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Doping-driven metal-insulator transitions and charge orderings in the extended Hubbard model
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We perform a thorough study of the extended Hubbard model featuring local and nearest-neighbor Coulomb
repulsion. Using the dynamical mean-field theory we investigated the zero-temperature phase diagram of this
model as a function of the chemical doping. The interplay between local and nonlocal interactions drives a
variety of phase transitions connecting two distinct charge-ordered insulators, i.e., half filled and quarter filled, a
charge-ordered metal and a Mott-insulating phase. We characterize these transitions and the relative stability of
the solutions and we show that the two interactions conspire to stabilize the quarter-filled charge-ordered phase.
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I. INTRODUCTION

Strongly correlated materials are characterized by the
relevance of the Coulomb interaction which competes with
the kinetic energy, leading to a tendency towards localization
of the carriers [1,2]. The simplest theoretical description of this
competition is obtained from the Hubbard model [3] in terms
of conduction band electrons experiencing a local screened
Coulomb repulsion. Despite its simplicity, the approximate
solutions of this model revealed an incredibly rich physics
which has been the object of extensive investigations (e.g.,
Refs. [4-9]). This model is also the starting point to take
into account other important effects by including additional
interactions, e.g., phonon coupling, orbital ordering, or longer-
range interaction.

A great deal of attention has been devoted to understand
the effects of nonlocal short-range electron-electron repulsion,
which favors a spatial charge ordering [10]. The possible
existence of inhomogeneous distribution of charges was first
predicted in two-dimensional (2D) electron gas [11], as aresult
of the tendency to form a Wigner crystal as soon as the energy
gain from the electronic localization tendency exceeds that in
the kinetic energy for a homogeneous electron distribution.
This possibility has been realized experimentally in various
semiconductor structures [ 12—14]. The effective importance of
the electronic interaction for the 2D electrons gas, e.g., layers
of liquid helium, has been recently reconciled with the original
Wigner crystallization scenario [15-17]. However, other, and
somehow more conventional, examples of materials in which
charge order interplays with Mott physics can be found
in narrow-band correlated systems such as transition-metal
dichalcogenides [18,19], or other oxides (e.g., manganites,
nickelates, cuprates, bismuthates, and cobaltates) [20-24]
as well as low-dimensional organic conductors [25-27] and
heavy-fermion systems [28,29].

From a theoretical perspective all this evidence motivated a
careful analysis of the extended Hubbard model (EHM), i.e.,
the Hubbard model supplemented with a nonlocal density-
density interaction term. The direct competition of local and
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nonlocal interactions in the EHM captures both the effects
of strong correlations and the tendency of the system to
form inhomogeneous charge distributions. The EHM has
been extensively studied in many different regimes, e.g., the
strong-coupling limit, the quarter and half filling, and by
means of different methods [30-32], such as the Hartree-Fock
mean field [30,32-35], the Monte Carlo simulations [36-38],
the variational-based cluster perturbation theory [39], the
lattice exact diagonalization [40-43], the two-particle self-
consistent approach [44], the density matrix renormalization
group [45,46], as well as the dynamical mean-field theory
[16,17,47-49] (DMFT) and its extensions [50-55].

A seminal study of the EHM within the DMFT has been
reported in Ref. [47] for the quarter-filling case (i.e., for
a total density n = 0.5). Using a combination of numerical
tools the existence, at large values of the nonlocal interaction,
of a charge-ordered phase separated from the Fermi liquid
metal at weak coupling was demonstrated. The origin of such
symmetry-broken state was interpreted in terms of the effect
of strong correlation, signaled by the enhancement of the
effective mass. For filling smaller than n = 0.5 and specific
values of the local and nonlocal interactions the occurrence of
phase separation between the Fermi liquid and the ordered
phase has also been addressed in Ref. [48]. However, the
existence of a genuine Mott-driven Wigner insulating state
was demonstrated only later [16] in the quarter-filling regime.
The study of the finite-temperature phase diagram revealed
the existence of a strongly correlated charge-ordered metal,
separating the Wigner-Mott insulator from the Fermi liquid
phase [16,17]. The existence of a T = 0 charge-ordered metal-
lic state at quarter filling has been also shown using cluster
extension of the DMFT (CDMEFT), which takes into account
the role of short-ranged spatial correlation [50]. In particular,
the onset of charge order was shown to be concomitant
with the occurrence of short-range antiferromagnetism. More
recently, the effects of nonlocal interaction have been studied in
two- and three-dimensional cubic lattices using a combination
of GW and the extended DMFT (GWHEDMEFT) approach
[51-53]. This approach enabled a systematic investigation of
the screening effect and the role of longer-range interaction,
up to the third-nearest-neighbors [53]. The solution the EHM
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by means of the GWH+EDMFT contributed to clarify the
phase diagram of this model at and near the half-filling
regime (n = 1) [53], associating the interplay between charge
ordering and correlations with changes in the screening modes.

