matter physics)
and the one-electron density [7] (the paradigm of quantum
chemistry). It can also be constructed from a density functional
with the reverse-engineering approach [51-53]. A physically
more appealing approach to approximate an exchange hole
is from the density-matrix expansion [24]. Among the three
general methods, the reverse-engineering approach is most
frequently used. However, a semilocal exchange hole based on
the reverse-engineering approach may not be in the gauge of
the conventional exchange hole because a semilocal exchange
energy density is usually not in the conventional gauge [54].
In the construction of a semilocal exchange hole, one must
impose certain exact constraints on a hole to recover the under-
lying exchange energy density, which is usually not in the same
gauge of the conventional exchange energy density, due to the
integration by parts performed in the construction of semilocal
DFT. Examples include the Perdew-Burke-Ernzerhof (PBE)
GGA [49,51] and Tao-Perdew-Staroverov-Scuseria (TPSS)
meta-GGA [52,53] exchange holes. Many range-separated
functionals have been proposed [14,55-58], and some of
them have obtained great popularity in electronic structure
calculations.

The exchange hole in the conventional gauge is of special
interest. For example, the subsystem functional scheme pro-
posed by Mattsson and coworkers [15,59-61] was developed
from the conventional exchange hole of the edge electron
gas [62]. In the present work, we aim to develop an exchange
hole in the conventional gauge. The hole will reproduce
the TPSS exchange energy functional by construction. To
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ensure that our model hole is in the conventional gauge,
we not only impose the exact conventional constraints in the
conventional gauge (e.g., recovery of the correct short-range
behavior without integration by parts) on the hole model but
also modify the TPSS exchange energy density by adding a
gauge function. The present gauge function is similar to the one
proposed by Tao et al. [54], but with a modification so that the
gauge-corrected exchange energy density or underlying hole
is ensured to be negative even in the far density tail. Adding
a proper gauge function to the exchange energy density will
not alter the integrated exchange energy, but it will improve
the agreement of the model hole with the exact conventional
one. Furthermore, the hole model can generate the exact
system-averaged exchange hole accurately by replacing the
TPSS exchange energy density with the gauge-corrected exact
conventional exchange energy density (i.e., in TPSS gauge).
As a simple application, we apply our semilocal exchange
hole to construct a range-separated exchange functional. Our
numerical tests show that this range-separated functional,
when combined with the TPSS correlation functional, can
yield band gaps and barrier heights in much better agreement
with experimental values than the original TPSS functional,
without losing much accuracy of atomization energies.

II. EXACT CONVENTIONAL EXCHANGE HOLE

For simplicity, let us first consider a spin-unpolarized
density (ny =n ). For such a density, the exchange energy
can be written as

Ei[n] = /dSrn(r)ex(r)

_ f d3rn(r)% / PN UL
u

where n(r) = n4 +n is the total electron density, &(r) is
the conventional exchange energy per electron, or, loosely
speaking, the exchange energy density, and px(r,r +u) is
the exchange hole at r 4+ u around an electron at r. It is
conventionally defined by

px(r,r 4+ 1) = —|yi(r,r + w)|*/2n(r). @

Here y(r,r +u) is the Kohn-Sham single-particle density
matrix given by

N/2

yiEr+u) =2 ¢i(r)¢i(r +w), 3)

with N being the number of electrons and ¢;(r) being the
occupied Kohn-Sham orbitals. According to expression (1),
one can regard the exchange energy as the electrostatic
interaction between a reference electron at r and the exchange
hole atr + u. Therefore, strictly speaking, an exchange energy
functional cannot be fully justified unless the underlying
exchange hole has been found. But this issue can be addressed
with the reverse-engineering approach [52].

The exchange hole for a spin-unpolarized density can be
generalized to any spin polarization with the spin-scaling
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relation [63]
nT I’l‘L
pxlng,n] = 7px[2nT] + 7,0x[2n¢]. 4)

Therefore, in the development of the exchange hole, we need
to consider only a spin-compensated density. Performing the
spherical average of the exchange hole over the direction of
separation vector u, the exchange energy of Eq. (1) may be
rewritten as

E[n] =/wdu4nu2/d3rn(r)m, (5)
0 2u

where (o, (r,u))spn is the spherical average of the exchange
hole defined by

A2y,
(ox(rm)spn = [ = px(r.r +w). (6)
o4

This suggests that the exchange energy does not depend on
the detail of the associated hole. Rearranging Eq. (5) leads to
a simple expression

Ey[n] = N/du4nu2M, (7)

2u

where (px.(u)) is the system average of the exchange hole
defined by

1
(ps(w) = / d’rn(r)(px(r,u))sph- ®)

Although the conventional exact exchange hole of Eq. (2)
satisfies the sum rule

/ Pupy(ru) = 1 ©

(the most important property of the exchange hole), the exact
exchange hole transformed to a new coordinate system [64,65]
does not. Nevertheless, the system-averaged hole always
satisfies the sum rule

/ d*ulpu)) = —1. (10)

This is the constraint that has been imposed in the development
of a semilocal exchange hole. While the exchange energy is
uniquely defined, the exchange energy density ex(r) as well as
the exchange hole px(r,r + u) are not. For example, both quan-
tities can be altered by a general coordinate transformation or
by adding an arbitrary amount of the Laplacian of the electron
density, without changing the total exchange energy [54,66].

