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Most quasi-one-dimensional (quasi-1D) quarter-filled organic charge-transfer solids (CTS) with insulating
ground states have two thermodynamic transitions: a high-temperature metal-insulator transition followed by
a low-temperature magnetic transition. This sequence of transitions can be understood within the 1D Peierls-
extended Hubbard (PEH) model. However, in some quasi-1D CTS both transitions occur simultaneously in a
direct metal to spin-gapped insulator transition. In this second class of materials the organic stack bond distortion
pattern does not follow the pattern of a second dimerization of a dimer lattice. These materials also display charge
ordering of a large amplitude below the transition. Using quantum Monte Carlo methods we show that the same
PEH model can be used to understand both classes of materials, however, within different parameter regions. We
discuss the relevance of our work to experiments on several quarter-filled conductors, focusing in particular on
the materials (EDO-TTF)2X and (DMEDO-TTF)2X.

DOI: 10.1103/PhysRevB.95.125114

I. INTRODUCTION

Molecular charge-transfer solids (CTS) are widely studied
because of their many complex electronic states. Small
structural changes can lead to very different electronic be-
haviors. These effects have been studied extensively in the
quasi-one-dimensional (quasi-1D) CTS, in particular for the
three-quarter-filled (with density ρ = 0.5 holes per molecule)
materials (TMTSF)2X and (TMTTF)2X, which become super-
conducting under the application of pressure [1]. The ground
state of a 1D system of electrons with coupled lattice degrees
of freedom is an insulating Peierls state. It is often assumed for
strongly correlated ρ = 0.5 systems that this insulating ground
state is reached through two thermodynamic transitions, with
bond dimerization or period two charge order (CO) occurring
first at the higher metal-insulator (MI) transition, followed
by a small amplitude bond alternation between the localized
charges or dimers (for a recent review, see Ref. [2]). Examples
of materials with two transitions are MEM(TCNQ)2 and
(TMTTF)2X.

However, in some ρ = 0.5 quasi-1D CTS, a single tran-
sition takes place between the high-temperature metallic
state and the low-temperature spin-gapped state. This single
transition is accompanied by the opening of both charge and
spin gaps. CO amplitudes for this second class of materials
are large, with high transition temperatures. One example is
(EDO-TTF)2PF6, where the transition temperature is 280 K
and the CO amplitude below the transition is approximately
0.9:0.1 [3–5]. It has been assumed that the simplest model
incorporating electron-electron (e-e) and electron-phonon
(e-p) interactions, the Peierls-extended Hubbard model (see
Sec. II A), cannot account for this large CO amplitude [4,6].
It has been suggested that additional interactions, such as
molecular bending [7] or electronic polarization effects [6]
are therefore driving the transition. A similar material is
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(DMEDO-TTF)2X, X = ClO4 and BF4, where there is also
a single transition. It has been proposed that anions drive the
transition [8]. The CO amplitude is currently unknown.

The goal of the present work is to show that bond distorted
states with both small and large CO amplitudes can be
understood within the same one-dimensional fundamental
theoretical model, albeit within different parameter regions.
Molecular bending [7] and cation-anion interactions [8] act
cooperatively with the underlying bond distortion of the
organic stacks. Through a systematic numerical study, we show
that with increasing e-e interaction strength, a crossover occurs
between two different bond-charge-density waves (BCDWs),
which we will label BCDW1 and BCDW2 (see Fig. 1).
BCDW1 [Fig. 1(b)] has been widely studied and is intuitively
understood as a second dimerization of a dimer lattice. The
BCDW2 bond distortion pattern, however [Fig. 1(a)], does
not fit the pattern of dimerization of a dimer lattice. We
show that BCDW2 is characterized by a much larger charge
disproportionation amplitude than BCDW1.

The outline of the paper is as follows: In Sec. II A we define
the model and theoretical quantities, followed by calculations
in the limit of zero e-p interactions in Sec. II B, and BCDW
order parameters in Sec. II C. In Sec. III we compare our results
with experimental studies of several materials.