The emergence of charge order in strongly correlated sys-
tems is also largely affected by the geometric frustration factor,
which in turn plays a relevant role in different systems, e.g., the
charge-transfer salts -(BEDT-TTF),X or the dichalcogenide
1T-TaS, both characterized by a triangular-lattice geometry.
In this context the interaction-driven charge-ordered metal at
quarter filling is associated with the emergence of a quantum
phase, i.e., pinball liquid. This state is characterized by
quasilocalized charges coexisting with more itinerant elec-
trons, which gives rise to strong quasiparticle renormalization
with a mechanism analogous to the heavy-fermion compounds
[49]. In the multiorbital case [56], which is relevant for
transition-metal oxides, the onset of a pinball phase has been
associated with a finite value of the Hund’s exchange [57].

Motivated by the experimental findings and the increasing
theoretical work to understand the nature of strongly correlated
electronic phases in the presence of charge ordering, in this
paper we investigate the ground state properties of the EHM.
We solve the model nonperturbatively using the DMFT, with a
Lanczos-based exact diagonalization algorithm. We present a
thorough investigation of the evolution of the phase diagram as
a function of the local and nonlocal interaction for an arbitrary
occupation of the system. We unveil the properties of the
transitions among the multiple states characterizing the phase
diagram of the system, in a full range of variation of the model
parameters. In particular, we address the first- or second-order
nature of the transitions separating the charge-ordered states
from normal (disordered) phases. We study the behavior of
the order parameter and other relevant quantities including the
evolution of the spectral functions. By evaluating the grand
canonical potential, we also determine the metastability of the
solutions across the phase transitions and unveil the existence
of phase separation on the phase diagram.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and the method of solution. We also
discuss the solution of the model in two limiting cases. In
Sec. IIT we briefly present the half-filling n = 1 solution of
the model and discuss the evolution of the phase diagram as a
function of the chemical potential and for an increasing value
of the interactions. In Sec. IV we present a detailed analysis
for each phase transition occurring in the system. Finally, in
Sec. V we summarize the results of this work and provide
some future perspectives.

II. MODEL AND METHOD

We consider the EHM, which describes the effects of the
Coulomb repulsion onto conduction band electrons in terms
of local and nearest-neighbor density-density interactions. The
model Hamiltonian reads

H=—1) & ¢jo+UY hniy
i

(i,j)o

+§Zﬁiﬁj—u2ijﬁi, (M

(i)
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where (7, j) indicates summation over nearest-neighbor (NN)
sites independently. The parameter ¢ is the hopping amplitude,
6;; (Ciy) denotes the creation (destruction) operator of an
electronof spino =1, | atsitei. The operators7i; = Zo flig»
lig = éf;é,-g, denote the occupation number. Finally, u is the
chemical potential. The Hamiltonian terms proportional to U
and W describe, respectively, the local and the nonlocal (NN)
part of the screened Coulomb interaction. The competition
between these two terms enables us to capture the interplay of
strong correlation with charge ordering. In this work we focus
on the checkerboard charge-ordered phases, which are known
to be stable in the strong-coupling regime. For simplicity,
we will not consider other textures, such as incommensurate
ordering, which may become favored in the weakly interacting
regime. Similarly, we will not consider magnetically ordered
solutions, which could occur in this system in proximity to the
half-filling regime, i.e., one particle per lattice site.

DMFT solution. We study the solution of model (1) using
the DMFT [6]. In order to allow for a long-range charge-
ordered phase (checkerboard type) the lattice is divided into
two sublattices, indexed by « = A, B. The DMFT approxima-
tion becomes exact in the limit of infinite coordination number
7 — 00, provided that  and W are rescaled, respectively, as
t — t//zand W — W/z [17,58]. In this limit the nonlocal
interaction term W is treated at the Hartree level [17,59]. After
decoupling of the W term, Hamiltonian (1) takes the form

A At A
Hyg = —t E CivCio
(i.j).0

+ D D Wiy = (= Wna)ii] +C, ()

a=A,B ica

where C = —%W(n2 — A?) is a constant term, A = %(nA -
np) is the charge polarization, n = %(n 4 +np) is the total
electron concentration, and n, is the average density of the
particles in each sublattice « = A,B (ny = % Y icq (i), Lis
the total number of the lattice sites). To fix ideas and to further
simplify the treatment we shall consider the case of the Bethe
lattice, characterized by a semielliptic density of states (per
spin):

po(€) = nli/l —(¢/D)* for €| <D, 3

where D = 2¢ is the half-bandwidth [or typical kinetic energy,

D= 2,/ff;° €2 pp(€)de]. In the following we set D = 1 as the

energy unit. Section II B and Fig. 1(b), where we set D = 0,
are exceptions of this general rule.