III. CONSTRAINTS ON THE EXCHANGE HOLE

The conventional exchange hole is related to the pair
distribution function g, (r,r’) by

n(r)px(r,r') = n(r)n(r')g (r,r'). 1n
In general, a semilocal exchange hole can be written as
n()x(0,1 +u) = n(0)Jx(s,2,u5), (12)

where J(s,z,uy) is the shape function that needs to be
constructed, with s = |Vn|/(2kyn) being the dimensionless
reduced density gradient, k; = (37w2n)'/? being the Fermi
wave vector, z = Ty /7, and uy = kru. Here Ty = |Vn|?/8n
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is the von Weizsacker kinetic energy density, and t is the
Kohn-Sham orbital kinetic energy density defined by 7(r) =

M2V

A. Constraints on the shape function

We will seek a shape function that satisfies the following
constraints:
(i) On-top value

J(s,2,0) = —1/2. (13)

(i1) Uniform-gas limit

TG ) = _g |:sin(uf-) - cos(uf):|. (14)

3
Wy
The uniform-gas limit that will be imposed here is the
nonoscillatory model [67] [Eq. (28) for s = 0 and z = 0].
(iii) Normalization

4 / 0oar 2J( ) 1 (15)
— urupJ(s,zup) = —1.
3 0 2y Lus
(iv) Negativity
J(s,z,ur) < 0. (16)
(v) Energy constraint
8 oo
5/ dugusJ(s,zuys) = —F55(s,z2). 17)
0
(vi) Small-u behavior

32J(s,z,ur)

i = Lisa). (18)
up— I

L(s,z) is the curvature of the shape function that will be
discussed below.
(vii) Large-gradient limit

lim J(s,z,uz) = J™P5(s,u ). (19)
§—>00

In the large-gradient limit, the TPSS enhancement factor
approaches the PBE enhancement factor. Therefore, the TPSS
shape function should also approach the PBE shape function
in this limit.

Among these constraints, (vi) is for the conventional ex-
change hole, while (vii) is a constraint used in the development
of the TPSS functional. These two constraints will be discussed
in detail below. In previous works [52,53], constraint (vi) was
used with integration by parts and thus is not a constraint for
the conventional exchange hole, and constraint (vii) was not
considered.

B. Small-u behavior and large-gradient limit

Expanding the spherically averaged exchange hole up to
second order in u yields

LS DY U ] W e
2T T ik '

(20)

Since the Laplacian of the density tends to negative infinity at a
nucleus, the negativity of the exchange hole for small # will be

<:0x (l’, M))sph =
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violated. Therefore, we must eliminate it. In previous works,
the Laplacian of the density is eliminated by integration by
parts [52]. In order to model the conventional exchange hole,
here we eliminate it instead with the second-order gradient
expansion of the kinetic energy density in the slowly varying
limit,

T~ " 4 |Va|?/(72n) + V2n /6. (21)

This technique has been used in the development of the
TPSS [17] and other functionals [18,68] as well as in the
construction of electron localization indicator [69].

Substituting Eqgs. (20) into Eq. (12) and eliminating the
Laplacian V> via (21) yields the small-u expansion of the
shape function

11 31 9 5,
J(S,Z,btf):——-F ( +———s>uf+...’

276\ 10Ttwi 10 6
(22)
leading to
1/3 ¢ 9 5,
wea=—3(gmnre) @
For one- or two-electron densities, L(s,z) reduces to
3/1 8 5
Lez=1D=3(5-5+). (24)

while for the uniform gas, L(s =0,z =0) = é Note that
limg_, ¢ L(s,z = 1) = 3/10, while lim;_ ¢ L(s,z =0)=1/5
(order-of-limit problem).

In the large-gradient limit, the TPSS shape function should
recover the PBE shape function [Eq. (19)]. This requires
that L(s,z) must be merged smoothly with the PBE small-u
behavior,

LPBE(s) = (é - %s2>. 25)

We can achieve this with

1 2 _ 2
LTPSS —erfc(s SO)L(s,z)
2 S0

2 2
+ [1 — %erf0<w>i|LPBE(S), (26)

So

where erfc(x) is the complementary error function defined by
2 [ 2
erfc(x) = 1 —erf(x) = —/ dte™". 27)
T X

Here 5o = 6 is a switching parameter that defines the point at
which the small-u behavior smoothly changes from the TPSS
to PBE. This choice of sy ensures that the small-u behavior of
our shape function is essentially determined by Eq. (22), while
it merges into the PBE shape function in the large-gradient
limit [Egs. (35) and (36) of Ref. [67]].
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IV. SHAPE FUNCTION FOR THE TPSS EXCHANGE HOLE
A. TPSS shape function

The shape function for the TPSS exchange hole is assumed
to take the following form:

