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Unconventional normal-state spin dynamics in underdoped high-Tc cuprates as a fingerprint
of spiral correlations of localized spins and dual localized/itinerant nature of spin fluctuations
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The paper is motivated by the observation of unusual and not well understood spin dynamics in low- and
moderately doped high-Tc cuprates as well as by the discovery in these materials of a static incommensurate
order for doping exceeding the insulator-metal boundary in the phase diagram. We develop a microscopic
approach that allows us to treat accurately the quantum fluctuations in the spiral state developing upon doping
the Mott-Neel insulator. We show that the spiral order of localized spins induces an off-diagonal order of mobile
charges and a gap � ∝ |Q| in their spectrum (Q is the spiral incommensurability wave vector defined with
respect to QAF). Due to the dynamic spin-charge interaction the latter gap produces a feedback effect consisting
in the appearence of a gap in the coherent spin excitation spectrum. As a result, the characteristic energy ωc = �

appears, in the spin excitation spectra. It separates two components with qualitatively different behavior–above
ωc, spin excitations are magnonlike and have an upward dispersion, below it, they are of the relaxation type and
have a slight downward dispersion. The form of the dispersion is close to the form observed experimentally (by
inelastic neutron scattering), which can be characterized as OPEN-hour-glass shaped or Y -shaped. There is no
qualitative difference between the spin dynamics in the normal and SC states as far as doping is relatively low.
There is no resonance. Other important features, including the incommensurability and uniaxial anisotropy of
the low-energy spin excitations and the doping dependencies of the characteristic energy and wave vectors, are
also close to those observed experimentally in low-doped cuprates. We show that the static spiral state becomes
unstable at the critical doping nc. We show also that adopting the hypothesis about the presence of finite-energy
spiral correlations in the paramagnetic state above nc and based on the results obtained for the static spiral state,
it is possible to understand the spin dynamics observed in the so-called pseudogap state as well as the tendencies
of the doping evolution of spin excitations in cuprates from low to high doping.

DOI: 10.1103/PhysRevB.95.125110

I. INTRODUCTION

The theoretical description of electronic systems in a
crossover between fully localized and fully itinerant electrons
is a challenge in theoretical physics for a long time. A strong
additional interest is stimulated by experimental advances in
the field of high-Tc materials, namely of cuprates. Indeed,
the high-temperature superconductivity emerges when a Mott
insulator with fully localized spins is doped, while already for
doping levels n ∼ 0.2–0.25 on a decline of superconductivity,
the observed behavior of electronic and magnetic properties
is typical for fully itinerant systems. In between these two
limits, the observed spin dynamics is characterized by a non-
conventional behavior. On the other hand, it is highly believed
that Spin Fluctuations (SFs) are at the origin of the high-Tc

superconducting pairing in cuprates, see, e.g., Refs. [1–6].
Moreover, it is clear that the spin and charge dynamics are
two sides of the same coin in such a strongly correlated
system as doped Mott-Neel antiferromagnet (AF). Therefore
an understanding of the spin dynamics is a necessary step to
achieve a global comprehension of the high-Tc phenomena.

An important progress was made in 2000–2004 when the
unusual spin dynamics observed by neutron scattering in the
superconducting (SC) state of near-optimally doped cuprates
was successfully explained based on the spin-exciton scenario
within the fully itinerant electron picture. It was, namely,
shown that due to the opening of a SC gap of d symmetry, a res-
onance mode with a downward dispersion appears below a cer-
tain characteristic energy (the so-called resonance energy) ωr ,
see Ref. [7]. Since then, new issues have been raised by inelas-
tic neutron experiments (INS) for low and moderate dopings

[21–36]. First, the magnetically ordered incommensurate state
was discovered for doping n < nc ∼ 0.08–0.09. Second, the
observed spin dynamics was found to be qualitatively the same
in the normal and SC states- no strong enhancement in crossing
Tc when lowering T and no resonance, in contrast to near
optimally doped cuprates. The most characteristic features of
the observed at low and moderate doping normal-state spin dy-
namics are the following. The spectrum near QAF is character-
ized by two components having qualitatively different behav-
ior. The component above the characteristic energy ωc has an
upward dispersion, the spin excitations are reminiscent of spin
waves in undoped insulating state having however a reduced
spectral weight. The component below ωc is quite narrow in q

and has a slight downward dispersion, the spin excitations are
anisotropic in the momentum space being incommensurate in
one in-plane direction and commensurate in the other. The two
components do not cross at QAF, as it happens in the SC state
for near optimal doping; due to this the dispersion is sometimes
called an OPEN-hour-glass shaped. [On the other hand, due
to the narrowness in q of the component below ωc, the
dispersion is sometimes also called an Y shaped.] For doping
exceeding nc, the normal-state spin fluctuations keep most of
the above described features but acquire a gap. The behavior
as a whole is very different from the archetypal behavior of
the optimally doped cuprates. It is clear that the mechanism
behind such a normal-state spin dynamics is different from the
spin-exciton scenario valid for the SC state (and corresponding
to the fully itinerant electron picture). On the other hand, the
observed behavior, although it appears first in the magnetically
ordered incommensurate phase, is very different from the be-
havior predicted for helicoidal magnets within localized-spin
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theories with the cone-shaped dispersion, the resonant charac-
ter of fluctuations, and the uniform spectral weight.