Within the DMFT the quantum many-body lattice problem
(2) is mapped onto two distinct effective impurity problems,
one per sublattice. The effective baths are described in
terms of the frequency-dependent Weiss fields G l(icun) =
Diag[g,, Al (ia)n),go_Bl (iwy)], which are self-consistently deter-
mined by requiring to the impurity problems to reproduce
the local physics of the lattice system. In this framework the
self-energy matrix X (i w,), describing the effects of interaction
at the one-particle level, is approximated by its local part. For
each sublattice the self-energy function is determined by the
solution of the corresponding quantum impurity problem. In
terms of the matrix self-energy the DMFT self-consistency
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FIG. 1. (a) Phase diagram for U = 0 as a function of W and i =
u — W /2. The boundary between Fermi liquid (FL) and half-filled
charge-ordered insulator (HCOI) is discontinuous. (b) Phase diagram
for D = 0 (atomic limit) as a function of the interaction ratio W/U
and i/U, i = u — U/2 — W. Each phase (NO, nonordered; MI,
Mott insulator; QCOI, quarter-filled charge-ordered insulator; and
HCOI) is labeled by values of (n4,n5). All the phases are insulating
and all the boundaries are discontinuous.

0.5+

condition reads
G iwy) = Grilion) + Z(iw,), @)

where G is the diagonal matrix of the local interacting lattice
Green’s function. This equation relates the bath properties,
expressed by the Weiss field, to the local physics of the
lattice problem. In terms of the lattice density of states the
components of the local Green’s function are

po(e)de
n)SB(Iwy) — €2’
where o = A,B and {,(iw,) = iw, + u — Wng — Zy(iwy).
In this work we solve the effective quantum impurity
problem using the exact diagonalization technique at 7 = 0,
Refs. [60,61]. The effective bath is discretized into a finite
number N, of levels. The ground state of the corresponding
Hamiltonian as well as the impurity Green’s functions are
determined using the Lanczos technique. Throughout this
work we use N, =9, having checked the robustness of the
results for N, = 8 and N, = 0. The whole DMFT algorithm
proceeds as follow. For a given bath function G, ! the effective
quantum impurity problems are solved. The resulting self-
energy function X is used to determine the local interacting

Groeralin) = Calion) / i )
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Green’s function Gy, by means of Eq. (5). Finally, using the
self-consistency relation, Eq. (4), a new, updated Weiss field
is obtained. The self-consistent DMFT equations are solved
iteratively until the convergence is reached, usually in a few
tens of iterations. A critical slowing down of the convergence
can be observed near a phase transition.

In the following we restrict our attention to the case U >
0 and W > 0 and to the nonmagnetic phases. Furthermore,
model (1) exhibits the particle-hole symmetry (for any U and
W), so our results for n < 1 (i < 0) are held identically also
forn > 1 (2 > 0) (see, e.g., Ref. [34]). Finally, we checked
that the occurring phases in this work are solutions with the
lowest grand canonical potential (per site).

A. Noninteracting limit

For U = 0 (W > 0) model (2) is solved using a standard
broken-symmetry Hartree-Fock approximation. The mean-
field Hamiltonian is diagonalized by means of the Bogoliubov
transformation [30,33,62-68]. The resulting self-consistent
equations for the total occupation n and the charge polarization
A are

1 D
=y / depo(©)[F(E1(€) + f(Exe)],  (6)
—-D

A P f(Ei(€) — f(Ex(e))

w= A f_D dep““[ 20() ] @
where f(x) is the (doubled) Fermi function, E| 5(¢) = Wn —
uwF Q(e), and Q(e) = v/ W2A2 + €2 [30,33]. The grand

canonical potential has the form

1
@=c-2 Y f depo(€)In{1 + exp[—BEq ()]}, (8)

a=1,2

with the C term defined previously, after Eq. (2).