II. RESULTS

A. Theoretical framework

A well-established minimal model for the 1D CTS is the
1D Peierls-extended Hubbard model,
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FIG. 1. Bond distortion patterns coexisting with · · · 1100 · · ·
CO in the quarter-filled band. Filled (unfilled) circles indicate
molecules with charge density 0.5 + δ (0.5 − δ). (a) BCDW2 with
bond distortion pattern strong-medium-weak-medium (SMWM). The
double line indicates a stronger bond (S) than a single line (M),
and solid lines indicate bonds stronger than dashed lines (W). The
arrows indicate charge transfer paths which influence the relative
strength of the 1-1 and 1-0 bonds (see Sec. II B). (b) BCDW1 with
pattern strong-weak-strong-weak′ (SWSW′). The single (S) bond is
strongest, followed by double dashed (W′) and single dashed (W).
(c) Schematic evolution with increasing nearest-neighbor Coulomb
repulsion V from BCDW2 → BCDW1 → 4kF CO. For moderate V ,
Coulomb repulsion of the neighboring charge-rich sites strengthens
the BCDW1 bond distortion (see text).

In Eq. (1), c
†
i,σ (ci,σ ) creates (annihilates) an electron of

spin σ on site i, ni,σ = c
†
i,σ ci,σ , and ni = ni,↑ + ni,↓. �i is

the deviation of the bond between sites i and i + 1 from
its equilibrium length and α is the intersite e-p coupling
with spring constant K1. Intramolecular distortions on each
molecule are parametrized by the phonon coordinate νi ;
g is the intrasite e-p coupling with K2 its corresponding
spring constant. U and V are the on-site and nearest-neighbor
Coulomb interactions, respectively. We give energies in units
of t .

At quarter filling (ρ = 0.5), charge and bond ordering at 2kF

(period four) or 4kF (period two) dominate. The occurrence of
4kF CO requires V > Vc, where the critical value [9] Vc = 2 in
the limit U → ∞ but is larger than 2 for finite U (see Fig. 3).
In applying Eq. (1) to the 1D CTS, it is also expected that
V < U

2 , based on comparison to ρ = 1 1D CTS [10]. Here
we restrict our analysis to (U,V ) with V < Vc and V < U

2 . A
general form for �j can be written as [11]

�j = �0[a2 cos(2kFj − φ2) + a4 cos(4kFj − φ4)], (2)

where �0 is the overall amplitude of the bond distortion, a2

and a4 are the amplitudes of the 2kF and 4kF components,
respectively, and φ2 and φ4 their phases.

For moderate U and V , the two bond distortion patterns
that occur [11] are shown in Fig. 1. In both, the charge
density follows the pattern · · · 1100 · · · , where 1 (0) indicates
a molecule with charge density 0.5 + δ (0.5 − δ). In BCDW2
[Fig. 1(a)] the strongest bond is between the two large charge
densities, and the hopping integrals follow the pattern strong-
medium-weak-medium (SMWM). In BCDW1 [Fig. 1(b)], the
pattern of hopping integrals in the ground state is instead
strong-weak-strong-weak′ (SWSW′), where the W bond is
slightly weaker than the W′ bond.

Prior theoretical work [2] has focused almost entirely on
the competition between BCDW1 and the 4kF CO, and only

large U and V near Vc has been studied. In this region the
amplitude of the 2kF CO is weak [12–15]. As we will show
in the next sections, this is not always the case—for moderate
U and V in combination with strong e-p coupling, the CO
amplitude can be quite large, provided the bond pattern is that
of BCDW2.