The results obtained in the present paper seem able to
shed light on the origin of the observed nonconventional
normal-state spin dynamics. We study on a microscopic level
the state with spiral order of localized spins appearing in
strongly correlated electron systems that arises upon doping a
2D Neel AF paying special attention to an accurate treatment
of kinematic and dynamic interactions between localized
spins and mobile charges. We show that this interaction is
responsible for many nonconventional features of the spin
dynamics in such a spiral state. These features concern
the energy-momentum (ω-q) areas beyond the area of an
immediate proximity to the ω → 0, q → ±Qsp points where
the obtained results are close to those in the previous theories
[37–44] (Qsp is the spiral order wave vector). [Note that in the
frequently used to study the spiral state slave-fermion approach
[45–51], the spin dynamics was practically not considered.
The reason is that in this approach, the physical spins and
charges turn out to be two-particle objects, compounds of
auxiliary quasiparticles, spinons and holons, which makes
their study difficult; it is the problem of stability of the spiral
states of different symmetries, the properties of spinons and
holons, etc., that were mainly explored within this approach.]
Namely, we find that due to the interaction with mobile holes, a
characteristic energy emerges above and below which the spin
dynamics is qualitatively different. [This energy (we call it ωc)
is proportional to the spiral incommensurability wave vector
Q = |Q| and increases with doping (Q ≡ QAF − Qsp, where
QAF is the AF wave vector)]. Above ωc, spin excitations have
a resonant character typical usually for localized-spin systems,
while below it, coherent excitations disappear in the in-plane
fluctuation spectrum, and SFs have a relaxation character
typical usually for itinerant electron systems. The high-energy
magnonlike component having an upward dispersion can be
roughly seen as a transformation of the AF-state spin waves,
which get a gap due to the incommensurability of the magnetic
order and have a reduced spectral weight being accompanied
for fixed ω by a continuum of two-particle fluctuations. The
component below ωc reflects an impact of mobile holes on
SFs; it has a slight downward dispersion, the spectra are
anisotropic being incommensurate in one in-plane direction
and commensurate in the other. The low-energy characteristic
wave vector of this component is neither the localized-spin
spiral wave vector Q nor the 2kF , as it would be in the
metallic SDW state, and is always much smaller than 2kF .
This is why this component is quite narrow in q. The two
components are not crossing at QAF but form a sort of
a neck around the energy ωc with the neck width �qneck

proportional to Q. There is no resonance at ωc. There is
no qualitative difference between the behavior in the normal
and SC states as far as doping is relatively low. The latter
features, the overall form of the dispersion of spin excitations
(that can be considered as OPEN-hour-glass shaped since the
spin excitations are incommensurate even at ωc or Y -shaped
because of the narrowness of the dispersion below the energy
ωc), the details of their behavior above and below ωc, and
the doping dependencies of the characteristic energy and
the characteristic wave vectors are close to those observed
experimentally in low-doped cuprates.

The mechanism that is behind such spin dynamics can
roughly be understood as follows. Due to the kinematic
spin-charge interaction, the spiral order in the localized-spin
subsystem induces an off-diagonal order in the itinerant-charge
subsystem and a gap in the hole spectrum. This occurs on a
level of dynamically noninteracting quasiparticles. Due to the
dynamic spin-charge interaction, this gap in the hole spectrum
produces a feedback effect consisting in the appearance of
a gap in the coherent spin excitation spectrum. The upper
branch of this spectrum (above the gap) corresponds to
the magnonlike fluctuations mentioned above. The lower
branch (below the gap) is what is left of the spiral-state
Goldstone mode (mandatory in the long-range ordered state as
responsible for the breaking of continuous symmetry)—being
truncated by the gap from above, the Goldstone mode survives
only in its initial part at very low energies, see comment [52].
Inside the gap, incoherent spin excitations of two-particle
electron-hole origin are settled. Further, we find that the
long-range-ordered (LRO) spiral state becomes unstable at
a certain critical doping nc. If we adopt a natural hypothesis
that the paramagnetic (PM) state above nc keeps finite-energy
spiral correlations and use the obtained in the paper results
for the static spiral state, it becomes possible to understand
the spin dynamics observed in the so-called pseudogap state
as well as the tendencies of the doping evolution of spin
excitations in cuprates from low to high doping.

The paper is organized as follows. In Sec. II, we discuss
the kinematic interrelation between spin and charge degrees
of freedom in the system arising upon doping the insulating
Mott-Neel AF and described by the t-J model. It consists in
the fact that the Hubbard operators (HOs) describing spin-
and charge- degrees of freedom form a common algebra,
which is equivalent to the existence of a kinematic spin-charge
interaction. In Sec. III, we introduce the representation of these
operators in terms of Bose/Fermi operators, which is the ex-
tension of the Dyson-Maleev representation for spin operators
onto the algebra Spl(1,2) of the eight HOs of the t-J model. It
is much better adapted for the study of magnetically ordered
systems with broken rotational symmetry than the slave-
fermion/slave-boson representations that as the extensions of
the Schwinger-boson/Abrikosov-fermion representations are
suitable to study states with preserved rotational symmetry.
Moreover, it preserves accurately the local constraint between
the spin and charge degrees of freedom that is very important
if one wishes to treat correctly the spin-charge interrelation.
As this representation supposes that the quantization axis
points along the magnetization on each site of the lattice, we
perform first an unitary transformation to local coordinates
which turn in space as the spiral. In Sec. IV, we consider the
spin and charge dynamics in the dynamically noninteracting-
quasiparticle approximation. The important results for the
charge dynamics are the appearance of an off-diagonal order
and the opening of a gap in the fermion spectrum as well
as a shift of the Fermi pocket centers with respect to the
commensurate positions in the Brillouin zone (BZ). As to the
spin dynamics, we find a splitting of the spin-wave spectrum
with respect to the AF case, with one Goldstone and one optical
mode. The behavior of the latter reveals an instability of the
spiral state immediately upon doping in the case of isotropic
exchange interaction and its stabilization for doping n < nc
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in the presence of a small easy-plane anisotropy 1 − ζ ; nc is
the doping at which the spiral order incommensurability wave
vector reaches its critical value Qc = 2