The noninteracting ground state phase diagram of the model
[see Fig. 1(a)] shows the existence of two phases, namely a
Fermi liquid metallic state (FL) and a half-filled, i.e., n = 1,
charge-ordered insulator (HCOI). The transition between these
two states is of first order, characterized by a discontinuous
change of both the occupation n and the polarization A and
phase separation for a definite range of n is present. For U = 0
and any n # 1 a charge-ordered metallic (COM) phase is not
stable, i.e., dn/du < 0 [62-68]. In this limit model (1) is
equivalent with the spinless fermion model [62—-68].

B. Atomic limit

In the D = 0 limit model (2) has been studied in great
detail (see for example Refs. [69,70,70-74] and references
therein). Here, we briefly review the rigorous results in the limit
Z — +o00 obtained using a variational approach, which treats
the on-site U interaction exactly and the intersite W inter-
actions within the mean-field approximation [69,72,74]. The
ground state phase diagram for D = 0 is reported in Fig. 1(b).

The diagram features different charge-ordered insulating
(COI) phases: a quarter-filled one (QCOI) (n = 0.5) and
a HCOI solution. In addition two nonordered phases are
present: a band insulator for n =0 and a Mott-insulating
(MI) phase at n=1. Notice that although all transitions
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FIG. 2. The ground state phase diagram in the W-U plane at half
filling,i.e.,n = 1. The solid line (black) at W/ U =~ 1 denotes the first-
order transition separating the half-filled charge-ordered insulator
(HCOI) from the nonordered phase. The latter includes a Fermi liquid
(FL) metal and a Mott insulator (MI). The dashed line (red) delimits
the region of metastability of the HCOI phase. Similarly the dotted
line (green) indicates the region of metastability for the nonordered
phases.

are discontinuous, the homogeneous phases occurring for
fixed n # 0.5 or n # 1 are degenerated with phase separated
states. Finite-temperature or longer-range intersite interactions
however can remove this degeneracy [72,74].

III. PHASE DIAGRAM

We now turn our attention to the combined effect of
the local and nonlocal interactions in model (2). We first
investigated the case of the half filling, i.e., # = 0andn = 1.
The T = 0 phase diagram in the U-W plane is reported in
Fig. 2. The figure shows the existence in this regime of three
distinct solutions. A HCOI is found for U < W separated
from the normal (nonordered) solution by a boundary line
just below W/U = 1. The normal solution includes a FL
metal at small U and a MI for large enough U. In our
approach the FL-MI transition line is roughly independent
from W. More accurate calculations, taking into account the
nonlocal interaction beyond the mean-field level, have pointed
out a weak dependence of the Mott transition line on the
W interaction [52]. In the same diagram of Fig. 2 we also
denote the region of metastability of the ordered and normal
phases enclosed within two spinodal lines. While the HCOI
phase extends little into the normal region, we observe that the
coexistence region of the nonordered solution in the HCOI
phase rapidly grows with increasing W, already for small
values of U.

We shall now study the competition of strong correlation
and charge ordering at finite values of the chemical potential
f&. Our main result is summarized by the phase diagrams in the
plane W-i, reported in Fig. 3. The figure shows the evolution
of the diagrams upon increasing the local correlation strength
U. For a finite value of U we observe the presence of two
additional phases with respect to the noninteracting regime
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FIG. 3. The T = 0 phase diagrams in the W-i plane for in-
creasing local interactions: U = 1,2,4 (as labeled). The diagrams
show the existence of a Fermi liquid (FL) metallic state at small W,
of a charge-ordered metal (COM) for incommensurate occupation,
a quarter-filled (QCOI) and a half-filled charge-ordered insulator
(HCOI), a Mott insulating phase near the & = 0. The solid lines
(C and E) correspond to continuous phase transitions, whereas the
dotted lines (A, B, D, and F) correspond to first-order ones. The
letters associated to the boundary lines correspond to the paragraphs
in Sec. IV. The other solid lines are the isodensity lines, colored
according to the value of the total density n in the right column. The
dashed line is for n = 0.5.
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[cf. Fig. 1(a)], i.e., a charge-ordered metal (COM) and a
quarter-filled charge-ordered insulator (QCOI), i.e., n = 0.5
[Figs. 3(a) and 3(b)].

Similarly to the results obtained in Refs. [16,17], at quarter
filling the system undergoes a sequence of transitions as a
function of increasing W, namely a continuous one from the
FL metal to the COM followed by a second-order transition to
the QCOIL. The evolution of the system for n = 0.5 is indicated
by the dotted line in Fig. 3.