9
JTPSS(ufS’Z) — [_ 4_4<1 _ e—Auﬁ,)
u
f

9A 2 4
+|l-—=+ B + C(s,z)uf + G(s,z)uf
4uf

+ K(S,Z)u?,)e—Du?i|e—H(s,z)u§.’ 28)

where A = 0.757211, B = —0.106364, and D = 0.609650
are determined by the recovery of the nonoscillatory
model [67] of the uniform electron gas, while the functions
C(s,2), G(s,2), and K(s,z) are determined by constraints (iii),
(v), and (vi). They can be analytically expressed in terms of
H(s,z) as

1
C— g(4L +343 + 9A2H — 9AD? — 18ADH + 83/\),

29
_ 63 5[ Lress B B
G=-=2 [FX + Aln<x> + Hln(ﬁ>
24 3A 603
Sy [P —— ﬁ) + — AN}
5 («/ﬁ+ﬂ 40
19 11
— —BXM — —Ca, 30
10 10 (30)
K = i}ﬂ(L_ﬁ) _EA)L‘*
35° \VH+ B 35
8 4 2
— —BA — —CA\ = ZGa, 31)
105 35 7

where A = D + H(s,z) and 8 = A + H(s,z). Following the
procedure of Constantin, Perdew, and Tao [52] in the construc-
tion of the original TPSS shape function, here we determine
the s dependence of H(s,z) by fitting to the two-electron
exponential density, because for two-electron densities, z is
identically a constant everywhere in space. It depends only
on the density gradient s. We determine the z dependence of
H (s,z) with the wave-vector analysis of the surface energy in
the infinite barrier model, because in this model, the electron
density, the kinetic energy density, and the exchange hole
are analytically known and the surface energy is also known
accurately.

PHYSICAL REVIEW B 95, 125115 (2017)

B. s dependence of H(s,z)

In iso-orbital regions where z &~ 1 (e.g., core and density
tail regions), we assume that the function H(s,z = 1) takes the
form
_ ho + h1S2 + h2S4 + /’l3S6
" dy+ dis? 4 dost + dssS

I{iso—orb(s,Z — 1) (32)
Note that H™°~°%(s z) has only an even-order gradient
dependence. This is because in the slowly varying limit, the
spherical average of the exchange hole [Eq. (20)] depends only
upon the even-order gradient terms [70]. In the large-gradient
regime, H(s,z = 1) of TPSS should recover H(s) [67] of PBE,

p1s® + pas* + pas®
1 + p4s? + pss* + p6s6‘

For any density between the two regimes, we take the
interpolation formula,

HPBE(S) —

(33)

1 s? — 53 iso—orb
H(s,z = 1) = —erfc H™™(s,z=1)
2 S0
s2 — 52
+ [1 - —erfc( 0)i|HPBE(S) (34)
50

Finally, we insert Eq. (34) into Egs. (29)—(31) and perform the
fitting procedure by minimizing the following quantity:

2
Y oui ((pf*’ss<ui>)sph - (p?a‘”(ui))sph) .39
where (px(u))spn is the spherical system average of the
exchange hole defined by Eq. (8). We can express
(ox(u))sph in terms of the shape function as (ox(u))sph =
(1/N) [ d*rn(r)*J(s,z,us). For numerical convenience, we
replace the integral with discretized summation. All the
parameters for H(s,z = 1) and H (s) are listed in Table 1.

Figure 1 shows the system-averaged exchange hole for the
two-electron exponential density evaluated with different hole
models compared to the exact one. We can observe from Fig. 1
that the present TPSS hole is slightly closer to the conventional
exact hole than the original TPSS hole, but it is much closer
than the PBE GGA and LSDA holes.

C. Infinite barrier model and wave-vector analysis
for surface energy

As discussed above, in iso-orbital regions, the s depen-
dence of H(s,z) is determined by fitting the model hole to
the conventional exact exchange hole for the two-electron
exponential density. In the uniform-gas limit, our exchange
hole should correctly reduce to the nonoscillatory model [67]
of the LSDA. This requires H(s,z) to vanish in this limit. To

TABLE I. Parameters of the TPSS shape function H(s,z = 1) of Eq. (34) and the PBE shape function H (s) of Eq. (33) determined by a fit

to the two-electron exponential density.

H(s,z =1) of Eq. (34)

H(s) of Eq. (33)

h() h] h2 h3 d() dl d2

ds D1 D2 D3 D4 Ds Ds

0.0060 2.8916 0.7768 2.0876 13.695

—0.2219 49917 0.7972 0.0302

—0.1035 0.1272 0.1203  0.4859 0.1008
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-0.3 » LSDA www ]

u (bohr)

FIG. 1. System-averaged exchange hole for the LSDA, PBE
GGA, and TPSS meta-GGA for the two-electron exponential den-
sity. “TPSS-original” represents the original TPSS hole model of
Constantin, Perdew, and Tao [52], while “TPSS-present” represents
the present TPSS hole model. The area under the curve is the
exchange energy (in hartrees): ELSPA = —0.5361, EPBE = —0.6117,
ETPSS = —0.6250, and E®* = —0.6250. Both the original and present
TPSS holes yield the same exchange energy due to the same energy
constraint.

fulfill these considerations, we assume that

1 s? — s(% iso—orb
H(s,z) = —erfc H" (s,z = D"
2 S0
1 2 _ 2
+ [1 - zerfc<s " % )}HPBE(S), (36)

where m is an integer. In order to determine m, we follow
the procedure of Ref. [52] to study the wave-vector analysis
(WVA) of the surface energy. But instead of using the jellium
surface model with a linearly increasing barrier, here we
employ the exactly solvable infinite barrier model (IBM).
Since the single-particle density matrix and hence the electron
density of IBM is analytically known, this allows us to obtain
insight into the z dependence of H (s,z) from this model more
easily.