B. Effect of U and V on bond distortion pattern

Before presenting our numerical results we show how
the existence of BCDW2 at small (U,V ) and a crossover
to BCDW1 at larger (U,V ) are to be anticipated, from
configuration-space-based physical arguments. The arrows
in Fig. 1(a) indicate possible charge transfers within the
· · · 1100 · · · CO configuration. The expectation value of the
charge transfer in the ground-state wave function is the bond
order, the strength of the bond. As indicated in the figure,
there are two possible charge transfers across the 1-1 bond,
giving the configurations · · · 2000 · · · and · · · 0200 · · · . In
contrast, charge transfer across the 1-0 bond occurs only in one
direction, and there is no charge transfer across the 0-0 bond.
Thus the 0-0 bond is weaker than either of the other two bonds.
At weak U the penalty for double occupancy is small, and
two possible charge transfers across the 1-1 bond is therefore
enough to make this bond stronger than the 1-0 bond. As U

increases, the larger penalty for double occupancy outweighs
the larger number of charge transfers, and the reverse becomes
true. The effect of V can be understood within the same
physical picture, as is indicated in Fig. 1(c). At the extreme left
is the BCDW2 configuration with the 1-1 bond the strongest.
As V is slowly increased from 0, initially it simply pushes the
charge-rich sites further apart, making the 1-1 bond weaker
and the 1-0 bonds stronger, without actually destroying the
basic · · · 1100 · · · arrangement. This suggests that there exists
a region in phase space where for each U there is a range of
V where the V actually enhances the · · · 1100 · · · BCDW1.
This occurs until V > Vc, where the transition to the 4kF CO
occurs.

The above is for the spin-singlet ground state only. As
the temperature is raised, the free energy is dominated more
and more by high spin states with greater multiplicities. Note
that in the ferromagnetic configuration there can be no charge
transfer across the 1-1 bond, and it becomes equivalent to the
0-0 bond. There then exists a temperature where the high spin
states contribute more than the singlet state to the free energy,
and the BCDW1 transforms to the bond-dimerized state. Since
large U raises the energy of the spin-singlet state relative to the
high spin states, bringing them closer, it follows that the larger
the U , the greater is the tendency to the 4kF bond dimerization,
provided V < Vc.

The tendency to bond distortion at wave vector q is
measured by the bond susceptibility [16], χB(q), defined as

χB(q) = 1

N

∑
j,l

∫ β

0
eiq(j−l)〈B̃j (τ )B̃l(0)〉dτ. (3)

In Eq. (3), B̃j (τ ) = e−τH B̃j e
τH where B̃j = Bj − 〈B〉 and

Bj = 1
2

∑
σ (c†j+1,σ cj,σ + H.c.). β is the inverse temperature

and N the number of sites. The crossover from BCDW2 to
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BCDW1 occurs at a specific ratio of a4 to a2 in Eq. (2) and may
therefore in the limit of 0+ e-p phonon coupling be determined
by comparing χB(2kF) and χB(4kF).

In Eq. (2) the phase angles for both BCDW states are [11]
φ2 = π

2 and φ4 = 0. While BCDW2 is nearly a pure 2kF bond
distortion, BCDW1 requires a significant 4kF component. The
minimum a4 in Eq. (2) for the BCDW1 pattern occurs when
the “S” and “W′” bonds are of equal strength. From this one
can derive the condition that a4/a2 > 1

2 for BCDW1 [11,17].
Further assuming the normalization a2 + a4 = 1, this implies
a4 > 1

3 for BCDW1.
The discrete Fourier transform of �j�l with respect to (j −

l) is �2
0a

2
2N/4 at q = π/2 and �2

0a
2
4N at q = π . Therefore, in

the limit of 0+ e-p coupling χB(4kF)/χB(2kF) = 4a2
4/a

2
2 and

the BCDW1 pattern will occur when χB(4kF)/χB(2kF) > 1.
The bond distortion changes smoothly between BCDW1 and
BCDW2 without any discontinuity in the bond distortion or
other observables. In the purely 1D model of Eq. (1) this is
a crossover and not a quantum phase transition. However, we
expect that in a full three-dimensional model of the actual
materials, the BCDW1 and BCDW2 regions may correspond
to thermodynamically distinct phases (see Sec. III).