√
1 − ζ . (As known,

for cuprates 1 − ζ is relatively high, namely, 1 − ζ ∼ 10−3

[53–56].) In Sec. V, we study changes in spin dynamics due
to the dynamical spin-charge interaction. The Green function
formalism allowing to get expressions for the in-plane and
out-of-plane spin response functions and SF spectrum through
polarization operator components is presented in Sec. V A. In
Sec. V B, the polarization operator components are calculated
analytically in the low-carrier-density approximation; the
analysis of the impact of their structure on renormalized spin
fluctuation spectrum is presented as well. In Sec. VI, we apply
the formalism to cuprates; Sec. VI A treats the LRO spiral state,
while in Sec. VI B, the spin dynamics above the critical doping
nc is discussed. Section VII contains Summary and Discussion.

II. t- J MODEL. INTERRELATION BETWEEN SPIN
AND CHARGE DEGREES OF FREEDOM

The t-J model is a good model to describe the system of
interrelated localized spins and mobile charges resulting from
the doping of the AF Mott-insulator state (t includes nearest
neighbors, next-nearest neighbors, etc.). It was introduced first,
from the one-band Hubbard model [57,58], and later from
the three-band Hubbard model for CuO2 plane [59–61]. In
the latter case, the CuO2 plane is represented as a lattice of
plaquettes centered on copper sites; each plaquette contains a
Cu site and four nearest neighbor O sites. The Hamiltonian of
the t-J model is written as

H = Ht + HJ − μ
∑

i

X00,

Ht =
∑
ij

∑
σ=1,−1

tijX
0σ
i Xσ0

j , (1)

HJ = 1

2

∑
〈ij〉

∑
σ=1,−1

Jij

(
Xσσ̄

i Xσ̄σ
j − Xσσ

i Xσ̄ σ̄
j

)
,

where tij is a general notation for the terms corresponding
to nearest neighbors (nn) (t), next nearest-neighbors (nnn)
(t ′), and next-next-nearest neighbors (nnnn) (t ′′) hopping (t ′ 
=
0 and t ′′ 
= 0 reflecting a nonlocal character of the cooper-
oxygen singlet state); for the exchange interaction Jij , only the
nn terms are present, μ is the chemical potential. The model is
formulated in terms of the so-called Hubbard operators (HOs),
X

pq

i = |i,p〉〈i,q|, that describe transitions between |q〉 and
|p〉 states on the lattice site i. The HOs are defined by their
multiplication rules

X
pq

i X
q ′p′
i = δqq ′X

pp′
i , (2)

the commutation relations[
X

pq

i ,X
q ′p′
j

]
± = δij

(
δqq ′X

pp′
i ± δpp′X

q ′q
i

)
(3)

and the sum rule ∑
p

X
pp

i = 1, (4)

[ ]± in (3) stands for the anticommutator and commutator,
respectively, the sign “+” corresponds to the case when both

HOs are Fermi-like and the sign “−” does to the case when
at least one of them is Bose-like. In the case of the t-J
model, there are three one-site states (p,q = 0,1,−1) and
therefore eight HOs X

pq

i . The states |1〉 and | − 1〉 correspond
to the states of the plaquette with one (localized) hole on
cooper having spin up and down respectively and the state
|0〉 corresponds to the singlet bound state of two holes on the
plaquette (one on oxygen and another on copper). Therefore
the two operators X1−1

i , X−11
i describe transitions between

the up, down states of localized spin and the four operators
X±10

i , and X0±1
i describe transitions between the states with

zero spin and spin up/down concerning the spin degrees
of freedom, and the creation and annihilation of a “hole”
concerning the charge degrees of freedom. Correspondingly,
the operators X±10

i , X0±1
i are Fermi-like [the sign “+” in (3)],

while the operators X1−1
i , X−11

i (and all the diagonal operators,
X11

i , X−1−1
i , and X00

i ) are Bose-like [the sign “−” in (3)].
These eight independent operators X

pq

i form a close algebra
[Lie superalgebra Spl(1,2)] so that the operators describing
the “holes” and spins turn out to be interrelated, which is
equivalent to a kinematic charge-spin interaction.

Note that since the Bose-like HOs coincide with the spin
operators,

S+ = X1−1, S− = X−11, Sz = 1
2 (X11 − X−1−1), (5)

the term HJ in the Hamiltonian (1) can be also written as

HJ =
∑
〈ij〉

Jij

(
Sx

i Sx
j + Sz

i S
z
j + ζS

y

i S
y

j − 1

4
ne

i n
e
j

)
, (6)

(α = x,y,z, ne
i = X11

i + X−1−1
i is a number of “electrons”

on the site i), from where one sees that at zero doping the
Hamiltonian of the t-J model is reduced to the Heisenberg
Hamiltonian describing the localized s = 1/2 spins on a
square lattice. [In Eq. (6), we introduce a small easy plane
anisotropy 1 − ζ > 0; although the original t-J model (1)
is isotropic, ζ = 1, for the cuprates the in-plane anisotropy
is relatively high, 1 − ζ ∼ 10−3 [53–56], on the other hand,
its presence is important for the stability of the spiral state,
as we will see later on.] Due to the sum rule (4), the total
number of “electrons” and “holes” in the t-J model is 1 :
〈ne

i 〉 + 〈nh
i 〉 = 1 (nh

i ≡ X00
i ). The hole density 〈nh

i 〉 ≡ n is
equal to doping.