0.4

0.3 ]

0.2 + ]

0.1 ¢ ]

I.(k) [a.u]

25 3 35 4 45 5

FIG. 2. I'(k) of Eq. (43) and smooth fit.
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Let us consider a uniform gas of noninteracting electrons
subject to an infinite potential barrier perpendicular to the x
axis (V — oo for x < 0). The one-particle density matrix is
given by [71,72]

n,r) =i [J(uf) —J(Juy+ 4xfx/f>]®(x)®(x/),
(37)

where ©(x) is a step function, with ®(x) =1 for x > 0
and ®(x) = 0 for x < 0. Here 7 is the average bulk valence
electron density, xy = xky, xf =x'kg,uy =|r—r'|ky, and

J(€) =31(8)/8, (38)

with ji (&) = sin(£) /&2 — cos(£)/£ being the first-order spher-
ical Bessel function. The electron density can be obtained from
the single-particle density matrix by taking u = |[r' —r| =0
in Eq. (37). This yields

n(x) =n[l — J2x,)]|O(x). 39)

The WVA for the surface exchange energy density is given
by [52]
sin(ku)
ku

Yx(k) = /DostSkfusz(u) , (40)
0

where

by(u) = / dxn()[ o) — P @], @1)

o0

The exchange hole p,(x,u) of IBM can be obtained from the
one-particle density matrix of Eq. (37). With some algebra, we
can express the WVA surface exchange energy as [73]

1 o0
o / dk, y2(k), 42)
2 Jo

where k, = k/kp, y:(k,) is given by

8 [ )
Yalky) = k—2/ du g b(u p)usinc(k,u r)
0

f
! 'k 43
= Gy (kr), (43)
and
ﬁz oo
bx(uf) = _i d)Cf ix(xf,uf). (44)
fJ0

Here sinc(x) = sin(x)/x, and iy (xy,us) = 216:1 Xi(xpup),
with x;(x r,u r) being defined by Eq. (3.18) of Ref. [73].

Figure 2 shows the exact variation of I'(k,) with k,.. Figure 3
shows the comparison of approximate I'(k,) with the exact
curve (red) for different m values. The area under the curve is
proportional to the surface exchange energy. From the electron
density and density matrix of IBM given by Eqgs. (37) and (39),
the exact surface exchange energy can be calculated with the
WVA of Eq. (42). Langreth and Perdew [73] reported that
the value of 0, 10%#3 is 4.0 a.u., where r; is the Seitz radius.
This value is slightly smaller than the value obtained earlier
by Harris and Jones [74] and Ma and Sahni [75] (4.1 a.u.).
Our present work gives 3.99 a.u., which is closer to that of
Langreth and Perdew.
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0.4

0.3
0.2
: 0.1

0

3
S,
= |
-0.1 R
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FIG. 3. Analysis of z dependence of the WVA for the present
TPSS hole of Eq. (28). The z3 curve provides the best fit to the peak
region of the exact I'(k,) of Eq. (43).

D. z dependence of H(s,z)

The z dependence of H(s,z) [Eq. (36)] can be determined
by fitting the TPSS hole to the wave-vector analysis. We start
with the specific expressions for the local ingredients of the
hole model in IBM.

From the electron density of Eq. (39), the reduced density
gradient can be explicitly expressed as

3 [sinc(2xy) — J(2xy)|

s(xp) = E TN (45)

The kinetic energy density can be obtained from the single-
particle density matrix of Eq. (37). This yields

3 1 9 .
T(xf) = k%ﬁ{m + EJ(zxf) + @[Slnc(fo) — J(zxf)]}.

(46)

Finally, the von Weizsacker kinetic energy density can be
expressed as

(47)

kg { [sinc(2x ;) — J(2x f)]z}
W= 8x2 1—J(2xy) '

Next, we calculate y, from the TPSS hole. Inserting the
TPSS model hole into Eq. (41) yields

b(u) = / i n()[py "> () — pi" W)
0

~2 [e9)

_ Z_f 0 dxs[1—JQxp)I[1 — J(2x))]
x TS (u /T = J(2xp).s(xp).2(xf))
_Junif(uf)}_ (48)

[Note that ®(x) is implicit on the electron density.] Substitut-
ing Eq. (48) into Eq. (40), we obtain

Sﬁ o0 o0
= [ dxs [ dugiurky @)
7= Jo 0
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0.4 ‘ ‘ ‘ ‘
TPSS-present —