We use the stochastic series expansion (SSE) quantum
Monte Carlo method with directed loop updates to calculate
χB(q) [18,19]. SSE is free from the fermion sign problem in
1D and provides exact (within statistical errors) results at finite
temperatures. We calculated the ratio R = χB(4kF)/χB(2kF)
for periodic systems of N = 32, 48, 64, and 96 sites with
an inverse temperature of β = 4N , which is a low enough
temperature to give essentially ground-state results. χB(4kF)
increases with increasing V ; for each system size, the V where
R = 1 was determined keeping U fixed, as shown in Fig. 2.
We then performed a finite-size scaling using a linear fit of
the transition points to 1/N ; a typical fit is shown in the inset
of Fig. 2. Figure 3 shows the location of the crossover in
the (U,V ) plane. In Fig. 3 we also include the boundary for
the 4kF CO phase [2,9] from Ref. [13], which is determined
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R N=32
N=48
N=64
N=96

0 0.01 0.02 0.03
1/N
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0.4

0.5
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R

=1

FIG. 2. Crossover between BCDW1 and BCDW2 in the limit of
zero e-p interactions (a) R = χB (4kF)/χB (2kF) as a function of V

with U = 6.25. Circles, diamonds, triangles, and squares are for 32,
48, 64, and 96 site chains, respectively. Systems with R below the
horizontal line R = 1 will distort in the BCDW2 bond pattern. The
inset shows the finite-size scaling of VR=1, the V for which R = 1.

0 2 4 6 8 10
U

0

1

2

3

4

V

BCDW2
BCDW1

(SMWM)

(SWSW’)

Unphysical

4kF CO

FIG. 3. Zero-temperature phase diagram of Eq. (1) in the limit of
0+ e-p interactions at quarter filling. Open points are the crossover
boundary between the BCDW2 and BCDW1 regions. Solid diamonds
and solid lines mark the boundary to the 4kF CO region (see Ref. [13]).
The V = U

2 line indicates the region of physical relevance for organic
CTS.

from the condition that the Luttinger liquid exponent Kρ > 1
3 ,

indicating dominant 4kF charge fluctuations [20]. The solid
lines in Fig. 3 are the result of second-order perturbation theory
about the U → ∞ and V → ∞ limits [9,21]. In the rest of
the paper we focus on the BCDW1 and BCDW2 charge- and
bond-order amplitudes.

C. Charge-order amplitude

We define the amplitude of the CO as �n = 〈nlarge〉 −
〈nsmall〉, where nlarge and nsmall are the charge densities on
the charge-rich and charge-poor molecules. �n is of great
experimental interest and can be measured optically [22] and
by NMR [23]. Theoretically, �n is difficult to predict from
Eq. (1), as it depends on the precise values of the e-p coupling
constants α and g, which are difficult to estimate.

In the limit of α = g = 0, the 2kF charge susceptibility
[χρ(q) is defined as in Eq. (3) with B̃j replaced by nj − 〈n〉]
decreases [24] with increasing U , implying that �n is smaller
in BCDW1 compared to BCDW2. In Fig. 4 we show χρ(2kF)

2 4 6 8
U

0

0.2

0.4

0.6

0.8

χ ρ(2
k F)

FIG. 4. 2kF charge susceptibility as a function of U for a 48-site
chain with V = U/4, α = g = 0, and inverse temperature β = 192.
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as a function of U calculated along the line V = U/4. Figure 4
shows that differences in e-e correlation alone can account for
approximately a factor of 4 in the magnitude of �n between
the most weakly correlated CTS salts compared to those with
strong e-e correlations, assuming equal e-p coupling strengths.