On the other hand, since the Fermi-like X0σ
i , Xσ0

i opera-
tors coincide with the constrained creation and annihilation
operators of “hole” with spin σ on the lattice site i,

C̃+
i↑ = X01

i , C̃+
i↓ = X0−1

i , (7)

the term Ht in the Hamiltonian (1) can be written also as

Ht =
∑
ij

∑
σ

tij C̃
+
iσ C̃jσ . (8)

III. UNITARY TRANSFORMATION TO LOCAL
COORDINATES. EXTENDED DYSON-MALEEV

REPRESENTATION

It is difficult to work with the Hubbard operators since their
statistics is different from that of Fermi/Bose operators for
which methods of theoretical physics are well developed. Dif-
ferent approaches are possible. The first consists of using the
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diagrammatic technique for the HOs (see, e.g., Refs. [62–64])
and is rather complex. The second consists of using a
representation of the HOs in terms of Bose/Fermi operators.
Usually, the results obtained within the second approach are
more transparent. (The equation-of-motion approach is also
possible, however, the decoupling schemes used in this case
are not much controllable.) The known representations are the
slave-fermion (SF) [45–51] and the slave-boson (SB) [65–68]
representations that are respectively the extensions of the
Schwinger-boson and Abrikosov-fermion representations for
spin operators onto the algebra Spl(1,2), the representations
[69] and [70] that are respectively the extensions of
the Dyson-Maleev (DM) and Holstein-Primakoff (HP)
representations for spin operators onto the algebra Spl(1,2),
the “normal Fermi-liquid” representations [64] [Eq. (A4)] and
the equivalent representation [71], see Ref. [72]. All of them
are not exact in the same manner as the original representations
for spin operators. In particular, all of them expand the states
of the Hamiltonian by introducing unphysical states.

Use of different representations reduces the initial t-J
model to different spin-fermion models corresponding to
different limits (see, e.g., an analysis of the different represen-
tations in Ref. [64], Appendix A). A choice of representation
should be dictated mainly by the proximity of the studied state
to the limit to which the representation is most adapted (i.e.,
in which the population of the unphysical states is small).
Note that the Hamiltonian of the t-J model is an extension
of the Heisenberg Hamiltonian for s = 1/2 localized spins
and the Lie superalgebra Spl(1,2) is an extension of the Lie
algebra SU(2) formed by the spin 1/2 operators, therefore a
relevant representation for HOs of the former algebra should
be an extension of the relevant representation for spin s = 1/2
operators. As known, in the latter case, there are two types
of the representations: DM/HP representations adapted for
studying of the ordered states with broken rotational symmetry
and the Schwinger-boson/Abrikosov-fermion representations
used usually to study states that conserve the rotational
symmetry. It is clear that the suitable representation to study
physical properties of states with rotationally broken symmetry
in our hole doped system, including the states with the
spiral order of localized spins, is not an extension of the
Schwinger-boson/Abrikosov-fermion representation but that
of the DM/HP representation. Such a representation extended
to the algebra of the 8 HOs of the t-J model was proposed in
Ref. [69] (the DM variant) and in Ref. [70] (the HP variant).
This representation supposes that the quantization axis z points
along the magnetization on each site of the lattice. Therefore,
to be applied to a noncollinear LRO magnetic state, it must be
preceded by a unitary transformation to “local coordinates” in
which on each lattice site the quantization axis z is parallel to
the local magnetization.

We consider the AF coplanar spiral state (in the zx plane)
with the angle between the magnetization vectors on nn sites
i, i + η̂ constant through the lattice and equal to QAF − φiη̂

[QAF = (π,π ) is the AF wave vector, η̂ = x̂,ẑ, φiη̂ is supposed
small]. It is convenient to introduce the local coordinates of
the AF type in which on the site i (lattice A) the magnetization
points up and on the nn site i + η̂ (lattice B), it points down
with respect to the local quantization axis z. To pass to this local
basis we have to rotate through an angle φi = QRi on each

site, i.e., to apply to the Hamiltonian the unitary transformation
Vα : H̃ = VαHV −1

α ,Vα = exp(i
∑

i φiS
α
i ). (The wave vector

Q should be determined self-consistently, we will do this in
Sec. VI A.)

The explicit form of the transformation of the eight opera-
tors X

pq

i of the t-J model under such a unitary transformation
can be found by using the formalism of the Wigner D matrix.
For the three components corresponding to the spin operators,
it is the D(1) matrix of the dimension 3 that determines the
transformation, while for the other five components, it is the
D(2) matrix of the dimension 5 that is involved. In the case of
the rotations about the axis y (that we need to perform in our
case of zx plane), we get

X11
i = 1

2

[
X̃11

i (1 + cos φ) + X̃−1−1
i (1 − cos φ)

−(X̃1−1
i + X̃−11

i

)
sin φ

]
,

X−1−1
i = 1

2

[
X̃11

i (1 − cos φ) + X̃−1−1
i (1 + cos φ)

+(X̃1−1
i + X̃−11

i

)
sin φ

]
,

X1−1
i = 1

2

[
X̃1−1

i (1 + cos φ) − X̃−11
i (1 − cos φ)

+(X̃11
i − X̃−1−1

i

)
sin φ

]
,

X10
i = X̃10

i cos
φ

2
− X̃−10

i sin
φ

2
,

X−10
i = X̃−10

i cos
φ

2
+ X̃10

i sin
φ

2
, (9)

where X
pq

i and X̃
pq

i are the HOs in the initial and new basis,
respectively. For X−11

i and X01
i X0−1

i , one should use X
pq

i =
(Xqp

i )+. In (9), φ = φi = QRi .
It is clear from (9) that in the new basis the Hamiltonian H̃

contains not only the terms of the same structure as in (1) (with
the renormalized interactions, t̃ij , J̃ij ), but also new terms.
Those are

∑
ij Rij X̃

01
i X̃−10

j + H.c. for the charge degrees of

freedom and
∑

ij Qij X̃
1−1
i X̃1−1

j + H.c. for the spin degrees of
freedom.