0.3 1 TPSS-original 1

0.2 + PBE - |
s Exact —
o1} |
;”E 0 “':;..‘.' _

0.1 ) |

0.2 [ |

-0.3

FIG. 4. Comparison of the WVA for the present and original
TPSS hole models as well as the PBE hole with the exact one.
“TPSS-present” represents the present TPSS hole model, while
“TPSS-original” represents the original TPSS model.

where

Jelup,xp k) = 10° ) Py 0(x )5 (xp),2(x5))
— 0Cx )™ (u p)]sinc(kyu fu (50)

and o(x¢) = 1 — J(2xy). Rearrangement of Eq. (49) leads to
the final expression

1
(JTFA-)3

yalk) = S (k,), (51

where
o0 o0
FTPSS(k,)=2/ / dxsduyj(us,xsk).  (52)
0 0

Figure 3 shows the comparison of H(s,z) with different
choices of m to the exact one. From Fig. 3, we see that the
best fit to the exact I'(k,) in the peak region is m = 3. Figure 4
shows that, compared to the WVA of the LSDA, PBE, and
original TPSS holes, the WVA of the present model is closest
to the exact one in the peak region. To further understand the
original and present TPSS models, we plot the TPSS shape
function of the present and the original models in IBM at
z = 0.55, as shown by Figs. 5 and 6, respectively. From Figs. 5
and 6, we observe that while the present model hole is always
negative, the original TPSS hole can be positive in some range
of uy ands.

To check our wave-vector analysis for the surface exchange
energy, we have computed o, from

oo
oy = / dx n(x)[e;(n) — €2 ()] (53)
—00
The results are shown in Table II. From Table II, we can
see that the surface energy from the WVA of the TPSS
hole (both original and the present version) agrees very well
with the surface energy calculated directly from the TPSS
exchange functional [Eq. (53)]. Furthermore, the TPSS surface
energy is closer to the exact value than those of the LSDA
and PBE. The LSDA significantly overestimates the surface
exchange energy, while the PBE gives underestimation. These
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FIG. 5. Present TPSS shape function of Eq. (28) for z = 0.55.

observations are consistent with those evaluated from the
jellium surface linear potential model [45]. It is interesting
to note that even though the original TPSS shape function
in a certain range is positive, the surface energy from the
original TPSS hole is the same as that from the present model.
This result is simply due to the cancellation of the original
hole model between positive values and too negative values at
certain u ; and s values, as seen from the comparison of Fig. 6
to Fig. 5. The IBM surface energy presents a great challenge
to semilocal DFT. It is more difficult to get it right than the
surface energy of the jellium model with finite linear potential
because the electron density at the surface of IBM is highly
inhomogeneous due to the sharp cutoff at surface and is too
far from the slowly varying regime where semilocal DFT can
be exact (e.g., TPSS functional).

Figure 7 shows a comparison of the differences of the
system-averaged hole between the approximations and the
exact curve for the LSDA, PBE, and the original and present
TPSS exchange hole models of the Ne atom, in which z is,
in general, different from O (slowly varying density) and 1
(iso-orbital density). The PBE and LSDA curves are plotted
with the hole models of Ref. [67]. From Fig. 7 we can see
that, except for the small region near the core, the present

Original R

J(uy, s,z =0.55)

FIG. 6. Original TPSS shape function for z = 0.55.
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TABLE II. Comparison of the surface exchange energies (in a.u.)
of the IBM surface (expressed as o,7,210%) calculated directly with
exchange energy functionals and with the WVA formula. The exact
value (obtained in this work) is 3.99 a.u.

Eq. (53) WVA integration
LSDA 6.318
PBE 2.576
TPSS 2.945 2.95 (original hole)

2.95 (present hole)

TPSS hole model is closer to the exact one than the original
TPSS hole model, but both TPSS models obviously improve
the system-averaged holes of the LSDA and PBE.

V. TPSS HOLE IN THE GAUGE OF THE CONVENTIONAL
EXACT EXCHANGE

The shape function explicitly depends on the enhancement
factor via the energy constraint of Eq. (17). The latter may
be altered by adding an arbitrary amount of the Laplacian of
the density without changing the total exchange energy. This
ambiguity of the exchange energy density [66] leads to the
ambiguity of the semilocal exchange hole. Our primary goal of
this work is to develop a semilocal exchange hole in the gauge
of the conventional exact exchange. This is partly motivated
by the fact that, in the development of range-separated density
functionals, the exact exchange part is usually provided in the
conventional gauge.

The exact exchange energy density in the conventional
gauge can be conveniently evaluated with the Della Sala—
Gorling (DSG) [76] identity resolution

1
elon(¥) = 5 3 O Xu (X (0), (54)
v

where Q° is the spin block of the DSG matrix [54]. However,
many semilocal exchange energy densities or enhancement

TPSS-present — |
TPSS-original -

B PBE -oo- ]

= LSDA -

= . ]

t: L]

(o]

<

3 ‘ ‘ | |
0 0.4 0.8 1.2 16 9

u (bohr)

FIG. 7. Comparison of the difference of the system-averaged
hole between the approximations and the exact curve for the Ne
atom. “TPSS-present” represents the present TPSS hole model, while
“TPSS-original” represents the original TPSS model.