The COM and QCOI phases separate the HCOI solution
from the Fermi liquid metallic state. A change in the chemical
potential i first destabilizes the HCOI towards the charge-
ordered metal, occurring for n < 1 and for intermediate values
of the nonlocal interaction W. With further decreasing of the
chemical potential the system can reach the second charge-
ordered insulating state, i.e., the QCOIL.

The slope of the boundary line of the HCOI is governed by
the width of the gap, which is linear in W. Upon increasing
the strength of the local correlation we observe a substantial
modification of the COM and the QCOI regions, with the latter
increasing its extension. This is in agreement with the fact that
for larger values of U it becomes easier for the depleted system
to pin the occupation of a single sublattice to a commensurate
value, which ultimately favors the formation of a charge-
ordered solution. Correspondingly the HCOI region moves
towards higher values of W, with the FL-HCOI transition
always occurring at U ~ W. Interestingly, the evolution of
the boundary lines separating the two metallic phases (Fermi
liquid and charge ordered) is not monotonic in U (see Fig. 3).
The negative slope of the boundary line in the weak-interaction
regime [Fig. 3(a)] is progressively transformed into a large
positive one at strong coupling [Fig. 3(c)]. This change follows
directly the evolution of the total occupation behavior as
outlined by the isodensity lines in the diagrams of Fig. 3.
By increasing the strength of the local interaction U, the
occupation near the FL-COM boundary line becomes nearly
independent of W. This behavior is associated with the more
localized nature of the metallic state (at small doping) near the
Mott-insulating phase, occurring for U 2 2.92 near the i = 0
point [see Fig. 3(c)].

IV. PHASE TRANSITIONS

In this section we discuss the properties of the transi-
tions among the different phases of the system. To this
end, we shall introduce other distinctive quantities, beside
the aforementioned charge polarization A, i.e., the spectral
densities at the Fermi level, p,(0) = —ﬁlmGlOC,a(w =0),

RIM(O)) )71

and the renormalization constants Z, = (1 — =55 o

(@ = A,B).

A. The MI-HCOI transition

To start with we discuss the transition between the Mott
insulator and the HCOI [see Fig. 3(c)]. This transition occurs
between two phases at half filling (n = 1) and for a large
enough value of U in order to guarantee the existence of
the Mott insulator. The behavior of the charge polarization
A as a function of the nonlocal interaction strength W is
reported in Fig. 4(a). The evolution of the order parameter
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FIG. 4. The behavior of quantities in the neighborhood of
the MI-HCOI boundary. (a) A as a function of W for U =4
and i = —0.5. The solid, dashed, and dotted lines correspond to
stable, metastable MI, and metastable HCOI solutions, respectively.
(b) Spectral densities for W = 3.6 (M1, n = 1). (c) Spectral densities
for W = 4.4 (HCOI, n = 1). Solid and dotted lines correspond to
different sublattices [in panels (b) and (c)]. The Fermi level is at
w=0.

exhibits a discontinuity at the transition point, indicating its
first-order nature as expected for a symmetry-related transition
between two insulating states of different origin. Accordingly,
the transition shows a remarkable hysteresis of A, associated
with the existence of metastable phases on both sides of
the transition [see Fig. 4(a)]. The metastable Mott-insulating
region extends to large values of W even beyond the limit of
the figure.

In panels (b) and (c) of Fig. 4 we compare the spectral den-
sities pgy(w) = —%ImGlOC,a(a)) (¢ = A, B) in the two phases.
In the Mott region the spectral functions are characterized by
the two contributions at high energy, separated by a gap of the
order U, the hallmark of the Mott nature of the solution. The
asymmetry of the spectrum is associated with the finite value
of the nonlocal term W.

In the HCOI region [see Fig. 4(c)] the spectral density
is characterized by a band gap, separating the completely
filled sublattice A (n4 &~ 2) from the empty sublattice B
(ng =~ 0). The gap is related to charge order phenomenon
and has a width of >~ 2(W — U/2)A. Because of its mean-
field nature with respect to symmetry-breaking transition, the
DMEFT description of charge-ordered state closely follows the
mean-field solution of the problem [62].