We now introduce boson b and fermion f by using the
representation [69]

X̃10
i = fi, X̃01

i = f +
i (1 − b+

i bi),

X̃−10
i = b+

i fi, X̃0−1
i = f +

i bi,

X̃1−1
i = bi, X̃−11

i = b+
i (1 − b+

i bi − f +
i fi),

X̃00
i = f +

i fi, X̃−1−1
i = b+

i bi,

X̃11
i = 1 − b+

i bi − f +
i fi, (10)

that is an extension of the Dyson-Maleev representation
for s = 1/2 to the algebra of eight operators of the t-J
model. One can easily check that this representation preserves
exactly the commutation relations (3) and the local constraint
(4). The matrix elements of transitions between physical
and unphysical states are zero. (The physical subspace is
obtained by considering the states with bibi = 0 and bifi = 0.)
Therefore, when used for a magnetically ordered state this
representation is asymptotically exact in the case of low T

and small hole concentration n. [Note the difference with the
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SF/SB representation in which the local constraint (4) cannot
be fulfilled and is replaced by the enforced global constraint
(1/N)

∑
i(
∑

p X
pp

i ) = 1.] Since our local coordinates are of
AF type we should use (10) for sublattice A, while for
sublattice B, we should replace in Eq. (10) 1 ↔ −1 and
introduce a- and g operators instead of b and f , respectively.

Performing explicitly all described above transformations,
we get the Hamiltonian

H = Hs + Hh + Hs−h, (11)

where Hs contains only Bose operators and describes the spin
subsystem, Hh contains only Fermi operators and describes the
“hole” subsystem, and Hs−h describes the interaction between
the two subsystems.

IV. SPIN AND CHARGE DYNAMICS IN
NONINTERACTING-QUASIPARTICLE APPROXIMATION

A. Spin dynamics: spectra, magnon and spin Green functions

The magnetic part of the Hamiltonian, Hs , includes a
quadratic term H (2)

s describing noninteracting “magnons”
and high-order terms H (l)

s (l = 4 and 6) describing magnon-
magnon scattering, usually small at low T :

Hs = Es
0 + H (2)

s + H (4)
s + H (6)

s .

The quadratic Hamiltonian and the energy Es
0 are given by

H (2)
s =

∑
q

[Aq(a+
q aq + b+

q bq) + Cq(a+
q b+

−q + b−qaq)]

+Dq(aqb
+
q + bqa

+
q ),

Es
0 = −N (JQ + J−Q)/16, (12)

where

Aq = 1
4 (JQ + J−Q), Cq = 1

4

[
ζJq + 1

2 (Jq+Q + Jq−Q)
]
,

Dq = − 1
4

[
ζJq − 1

2 (Jq+Q + Jq−Q)
]
, (13)

and Jq = 4Jγq, γq = 1
2 (cos qx + cos qz). Due to the term with

Dq, we deal here with a 4 × 4 dynamic matrix instead of a
2 × 2 matrix in the case of collinear AF state. Note that for
isotropic exchange interaction, i.e., ζ = 1, Dq is zero and the
Hamiltonian is reduced to the Hamiltonian of collinear AF
if we restrict ourselves by the lowest in Q terms in the full
Hamiltonian, i.e., neglect by Q2 terms in (12), (13) (as can be
tempting in the case of low Q). However, it is very important to
keep the Q2 terms, otherwise, we loose the effect of instability
of the spiral states in the case of isotropic exchange, i.e., for
the standard t − t ′ − J model, as we will see later on.

The diagonalization of the Hamiltonian (12) is performed
applying the following generalized Bogolubov canonical
transformation with four eigenvectors:

aq = U+
q cq + V +

q c+
−q + U−

q d−q + V −
q d+

q ,

bq = −U+
q cq − V +

q c+
−q + U−

q d−q + V −
q d+

q . (14)

After cumbersome but straightforward calculations, we
find the following expressions for the eigenvectors and

eigenvalues:

(U±)2 = 1

4

[
A ∓ D

�± + 1

]
, (V ±)2 = 1

4

[
A ∓ D

�± − 1

]
,

U+V + = C

4�+ , U−V − = − C

4�− , (15)

(�±)2 = (A ∓ D)2 − C2, (16)

while the diagonalized Hamiltonian is written as

H (2)
m =

∑
q

[
�c

qc
+
q cq + �d

qd
+
q dq

]
. (17)

In (17), we renoted the eigenvalues: �− ≡ �d , �+ ≡ �c; they
describe the dispersions of two branches of the boson spectrum
and are given explicitly by

�d
q = 1

2

√
(JQ − ζJq)

[
JQ + 1

2 (Jq+Q + Jq−Q)
]
,

�c
q = 1

2

√
(JQ + ζJq)

[
JQ − 1

2 (Jq+Q + Jq−Q)
]
. (18)

Note the difference with the AF state, namely a leave of
degeneracy between the two branches even in the isotropic
case ζ = 1.