125115-7



TAO, BULIK, AND SCUSERIA

factors of Eq. (17) are not in the gauge of the conventional exact
exchange due to the constraints such as the Lieb-Oxford bound
and the slowly varying gradient expansion (with integration by
parts) imposed on the enhancement factor. For example, for the
two-electron exponential density, the conventionally defined
exact enhancement factor is less than 1 near the nucleus, while
the TPSS enhancement factor is F1*55 > 1 by design. In the
density tail region, the conventional exact enhancement factor
tends to infinity, but the maximum value of F55 is 1.804.
To construct the TPSS exchange hole in the conventional
gauge, we can replace the original energy density constraint
[Eq. (17)], which was used in the construction of the original
TPSS exchange hole [52], with the TPSS exchange energy
density or enhancement factor in the conventional gauge. In
this gauge, the TPSS exchange energy density can be written
as [54]

EIPSS(I') — eIPSS,C()nV(r) 4 G(l‘), (55)

where eIP55(r) is the standard TPSS exchange energy den-
sity [17] (i.e., A = 0.92) and e?S5-<°"(r) is the TPSS exchange
energy density in the exact conventional gauge (i.e., A = 1),
with A being the general coordinate transformation parame-
ter [54,64,65]. Here e, (r) = n(r)e,(r). Equivalently, we can
also write

eix,lpssg(r) — eix,corw(r) + G(l‘), (56)
where e§"*¥(r) is the exact exchange energy density in
TPSS gauge and eJ*“°™(r) is the exact conventional exchange
energy density evaluated from the single-particle density
matrix [Egs. (2)—(6)]. Based on the uniform and nonuniform
coordinate scaling properties of the exact exchange energy
density, Tao, Staroverov, Scuseria, and Perdew (TSSP) [54]
proposed a gauge function

G(r) = aV - [f(r)VE], (57)
_ n/é* W\? s3
F= () oY

Here a = 0.015 and ¢ = 0.04 are determined by a fit to the
conventional exact exchange energy density of the H atom, and
b is an integer which is chosen to be 4 due to the consideration
of sodium jellium sphere clusters. € = —e{*" is the exact
exchange energy density in the conventional gauge. This gauge
function is integrated to zero, i.e., f d*rG(r) =0, as required.
It satisfies the correct uniform coordinate scaling relation,
G,.(r) = A*G(Ar), and nonuniform coordinate scaling relation
G (x,y,2) = AG(Ax,y,2).

However, in the far density tail (r — oco) of an atom,
the exact exchange energy density in the conventional gauge
decays as e{“°™ ~ —n/2r, but the original TSSP gauge
function decays as G(r) ~ n. As aresult, the exchange energy
density in this gauge becomes positive in the density tail region.
In order to fix this deficiency, we impose a constraint on the
density tail,

G
lim =0. (59)

00 e)c(onv
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FIG. 8. Comparison of the system-averaged holes for the two-
electron exponential density. “Exact” represents the conventional
exact system-averaged hole pJ*(r,u) (red) from Egs. (4)—(6),
“TPSS” represents the present TPSS system-averaged hole (blue)
from Eqs. (28)-(31) and (36) with Table  and m = 3, “TPSS(Exact)”
represents the system-averaged hole (green) generated from the
TPSS hole but with FP5(r) of Eq. (17) replaced by F&(r),
and “TPSS(Exact,gTPSS)” represents the system-averaged hole
generated from e;”**%(r) of Eq. (56) (purple).

This can be achieved by requiring that in the r — oo limit, G
decays as n” with p > 1. Here we choose p = % and take the
same form of the TSSP gauge function, but with f given by

) ey’
f= 1+ c(n/e3)52 (T) ' (60)

Here a = 0.01799 and ¢ = 0.00494 are determined by fitting
the TPSS system-averaged hole in the conventional gauge to
the exact system-averaged hole of the two-electron exponential
density. The fitting procedure is the same as that in the
determination of the H(s,z = 1) function. The parameter b =
4 remains the same as that in the original version [Eq. (58)].
our present gauge function retains all the correct properties that
the original gauge function satisfies, including the nonuniform
coordinate scaling property.

Figure 8 shows the comparison of the present TPSS system-
averaged exchange hole and the exact conventional system-
averaged exchange hole calculated from the present TPSS hole
model but with FxT PSS(r) of Eq. (17) replaced by F&(r) with
and without the gauge correction of Eq. (60) to the exact
conventional one [Egs. (4)—-(6)]. From Fig. 8 we can observe
that the exact system-averaged exchange hole generated from
the present TPSS hole model without the gauge correction
significantly deviates from the exact system-averaged hole.
However, the agreement has been significantly improved with
our present gauge correction [Eq. (60)].

Figure 9 shows the comparison of the TPSS exchange
energy density evaluated with the TPSS functional without and
with the gauge correction to the exact conventional exchange
energy density for the two-electron exponential density. From
Fig. 9, we can observe that the effect of the present gauge
correction defined by Eq. (60) is small for the present TPSS
hole. However, as observed in Fig. 8, it is important for the

125115-8



SEMILOCAL EXCHANGE HOLE WITH AN APPLICATION ...