To calculate �n in Eq. (1) with e-p interactions, we use
a zero-temperature variational quantum Monte Carlo using
a matrix-product state basis (MPS-QMC) [25,26]. Matrix-
product states are extremely efficient for representing the
wave functions of interacting 1D quantum systems. The MPS-
QMC method variationally optimizes the MPS matrices from
random starting values using stochastic optimization [25]. One
advantage of MPS-QMC is that periodic systems can be easily
treated. Further details of the method are given in Ref. [26].
To handle the e-p degrees of freedom self-consistently, �i in
Eq. (1) is taken to be of the form of Eq. (2) with fixed φ2 and
φ4. Fixing the bond distortion to this form is reasonable for U

and V not too close to the 4kF CO region. νi are taken with
a constant magnitude ν and a fixed pattern · · · − − + + · · ·
giving · · · 1100 · · · CO. Self-consistency equations for �0, a4,
and ν are determined from [13]

∂〈H 〉
∂�0

= 0,
∂〈H 〉
∂a4

= 0,
∂〈H 〉
∂ν

= 0. (4)

For the results presented here, matrix dimensions D of up to
32 were used [26]. We used chain lengths from 16 up to 64 sites
and finite-size scaled the results using linear extrapolation in
1/N ; Fig. 5(a) shows typical finite-size extrapolations for the
case α = 1.2 and g = 0.

The intrasite e-p interaction couples directly to the charge
density and affects �n strongly. We first choose a fixed α

and vary g in Eq. (1). Figures 5(b) and 5(c) summarize the
results of these calculations. For g � 2, �n versus U has a
very similar functional shape as the 2kF charge susceptibility
in Fig. 4, confirming that e-e interactions strongly affect �n.
The maximum �n for g = 0 is ≈0.4 at small U . As seen in
Figs. 5(b) and 5(c), the bond pattern switches to BCDW1 at
U ≈ 5, which is consistent with Fig. 3.

As shown in Fig. 5(b), in BCDW2, �n is strongly enhanced
by g up to nearly complete charge transfers of �n ≈ 0.9.
BCDW1, however, is characterized by small �n for all g,
which for most parameter choices is �0.1. While in general
weaker e-e correlations coincide with larger �n, Fig. 5
shows that as g increases the crossover between BCDW2 and
BCDW1 moves to larger U and V (i.e., the BCDW2/BCDW1
line in Fig. 3 moves towards the 4kF CO phase with increasing
g). Figure 5 also shows that large enough g suppresses BCDW1
altogether. It is also possible that large g in combination with
U and V near the 4kF CO phase results in · · · 1010 · · · CO
[13].

Importantly, at large U , the strength of the bond distortion
behaves differently from �n. While the amplitude of the
· · · 1100 · · · CO decreases continuously as the strength of
e-e interactions increases, Fig. 5(c) shows that for BCDW1
the overall bond distortion strength �0 increases with the e-e
interaction strength for U � 5 and g � 2 (see Sec. II B).

In the interest of comparing with experimental data, in Fig. 6
we show the actual hopping integrals. Corresponding to the
charge-order pattern, · · · 1100 · · · , we define the “1-1” bond
as t1, the “1-0” and “0-1” bonds as t2, and the “0-0” bond as t3,

0 0.01 0.02 0.03 0.04 0.05 0.06
1/N

0

0.1

0.2

0.3

0.4

Δn

U = 1
U = 3
U = 5
U = 7

0

0.2

0.4

0.6

0.8

Δn

1 2 3 4 5 6 7 8
U

0

0.2

0.4

Δ 0

(a)

(b)

g=0
g=1.2 g=1.6

g=2.0
g=2.5

g=3.0

(c)

FIG. 5. Results of self-consistent MPS calculations (see text).
For all panels V = U/4. (a) Finite-size scaling of the charge-order
amplitude �n versus inverse chain length with α = 1.2 and g = 0.
Lines are linear fits. (b) Finite-size scaled �n as a function of U and
g, with α = 1.2. (c) The overall amplitude of the bond distortion [see
Eq. (2)] for the parameters of (b). In both (b) and (c) the filled (open)
points correspond to BCDW2 (BCDW1) and lines are guides to the
eye.

respectively. In the BCDW2 pattern SMWM, t1 is the strong
S bond, t2 the M bond, and t3 the W bond. In the BCDW1
pattern SWSW′, t1 is the W′ bond, t2 the S bond, and t3 the
W bond. The decrease in t1 in Fig. 6(a) and the simultaneous
increase in t2 in Fig. 6(b) are signatures of the crossover from
BCDW2 to BCDW1 with increasing U .