Near the AF wave vector, i.e., for q ′ � 1 (where q ′ = |q′|
and q′ = QAF − q), the mode �d is a Goldstone mode with
linear dispersion, while the mode �c has a gap, and one can
write approximately

�d
q = cq ′, c = 1

4
J0

√
1 + ζ ,

�c
q = J0

2

√
(�̄c)2 + q ′2

2
, �̄c =

√
2
√

1 − ζ − Q2/4 (19)

(Q = |Q|, here and everywhere below we suppose 1 − ζ �
1). We see that if ζ = 1, then (�c

q)2 is negative for q ′ < Q,
that indicates an instability. Therefore the first conclusion is
the following: the coplanar LRO spiral state is unstable in the
case of isotropic exchange, i.e., for the standard t-J model.
As we will see below, the instability concerns the out-of-plane
susceptibility, see Ref. [73]. A presence of a small easy plane
anisotropy is enough to stabilize such a state as far as the spiral
order incommensurability wave vector is small, namely, as

Q < Qc = 2
√

1 − ζ . (20)

Note that if we were neglected the terms proportional to Q2

in the Hamiltonian (12), we would remain with degenerated
modes �d and �c and miss the effect of the instability [44].

Near the BZ center, i.e., for q = |q| � 1, it is the �d mode
that is optical and the �c mode that is a Goldstone mode with
linear dispersion, �c

q = cq. For “high” q, q ′, q � √
2�̄c, q ′ �√

2�̄c, the two modes are practically degenerated, �c
q ≈ �d

q.
Since the Hamiltonian is diagonal on c and d operators,

only the diagonal Green functions

Gdd+ (q,iωn) ≡ 〈〈dq|d+
q 〉〉iωn

= −
∫ β

0
dτeiωnτ 〈Tτdq(τ )d+

q (0)〉,

Gc+c(q,iωn) ≡ 〈〈c+
−q|c−q〉〉iωn

= −
∫ β

0
dτeiωnτ 〈Tτ c

+
−q(τ )c−q(0)〉 (21)
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are nonzero, they are equal to

Gdd+ (q,iωn) = 1

iωn − �d
q
,

Gc+c(q,iωn) = 1

−iωn − �c
q
. (22)

In (21) and (22), Gdd+ and Gc+c are Matsubara Green
functions, Tτ is a chronological operator, ωn = 2nπT are Mat-
subara discrete frequencies for bosons and τ is the imaginary
time. The Green functions determined on the initial a and b

operators, that we will need for the following calculations, can
be easily obtained from (22) by using Eq. (14).

Those were boson Green functions. Let us now calculate
physical spin Green functions, namely the two transversal
functions, the out-of-plane one determined as

Gyy
s (q,iωn) ≡ 〈〈

Sy
q

∣∣Sy
q

〉〉
iωn

= −
∫ β

0
dτeiωnτ

〈
TτS

y
q (τ )Sy

q (0)
〉
, (23)

and the in-plane one determined as

Gxx
s (q,iωn) ≡ 〈〈

Sx
q

∣∣Sx
q

〉〉
iωn

= −
∫ β

0
dτeiωnτ

〈
TτS

x
q (τ )Sx

q (0)
〉
. (24)

For this we should use the relation (5) between the spin and
Hubbard operators, the transformation (9) from the initial
to local coordinates and finally the representation (10) for
the HOs through Bose/Fermi operators. Cumbersome but
straightforward calculations give

Gyy
s (q,iωn) = Fc

q

�c
q

(iωn)2 − (
�c

q

)2 , (25)

Gxx
s (q,iωn) = 1

2

[
Fd

q+Q

�d
q+Q

(iωn)2 − (
�d

q+Q

)2

+ (Q → −Q)

]
+ Q2Oq, (26)

The prefactors Fc
q and Fd

q in the one-particle terms of (25), (26)
are determined as Fc

q = (U+
q − V +

q )2, Fd
q = (U−

q + V −
q )2;

their explicit dependencies on wave vectors near the AF wave
vector (small q ′) are given by

Fd
q =

√
1 + ζ

2

1

q ′ , F c
q = 1√

2

1√
�̄2

c + q ′2/2
. (27)

The term Q2Oq in Eq. (26) corresponds to a higher-order
“many-particle” contribution, it is small with respect to the
one-particle contribution.

We see that the in-plane Green function (and therefore the
in-plane spin susceptibility) contains only the �d mode, while
the out-of-plane susceptibility contains only the �c mode. We
see also that the out-of-plane Green function is commensurate,
while the in-plane spin Green function gets q + Q, q − Q
as arguments and therefore is incommensurate. The presence
in the in-plane Green function (and in the corresponding
susceptibility) of the Goldstone modes at q′ = ±Q is related

to the spontaneous breaking in the LRO state of the continuous
symmetry of the Hamiltonian (6) corresponding to the rotation
around the y axis. Since it is a single continuous symmetry of
the Hamiltonian in the case ζ 
= 1, there is no Goldstone mode
in the out-of-plane susceptibility.

Note that the gap �c in the optical mode decreases with
increasing Q, i.e., with increasing doping (since Q ∝ n, as we
will see in Sec. VI), and vanishes at certain doping n = nc

at which Q = Qc. Therefore the out-of-plane susceptibility
χyy turns out to be a critical susceptibility with respect to the
instability at this doping.

The higher-order terms of Hs have a little influence on
spin dynamics since the occupation number of the excited
states is small at low T. In particular, the magnon-magnon
interaction alone does not lead to a finite magnon lifetime at
T = 0 because the requirement of energy- and momentum-
conservation forbids a spontaneous decay of one “magnon”
into several magnons. On the contrary, a decay of the
“magnon” into two quasiparticles (boson and fermion) occurs
due to the spin-hole interaction Hs−h that finally strongly
modifies the spin dynamics, as we will see in Secs. V and VI.
Before to study the role of this interaction let us first analyze
the charge dynamics.