-0.1 + |
—-0.2 |
3
=)

Exact —

04 | TPSS — |

Exact-gTPSS e

-0.5 L L L L L

0 0.5 1 1.5 2 2.5 3

r (bohr)

FIG. 9. Comparison of the exchange energy densities for the
two-electron exponential density calculated with different approx-
imations to the exact one. “TPSS” represents the TPSS exchange
energy density calculated directly from the TPSS exchange energy
functional; “gTPSS” represents the gauge-corrected TPSS exchange
energy density.

conventional exact exchange hole evaluated with the present
TPSS hole.

VI. APPLICATION TO RANGE-SEPARATED
EXCHANGE FUNCTIONAL

As a simple application, we apply the present TPSS hole
model to construct a range-separated functional. In general,
there are two ways to construct a range-separated functional,
simply depending on the need. For example, we may employ a
semilocal DFT as the long-range part, while the exact exchange
is used for the short-range part, as pioneered by Heyd,
Scuseria, and Ernzerhof [14]. This kind of range-separated
functional is developed largely for solids and is particularly
useful for metallic solids because usual hybrids require much
larger momentum cutoff for metallic systems with electrons
nonlocalized. Nevertheless, this range-separated functional is
also accurate for molecules. We may also employ a semilocal
DFT for the short-range part, while the exact exchange is used
for the long-range part, as developed by Henderson et al. [67]
on the basis of the PBE hole. These kinds of range-separated
functionals are usually developed for molecular calculations
because the improved long-range part of the exchange hole
will improve the description of molecular properties. Many
range-separated functionals have been proposed [48,77-81].
In the following, we will explore the TPSS hole-based range-
separated functional with the TPSS exchange functional being
the long-range (LR) part and the Hartree-Fock exchange being
the short-range (SR) part, aiming to improve the too small band
gaps and reaction barrier heights of the TPSS functional.

The idea of the construction of our TPSS-based range-
separated functional is rooted in the construction of the usual
one-parameter hybrid functionals, which, in general, can be
written as

EM = gEFF + (1 — a)E} + EY, (61)

PHYSICAL REVIEW B 95, 125115 (2017)

TABLE III. Band gaps (in eV) calculated with the LSDA, PBE,
HSE, TPSS, and TPSS-based range-separated functional with a =
0.25 and w = 0.10 (PW = present work) compared to experiments.
ME stands for mean error and MAE stands for mean absolute error.

LSDA PBE TPSS HSE PW Expt.
C 4.17 4.2 4.24 543 548 5.48
CdSe 0.31 0.63 0.85 1.48 1.82 1.90
GaAs 0.04 0.36 0.6 1.11 1.44 1.52
GaN 2.15 222 2.18 348 35 3.50
GaP 1.56 1.74 1.83 239 253 2.35
Ge 0.13 0.32 0.8 0.99 0.74
InAs 0 0.08 0.57  0.85 0.41
InN 0 0 0 072 0.75 0.69
InSb 0 047  0.73 0.23
Si 0.53 0.62 0.71 1.2 1.31 1.17
ZnS 2.02 23 2.53 344 378 3.66
ME —0.89 —0.86 —0.76 -0.12  0.14

MAE 0.89 0.86 0.76 0.15  0.17

where a is the mixing parameter that controls the amount of
exact exchange mixed into a semilocal (sl) functional.

Following the prescription of Heyd, Scuseria, and Ernz-
erhof (HSE) [14], we write the TPSS-based range-separated
functional as

Ex = aEf™R + (1 —a)E]SR + EMR + EY, (62)

where EHFSR g the Hartree-Fock (HF) exchange serving as
part of the short-range contribution, while E$"R is the TPSS
exchange that provides the rest of the short-range contribution.
E? is the TPSS correlation. The long-range contribution is
provided fully by the TPSS exchange ES'R. They are given,
respectively, by

1 [ fi
G?F'SR = 5/ du4nu2p§F(r,u)M, (63)
0 u

1 (> rf
SLSR E/ du4nu2pgpss(r’u)ecuﬂ, (64)
0

X

oo
eSMIR l/ du4nu2prSS(r,u)erf(w“), 65)
2 0 u

where w is a range-separation parameter and erf(x) is the error
function defined by Eq. (27). From Egs. (62)—(65), we can
see that the amount of exact exchange mixing is controlled by
two parameters, a and w. Determination of them is discussed
below. To test this functional, we have implemented it into the
developmental version of GAUSSIAN 09 [82].