B. The FL-HCOI transition

At finite doping the system admits a transition between
the Fermi liquid metal and the HCOI solution. Differently
from the previous case this transition occurs between states at
different fillings. The behavior of the order parameter A and
the occupation n across the transition boundary is reported
in Fig. 5(a). Both quantities exhibit an abrupt change at the
transition. In particular, n evolves discontinuously fromn = 1,
in the ordered phase, to n ~ 0.92 < 1 in the normal metallic
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FIG. 5. The behavior of quantities in the neighborhood of the
FL-HCOI boundary. (a) A (solid line) and n (dashed-dotted line) as
a function of W for U = 4 and i = —1.5. The dashed and dotted
lines correspond to metastable FL and metastable HCOI solutions,
respectively. (b) Spectral densities for W/D = 3.6 (FL). (c) Spectral
densities for W/D = 4.4 (HCOI, n = 1). Solid and dotted lines
correspond to different sublattices [in panels (b) and (c)]. The Fermi
level is at w = 0.

region. The first-order character of the FL-HCOI transition
is further underlined by the hysteresis of A. Analogously
to the Mott phase, the region of metastability of the FL
phase extends to large values of W (beyond the range of the
figure).

The spectral functions of the two solutions for the U = 4
case are reported in Figs. 5(b) and 5(c). In the FL phase
the spectral densities, identical for both sublattices ps(w) =
pp(w), have a finite weight at the Fermi level (w = 0) obtained
by small doping (fi = —1.5) of the Mott-insulating solution.
The quasiparticle resonance at the Fermi level flanks the
lower Hubbard band, which in turn is separated by a gap
of order U from the upper one. In panel (c) we show the
spectral densities for the HCOI phase. The rigid shift with
respect to Fig. 4(c) is due the different value of the chemical
potential. However, the properties of this phase remain
unchanged.

C. The FL-COM transition

Similarly, the FL metal can be destabilized towards the
COM phase by either increasing the nonlocal interaction W or
the doping value. The symmetry-breaking transition relating
these two phases at incommensurate filling is continuous, i.e.,
of second order. Further insight in the continuous character of
the transition can be inferred from the behavior of the isoden-
sity lines across the boundary line; see Fig. 3. Approaching
the transition from both phases, the density evolves smoothly
enabling the continuous formation/destruction of the charge
polarization. The behavior of the densities n4 p and of the
order parameter A as a function of W for U = 2 is reported in
Fig. 6(a). Crossing the transition line (see the phase diagram
in Fig. 3) by decreasing W from the COM solution, the order
parameter A gets continuously reduced to zero. In proximity
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FIG. 6. The behavior of quantities in the neighborhood of the
FL-COM boundary. (a) A (solid line), n, (dashed-dotted line), and
np (dotted line) as a function of W for U/D = 2.0 and /D =
—1.5. (b) z4 (solid line) and zp (dotted line) as a function of W for
the same values of the other parameters. (c) Spectral densities for
W = 1.25 (FL). (d) Spectral densities for W = 1.35 (COM). Solid
and dotted lines correspond to different sublattices [in panels (c) and
(d)]. The Fermi level is at w = 0.

of the critical point W = W, the order parameter exhibits
the characteristic square-root behavior A = (W — W,)!'/? [see
Fig. 6(a)] as expected from a mean-field description of the
phase transition.

In the charge-ordered phase the unbalanced occupations in
the two sublattices give rise to different degrees of correlation.
We quantify this showing the behavior of the renormalization
constants Z4 p across the phase transition in Fig. 6(b). In
particular, the sublattice A becomes nearly half filled (n4 ~ 1)
while the other one B gets slightly depleted. Correspondingly
Z4 < Zp; i.e., the metallic state at A becomes significantly
more correlated than the other sublattice.

The different nature of the metallic states at the two phases
is also evident from the corresponding spectral functions,
reported in Figs. 6(c) and 6(d). A large featureless spec-
tral weight, reminiscent of the noninteracting (semielliptic)
distribution, characterizes both sublattices in the FL phase.
The effect of the large correlation U manifests itself in the
contribution at high energy [Fig. 6(c)]. In the charge-ordered
phase the two spectral functions show the formation of a tiny
gap slightly away from the Fermi level (w = 0). The symmetry
breaking associated with charge ordering is responsible for
the opening of a small spectral gap. However, the charge
unbalance at finite W between the two sublattices leads in
this regime to a small doping with respect to the (ordered)
insulating state, resulting in a finite spectral density at the
Fermi level characteristic of a metallic state. In this regime
the two sublattice distributions are nearly specular one with
respect to another, with a relative shift of about 2W A. The
strongly correlated nature of the sublattice A solution is
further underlined by the narrow resonance at the Fermi
level characterizing the spectral function at low energy [see
Fig. 6(d)]. Likewise, precursors of the Hubbard bands are
visible in the higher energy region.
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FIG. 7. The behavior of quantities in the neighborhood of the
FL-QCOI boundary. (a) A (solid line) and n (dashed-dotted line) as
a function of W for U = 2.0 and i = —2.5. The dashed and dotted
lines correspond to metastable FL and metastable QCOI solutions,
respectively. (b) Spectral densities for W = 1.70 (FL). (c) Spectral
densities for W = 1.85 (QCOI, n = 0.5). Solid and dotted lines
correspond to different sublattices [in panels (b) and (c)]. The Fermi
level is at w = 0.