B. Charge dynamics: fermionic quasiparticle spectra,
charge Green functions

The quadratic on Fermi operators Hamiltonian is given by

H
(2)
h = (

H
(2)
h

)(AF ) + �Hh. (28)

The first term in (28) is the same as for the collinear AF state
[69] (

H
(2)
h

)(AF ) =
∑

k

(εk − μ)(f +
k fk + g+

k gk) (29)

with the hole dispersion εk having the form

εk = ε0 + x1(cos kx + cos kz)
2 + x2(cos 2kx + cos 2kz), (30)

where x1 = 2t ′ and x2 = 2t ′′ − t ′ (we have neglected unimpor-
tant (for the fermions) terms proportional to Q2. The location
of the minimum of εk depends on the relation between t ′ and
t ′′, it can be at (π/2,π/2) or (0,π ) (in the first quadrant of the
BZ). It is well known, however, that the “dressed” holes on the
AF background have the dispersion (30) with renormalized
parameters x1 and x2 such that the minimum of εk occurs
at (π/2,π/2) (even when t ′ = t ′′ = 0), see Refs. [74–80].
The isoenergetical surfaces in this case are given by four
ellipses centered at (±π/2, ± π/2) and having their axes
turned by the angle π/4 with respect to the basic vectors
of the reciprocal lattice. In the vicinities of the minima, the
dispersion is parabolic,

εp = ap2
x(y) + bp2

y(x), (31)

px , py are the projections of the vector p on the principal axes
of ellipses and a = 2(x1 + x2), b = 2x2.

The second term in (28), absent in the collinear AF state,
has the form

�Hh =
∑

k

[Bk(f +
k gk − g+

k fk)],

Bk = (tk−Q/2 − tk+Q/2)/2i, (32)
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where tk = 4tγk. Bk can be rewritten as

Bk = −i2t[sin(Qx/2) sin kx + sin(Qz/2) sin kz], (33)

where kα and Qα are defined in the basic reciprocal space
corresponding to the square lattice.

For the matrix fermion Green function in the Matsubara
representation

K̂(k,iωn) = −
∫ β

0
dτeiωnτ 〈Tτ�k(τ )�+

k (0)〉, (34)

determined on the vector operators � and �+,

� =
[
gk
fk

]
, �+ = (g+

k , f +
k ), (35)

one gets

K̂−1(k,iωn) =
[
iωn − εk Bk

B∗
k iωn − εk

]
, (36)

where ωn = (2n + 1)πT are the Matsubara discrete frequen-
cies for fermions. By inverting (36), we get for the fermion
matrix Green-function components the following expressions:

K11(k,iωn) ≡ 〈〈gk|g+
k 〉〉iωn

= 1

2

(
1

iωn − E+
k

+ 1

iωn − E−
k

)
,

K22(k,iωn) ≡ 〈〈fk|f +
k 〉〉iωn

= K11(k,iωn),

K12(k,iωn) ≡ 〈〈gk|f +
k 〉〉iωn

= 1

2

Bk

|Bk|
(

1

iωn − E−
k

− 1

iωn − E+
k

)
,

K21(k,iωn) ≡ 〈〈fk|g+
k 〉〉iωn

= 1

2

B∗
k

|Bk|
(

1

iωn − E−
k

− 1

iωn − E+
k

)
, (37)

where

E±
k = εk − μ ± |Bk| (38)

describe the two branches in the fermion spectrum (μ is the
chemical potential equal to the Fermi energy εF = πn

√
ab).

We see that in the spiral state the fermion spectrum is
split by the gap �k = 2|Bk|. The momentum dependence
of the gap is given by Eq. (33). For the (1,1) spiral state
(Qx = Qz = Q), Bk is zero for k in the (1,−1) direction so
that the spectrum near (−π/2,π/2) and (π/2,−π/2) remains
practically unchanged with respect to the collinear AF state,
and the minima are not the absolute minima. In the direction
(1,1), |Bk| is maximum at (π/2,π/2) and (−π/2,−π/2) so
that the latter are the points of absolute minima. For the (1,0)
spiral (Qx = Q, Qz = 0), the spectrum has the same minima
for the four pockets around (±π/2, ± π/2).

The calculated above Green functions are the fermion Green
functions. Let us calculate now the Green functions describing
the physical charges:

Gσ
h (k,iωn) ≡ 〈〈C̃kσ |C̃+

kσ 〉〉iωn

= −
∫ β

0
dτeiωnτ

〈
TτX

σ0
k (τ )X0σ

k (0)
〉

(39)

(σ = 1,−1). By expressing Xσ0 and X0σ operators through
the operators X̃pq in the local coordinates via Eq. (9) and then
using the representation (10) for sublattice A and a similar
representation for sublattice B, we get

G
↑
h(k,iωn)

= 1

2

[
K11

(
k + Q

2
,iωn

)
+ 1

i
K12

(
k + Q

2
,iωn

)]

+1

2

[
K11

(
k − Q

2
,iωn

)
− 1

i
K12

(
k − Q

2
,iωn

)]
. (40)

[In (40), we keep only the leading one-particle contributions.]
The explicit expression depends on the symmetry of the spiral
state and for the chosen symmetry—on the Fermi pocket
considered. For both (1,0) and (1,1) spirals, we have near
(π/2,π/2) and (−π/2,−π/2):