In the TPSS-based hybrid functional (TPSSh) [33],a = 0.1
was fitted to 223 G3/99 atomization energies. In other words,
the optimal value of a is 0.1 for TPSSh. If we consider
only atomization energy, then the best value of w in the
TPSS-based range-separated functional should be zero if
a = 0.1 is chosen. Since, in the range-separated functional,
some amount of the exact exchange (here the long-range
part) in the TPSSh is replaced by the TPSS functional, to
compensate for this, we need a value of a larger than 0.1. Then
we can find the best range-separated parameter w by fitting
to some electronic properties. This situation is different from
PBE-based range-separated functionals, in which the mixing
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TABLE IV. AE6 atomization energies (in kcal/mol) calculated
with the LSDA, PBE, TPSS, TPSSh, HSE, and TPSS-based range-
separated functional with a = 0.25 and w = 0.10 (PW = present
work) compared to experimental values [84]. ME stands for mean
error and MAE stands for mean absolute error.

LSDA PBE TPSS TPSSh HSE PW  Expt.
SiHy 3474 3132 3337 3336 3145 3336 3224
SiO 2239 19577 186.7 1820 182.1 1754 192.1
S, 135.1 114.8 108.7 1059 1063 1019 101.7
Cs;Hy 802.1 7212 707.5 7044 7059 699.9 704.8
C,H,0, 7549 665.1 636.0 6280 6353 6164 6334
C4Hg 1304 1168 1156 1154 1152 1152 1149
ME 774 124 4.1 075 —-12 —-40
MAE 71.4 15.5 5.9 6.1 4.8 8.8

parameter @ = 1/4 in PBEO [13] can be retained. To avoid
possible overfitting, here we choose a = 1/4, a value that
was recommended by Perdew, Ernzerhof, and Burke [83] and
adopted with the PBEO functional [13]. The parameter w is
determined by a fit to the band gap of diamond (C). This
yields w = 0.1. Then we apply this range-separated functional
to calculate the band gaps of 10 semiconductors. The results are
listed in Table III. From Table III, we see that the band gaps of
this range-separated functional are remarkably accurate, with
a mean absolute deviation from experiments of only 0.17 eV,
about the same accuracy as the HSE functional. We can also see
from Table III that the TPSS-based range-separated functional
will be expected to yield a more accurate description for
large band-gap materials and therefore provides an alternative
choice for band-gap and other solid-state calculations.

Next, we apply our range-separated functional to calculate
atomization energies of six molecules (AE6). The results are
listed in Table IV. From Table IV, we can see that our range-
separated functional worsens the atomization energies of the
TPSS functional for this special set only by about 3 kcal/mol.
This error is still smaller than many other DFT methods such
as the LSDA and PBE.

Reaction barrier heights are a decisive quantity in the
study of chemical kinetics. However, semilocal functionals
tend to underestimate this quantity. As another application,
we apply our range-separated functional to calculate six
representative reaction barrier heights (BH6), which consist

PHYSICAL REVIEW B 95, 125115 (2017)

of three forward (f) and three reverse (r) barrier heights.
The results are listed in Table V. For comparison, we also
calculated these barrier heights using the PBE, TPSS, TPSSh,
and HSE. From Table V, we observe that our range-separated
functional provides a substantially improved description for
barrier heights compared to the TPSS and TPSSh functionals.

VII. CONCLUSION

In conclusion, we have developed a conventional semilocal
exchange hole underlying the TPSS exchange functional. The
hole is exact in the uniform-gas limit and accurate for compact
iso-orbital densities. It satisfies the constraints that the TPSS
exchange functional satisfies. It also satisfies the constraints on
the conventional exchange hole. The hole can be regarded as an
interpolation between the two-electron exponential density and
the IBM jellium surface. Numerical tests on H and Ne atoms
show that the hole mimics the conventional exact exchange
hole quite accurately. In particular, with our present gauge
function correction, the hole model can generate the exact
system-averaged hole accurately.

As an immediate application, we have employed the
exchange hole model to construct a range-separated functional.
Our tests show that this functional can yield accurate band
gaps, in particular for insulators, and reaction barrier heights
without losing much accuracy for atomization energies. Since
TPSS is more accurate than PBE for many properties and since
the PBE hole has been thoroughly explored in recent years,
development of TPSS hole-based range-separated functionals
is of general interest. Recently, Arbuznikov and Kaupp [21]
found that the gauge function has some effect on local hybrid
functionals. It is expected that our present gauge function can
be useful in the development of nonlocal functionals.
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TABLE V. BH6 reaction barrier heights (in kcal/mol) calculated with the PBE, TPSS, TPSSh, HSE, and TPSS-based range-separated
functional with @ = 0.25 and w = 0.10 (PW = present work) in comparison with reference values [85,86]. Here f (r) = forward (reverse)
barrier height. ME stands for mean error and MAE stands for mean absolute error.

PBE TPSS TPSSh HSE PW Reference
OH + CH; — CH; + H,0 —5.29 —0.97 1.50 1.96 4.86 6.54(f)
8.95 9.90 11.79 13.9 14.3 19.6(1r)
H+OH— O+H, 3.69 —1.56 —0.15 7.06 1.75 10.5(f)
—1.47 473 6.90 5.93 9.89 12.9(r)
H+H,S — H, +HS —1.20 —4.55 —-3.72 1.03 —2.64 3.55(f)
9.40 12.72 13.4 124 14.4 17.3(r)
ME —-9.37 —8.34 —6.76 —4.66 —4.63
MAE 9.37 8.34 6.76 4.66 4.63
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