In Fig. 7 we show the result of varying the intersite e-p
coupling α. Unlike g, α can only be varied over a relatively
small range. For finite systems a minimum value of α is
required for the lattice distortion to occur. For too large α

the linear e-p coupling in Eq. (1) leads to a negative bond
order for the weakest bonds indicating a failure of the linear
coupling assumption (this occurs for α = 1.6 and U < 4 in
Fig. 7) [13]. Figure 7 shows that varying α has an effect similar
to varying g: stronger e-p coupling can enhance �n strongly
in the BCDW2 region, and at the same time moves the system
towards BCDW2. Figure 8 further shows the hopping integrals
in this case. Increasing α can strongly increase the amplitude
of the bond distortion in BCDW1 [see strong increase in
Fig. 8(b)], even as �n remains small [see Fig. 7(a)].

Summarizing our data, in BCDW2 �n can have any value
up to ≈0.9 depending on the e-e and e-p interaction strengths.
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FIG. 6. Hopping integrals for the same parameters as Fig. 5.
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FIG. 7. (a) Finite-size scaled �n as a function of U and α

with g = 1.2. (b) The overall amplitude of the bond distortion [see
Fig. 5(c)].

1

1.2

1.4

1.6

1.8

t 1

α = 1.0
α = 1.2
α = 1.4
α = 1.6

1

1.1

1.2

1.3

t 2

1 2 3 4 5 6 7 8
U

0

0.2

0.4

0.6

0.8

t 3

(a)

(b)

(c)

FIG. 8. Hopping integrals for the same parameters as Fig. 7.

However, regardless of the choice of e-e interactions and
e-p coupling strength, �n for BCDW1 is always small—the
maximum in all of our calculations was �n ≈ 0.2. More
typically, �n in BCDW1 is in the range 0.05–0.1.

III. DISCUSSION

Within Eq. (1) BCDW1 and BCDW2 are not distinct
thermodynamic phases and the boundary between them a
crossover. We have, however, showed that order parameters
of BCDW2, both the bond distortion and CO amplitude,
are significantly larger than in BCDW1. Two transitions are
expected for BCDW1 because of the large separation in
energy scales between the high-temperature MI transition
(involving bond dimerization or period two CO) and the small
amplitude distortion below the insulator-insulator transition.
This separation, however, is likely to break down for the
large amplitude BCDW2 bond and charge distortion. Note
that dimerization of the dimerization requires that the bond
dimerization at the MI transition that creates the charge gap
is necessarily larger than the second dimerization driven by
spin interactions at lower temperature. Since in the BCDW2,
the two equivalent 1-0 bonds are weaker than the 1-1 bond,
it follows that this structure cannot arise from dimerization
of dimerization. Put alternatively, spin excitations involve the
stronger 1-1 bond, which implies that the energy separation
between the charge and spin gap will tend to vanish. Hence,
from the pattern of the distortion itself, there is very likely a
single transition in systems exhibiting BCDW2.
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A. BCDW2

We first discuss two families of CTS whose low-
temperature insulating states show the BCDW2 bond pattern:
(EDO-TTF)2X (X = PF6 and AsF6) and (DMEDO-TTF)2X

(X = ClO4 and BF4). In each of these materials the MI
transition has been attributed to different effects, such as
e-p and coupled molecular bending [7] or electrical potential
bias originating from long-range Coulomb interactions [6]
in (EDO-TTF)2X, and anion ordering in (DMEDO-TTF)2X

[8]. We argue that these are instead cooperative effects [3]
(see below). The features common to BCDW2 are clearly
seen by comparing (EDO-TTF)2X and (DMEDO-TTF)2X,
which show the same molecular stack distortion but somewhat
different secondary effects.