D. The FL-QCOI transition

For even larger values of the chemical potential f, i.e.,
doping, the effect of nonlocal interaction W is to transform the
Fermi liquid metal directly into a QCOI. The transition occurs
through the pinning of the occupation to a commensurate
value for one sublattice with the concomitant opening of a
charge-order gap, while the other sublattice becomes nearly
empty. The discontinuous nature of the transition can be further
appreciated by looking at the evolution of the isodensity lines
near the boundary line. As reported in Fig. 3, near the transition
the FL metal has a small occupation while the QCOI is pinned
to n = 0.5. This prevents the continuous transformation of
one state into the other and the only way to connect these two
phases is through a first-order jump.

The behavior of the density n and of the order parameter A
as a function of W across the transition is reported in Fig. 7(a).
The occupation n undergoes a jump to n = 0.5 for a critical
value of the nonlocal interaction W = W,. At the critical point
the charge polarization A suddenly acquires a finite value. The
figure also shows the hysteresis cycle of the order parameter,
demonstrating the first-order nature of this transition.

In panels (b) and (c) of the figure we report the evolution
of the spectral functions across the phase transition. In the FL
phase [see Fig. 7(b)], the distribution is characterized by a
large featureless spectrum. In this low-density regime and for
small W the effects of the local correlation are rather weak.
Entering the QCOI region both spectral functions exhibit a gap
of the order of Max{2W A ,U} at the Fermi level, associated
with the charge order and Mott localization occurring in the
system. The spectral weight of the sublattice B is located above
the Fermi level, corresponding to an almost depleted regime,
while the other sublattice is nearly half filled due to intersite
repulsion W.

PHYSICAL REVIEW B 95, 125112 (2017)

"QcCol
n=0.5

(b)

FIG. 8. The behavior of quantities in the neighborhood of the
QCOI-COM boundary. (a) A (dashed-dotted line), ps(Ef) (solid
line), and pp(EFr) (dotted line) as a function of W for U = 2.0 and
i = —2.5. (b) Spectral densities for W = 2.75 (QCOI, n = 0.5).
(c) Spectral densities for W = 3.00 (COM). Solid and dotted lines
correspond to different sublattices [in panels (b) and (c)]. The Fermi
level is at w = 0.

The interplay between both U and W interaction has a
strong impact on this phase and, as discussed in Sec. III
and Ref. [17], they both contribute to stabilizing the QCOI
phase. Thus, the occurrence of the QCOI phase is associated
with the conventional Mott scenario for the localization of
the electrons in nearly half-filled sublattice A, whereas almost
empty sublattice B is rather a band insulator [17].

E. The QCOI-COM transition

The charge-ordered insulating phase at quarter filling can
be destabilized by either reducing the doping (i.e., reducing the
chemical potential) or increasing W. The resulting insulator-
to-metal transition however occurs without destroying the
long-range charge order. In Fig. 8(a) we demonstrate this by
tuning the nonlocal interaction W, driving the QCOI into a
COM state. In this figure we show that charge polarization
A remains finite across the transition. We characterize the
metallization process through the behavior of the spectral
weights at the Fermi level ps g(Er = 0) across the transition.
These quantities show a continuous evolution, corresponding
to a second-order phase transition. In particular, the sublattice
A, which is near the half-filling occupation, rapidly gains
a substantial amount of spectral weight at Fermi level,
developing continuously into a strongly correlated metal, i.e.,
Z 4 =~ 0 (not shown in the figure). This is in agreement with
the Wigner-Mott transition scenario for the electrons at the
sublattice A [16,17].