(EDO-TTF)2X. In (EDO-TTF)2X the MI transition is
first order and occurs at 280 and 268 K for X = PF6

and AsF6, respectively [3]. A third salt, X = ClO4, has
an even higher transition temperature, greater than 337 K
[27]. In (EDO-TTF)2PF6 the experimentally determined CO
amplitude is rather large, with estimates of �n from optical
measurements of 0.92 (T = 6 K) [4] or from x-ray mea-
surements of 0.6 (T = 260 K) [5]. Above the transition, the
molecular overlaps along the EDO-TTF stacks are nearly
uniform with only a slight dimerization [3]. Below the
transition the overlap integrals follow the predicted pattern
SMWM [3].

Several observations indicate that intrasite e-p interactions
are strongly involved in the MI transition. At the transition, the
EDO-TTF molecules bend significantly [3], with the dihedral
angles between the center and terminal groups of the molecules
changing by more than 5◦. The degree of bending depends
on the charge density on each molecule, with charge-rich
molecules becoming flatter [3,4]. The transfer integral between
flatter molecules is enhanced, strengthening the “1-1” bond
and cooperatively enhancing the bond distortion [3,4]. The
positions of the anions also shift, with a periodic modulation
that matches that of the EDO-TTF stacks [3]. Optical studies
of (EDO-TTF)2X have suggested that the observed high
sensitivity to photoexcitation is likely due to strong electron-
lattice coupling [28].

(DMEDO-TTF)2X. Here the MI transition is at 190 and
210 K for X = ClO4 and BF4, respectively [8,29]. Above the
MI transition the organic molecules are stacked uniformly,
and like (EDO-TTF)2X the low-temperature overlap integrals
are in the SMWM pattern [8]. Simultaneously with the stack
distortion, the anion positions shift, moving closer (further)

towards molecules with large (smaller) hole density. The
authors of Ref. [8] ascribe the MI transition to this anion
shift, in which the ClO4 group moves towards and away
from charge-rich and charge-poor molecules. The electrostatic
potential of the anions enhances �n of the organic stack, which
further strengthens the strong “S” bond. Shortening the “S”
bond [bond b1 in Fig. 7(c) of Ref. [8]] moves the hole-rich
molecules closer to the anions. This feedback loop between the
anions and the bond distortion will cooperatively strengthen
BCDW2. A similar anion shift occurs [5] in (EDO-TTF)2X.
While �n estimated from carbon-carbon bond lengths appears
to be small, this method of estimating CO amplitude, however,
has large errors [8]. We predict that more direct measurements
(for example, using optical techniques) will find large �n in
this material.

To obtain the large �n found in (EDO-TTF)2X, our
results of Sec. II show that large intrasite e-p coupling (and
moderate or small e-e correlations) are required. The strong
coupling to molecular bending in (EDO-TTF)2X shows that
intramolecular modes are coupled strongly in this case. Large
�n would also make the contribution from longer-range
Coulomb interactions significant, which could further enhance
1100 pattern CO [30].

B. BCDW1

As the thermodynamics of materials with the BCDW1
have been extensively studied [10,12–15], we will not discuss
them in detail here. The BCDW1 state can be visualized
as a second dimerization of a dimer lattice. Within the full
three-dimensional crystal two thermodynamic transitions are
expected [10,13–15]. What the present calculations show is
that in the ground state, the expected CO amplitude in BCDW1
is quite small and may be difficult to detect experimentally.
This should also be taken into consideration in searches for
CO in two-dimensional CTS [31]. To detect the presence of
BCDW1, it may be easier to focus on the pattern of bond
distortion rather than the amount of CO.
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