The spectral distributions across the transition are reported
in Figs. 8(b) and 8(c). The two cases are characterized by
the presence of a large charge-order gap. Within our solution,
increasing the interaction term W causes a small change of
the chemical potential, which is sufficient to destabilize the
charge-ordered insulator into a metallic state. However, in the
presence of sufficiently strong local and nonlocal correlation
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FIG. 9. The behavior of quantities in the neighborhood of the
COM-HCOI boundary. (a) A (solid line) and n (dashed-dotted
line) as a function of W for U = 2.0, i = —2.5. The dashed and
dotted lines correspond to metastable COM and metastable HCOI
solutions, respectively. (b) Spectral densities for W = 3.5 (COM).
(c) Spectral densities for W = 3.8 (HCOI, n = 1). Solid and dotted
lines correspond to different sublattices [in panels (b) and (¢)]. w = 0
corresponds to the Fermi level.

a small doping is not enough to suppress completely the long-
range ordering, leading to the formation of the COM phase.

F. The COM-HCOI transition

We finally discuss the properties of the transition from the
COM state to the HCOI phase. In Fig. 9(a) we report the
behavior as a function of the interaction W of both the total
density n and the charge polarization A across the transition
line. Differently from the COM-QCOI case discussed previ-
ously, the transition from the charge-ordered metallic state to
the HCOI has a first-order character. As reported in the figure
at the critical point the total density jumps to the n = 1 value.
Correspondingly, the order parameter discontinuously reaches
its maximum value. The hysteresis of this quantity is also
reported in the figure.

The spectral densities across the transition are shown in
Figs. 9(b) and 9(c). The evolution of the spectra reveals that
the metal-insulator transition is driven by a shift of the spectral
weight below the Fermi level; i.e., the interaction W drives a
shift in the chemical potential increasing the total occupation
and a concomitant transfer of the spectral weight. In this regime
the large value of W maintains the long-range charge order.
The HCOI spectrum displays the distinctive features already
discussed in the previous sections.

V. CONCLUSIONS

In this work we studied the competition between local
and nonlocal electronic interaction within the paradigmatic
extended Hubbard model. We solved the model nonperturba-
tively using the dynamical mean-field theory, with a Lanczos
exact diagonalization technique. In particular we thoroughly
investigated the interplay of charge ordering and Mott physics

PHYSICAL REVIEW B 95, 125112 (2017)

as a function of the chemical potential which in turn controls
the particle density. We determined the zero-temperature phase
diagram as a function of the nonlocal interaction W and
chemical potential ji. For any value of local correlation U we
reported the existence of both an insulating charge-ordered
solution at quarter filling and an incommensurate charge-
ordered metal. These two phases, which have no counterpart
in the noninteracting regime, get stabilized by the interplay of
local and longer-range interactions. The evolution of the phase
diagram as a function of U has shown the increasing stability
of the quarter-filled charge-ordered solution.

We studied in detail the nature and the properties of the dif-
ferent phase transitions occurring among the multiple phases
of the system. In particular we unveiled the characteristics
of the continuous metal-insulator transition separating the
charge-ordered metal and the n = 0.5 insulator, which extends
to the incommensurate case previous results available in the
recent literature. Moreover, we showed that the small-W Fermi
liquid metal is separated from the charge-ordered metallic
state by a continuous transition and from the quarter-filled
charge-ordered insulator by a first-order one. The analysis of
the isodensity lines enabled us to associate the difference in the
transition character to distinct behavior of the occupation in the
two regimes. Thus, for example, the incommensurate filling
of the charge-ordered metal can be continuously connected
with the Fermi liquid state through the progressive reduction
of the charge polarization. On the contrary in the large-doping
regime, the severe difference in the occupation between the
quarter-filled charge-ordered insulator and the almost empty
Fermi liquid leaves room only for a first-order phase transition.

Although the simple nature the extended Hubbard model
cannot be regarded as a realistic or quantitatively accurate
representation of the real system, its solution in a nonpertur-
bative framework allows us to shed light on the microscopic
mechanism behind several experimental observations. Notice
also that the immense development of experimental techniques
in cold atomic Fermi gases on the optical lattices in the last
years has opened new opportunities for research of strongly
correlated systems and beyond. The ability to precisely control
the interactions via Feshbach resonances [75-77] sets new
perspectives for experimental realization and study of many
different theoretically well-described system, in particular
various nonstandard Hubbard models (for review see, e.g.,
Refs. [78,79]).

Our study demonstrates how the tendency to charge order-
ing favors and strengthens the transformation of conduction
electrons into localized particles in the presence of long-range
charge order. The analysis of the phase transitions and the
destruction of the charge ordering at an arbitrary filling can be
useful to understand recent experiments on the 2D electron gas
from deposed liquid He* on a substrate, which corresponds to
incommensurate density [80-85].
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