G
↑
h(k,iωn) = 1

2

⎛
⎝ 1

iωn − E+
k+ Q

2

+ 1

iωn − E−
k− Q

2

⎞
⎠ (41)

and

G
↑
h(k,iωn) = 1

2

⎛
⎝ 1

iωn − E−
k+ Q

2

+ 1

iωn − E+
k− Q

2

⎞
⎠, (42)

respectively. Near (π/2,−π/2) and (−π/2,π/2), we have for
the (1,0) spiral the expression (41) and (42), respectively, while
for the (1,1) spiral we have the expression with a practically
nonperturbed spectrum:

G
↑
h(k,iωn) ≈ 1

2

(
1

iωn − εk+ Q
2

+ 1

iωn − εk− Q
2

)
. (43)

For the charge Green function with spin down, G
↓
h(k,iωn),

one should replace g ↔ f and therefore i → −i in (40) that
gives for k in a vicinity of (π/2,π/2) the same expression
as for G

↑
h(k,iωn) for k in a vicinity of (−π/2,−π/2) and so

on, so that the charge spectra are polarized. For the Green
function that includes both polarizations [usually measured
by the angle-resolved photoemission (ARPES)], one has near
(π/2,π/2) and (−π/2,−π/2),∑

σ

Gσ
h (k,iωn) = 1

2

[
1

iωn − E+(k + Q
2

)
+ 1

iωn − E−(k + Q
2

) + (Q → −Q)

]
,

(44)

and the evident expressions for k in the two other quadrants of
the BZ.

Note the important difference between the physical charge
Green functions Gσ

h and the fermion Green functions
〈〈fk|f +

k 〉〉, 〈〈gk|g+
k 〉〉. The former has the same spectrum as

the latter, displaced, however, by the vectors ±Q/2. In other
words, the Fermi pocket centers for the physical charges are
located not at (±π/2, ± π/2) but are shifted by half the
spiral incommensurability wave vector, as shown in Fig. 1(a)
for the (1,1) spiral symmetry and Fig. 1(b) for the (1,0)
spiral symmetry. In real crystals, domains of both (1,0) and
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+

(a)

(0,π)

(0,0)

(π,π)

(π,0)

(0,π)

(0,0)

(π,π)

(π,0)

+

(b)

(0,π)

(0,0)

(π,π)

(π,0)

+
+

(c)

FIG. 1. Schematic plot of the hole Fermi pockets in the first quadrant of BZ: (a) for the (1,1) spiral state, (b) for the (0,1) spiral state, (c)
for real crystals in which domains of the (0,1)- and (1,0)-spiral symmetries can be present simultaneously. The crosses show the centers of the
pockets. We present for simplicity the case when only the pockets related to the E− branch are filled. Note the asymmetry of the pockets with
respect to AF BZ boundary.

(0,1) symmetries can exist simultaneously so that in ARPES
experiments, the two corresponding Fermi pockets with the
centers displayed by (Q/2,0) and (0,Q/2) with respect to
(π/2,π/2) could be seen simultaneously, as shown in Fig. 1(c).
Note that asymmetric with respect to the AF boundary pockets
whose centers are shifted from the commensurate positions
were observed in certain ARPES experiments in the normal
state of underdoped cuprates [81,82].

C. Off-diagonal charge order

Another important effect in the charge subsystem is the
appearance of an off-diagonal order induced by the spiral order
of localized spins. The effect is due to the kinematic spin-
charge interaction. Indeed, let us consider the charge Green
function nondiagonal in spin 〈〈C̃kσ |C̃+

kσ̄ 〉〉. This Green function
being expressed in terms of the fermion Green functions, is
given by

〈〈C̃k↑|C̃+
k↓〉〉iωn

= 1

2i

[
−K11

(
k − Q

2
,iωn

)
+ 1

i
K12

(
k − Q

2
,iωn

)]

+ 1

2i

[
K11

(
k + Q

2
,iωn

)
+ 1

i
K12

(
k + Q

2
,iωn

)]
(45)

(we performed the same transformations as before when
calculating the diagonal charge Green function). One can
rewrite explicitly, for example, near (π/2,π/2):

〈〈C̃k↑|C̃+
k↓〉〉iωn

= 1

2i

⎡
⎣ 1

iωn − E+
k+ Q

2

− 1

iωn − E−
k− Q

2

⎤
⎦

= 1

i

|Bk+Q/2| + |Bk−Q/2|[
iωn − E+

k+ Q
2

][
iωn − E−

k− Q
2

] (46)

from where we see that the order parameter (OP) φk =
〈C̃+

k↑(t)C̃k↓(t)〉 is proportional to Q,

φk ∝ |Bk=(π/2,π/2)| ∝ Q. (47)

The OP is obtained by using the Green-function-formalism
theorem that relates an average of operators to the correspond-

ing Green function:

〈B(t ′)A(t)〉 =
∫ ∞

−∞
dωnF (ω)ρAB(ω)e−iω(t−t ′),

where ρAB = Gr
AB(ω + iδ) − Gr

AB(ω − iδ) is the spectral
function and Gr is the Green function in retarded represen-
tation. The OP φk describes the off-diagonal order in the
charge subsystem, which corresponds to Bose condensation
of electron-hole pairs with total spin zero—the pairing similar
to the singlet SC pairing but concerning an electron and a hole
instead of two electrons (i.e., of DW nature). In Ref. [83],
we show that such an order also appears in the case when
spiral correlations of localized spins are short-range and that
it has a certain relation to the so-called intra unit cell q = 0
magnetic order observed in cuprates in the pseudogap phase
[84]. We discuss this in details in Ref. [83]. Here it is important
to emphasize that the appearance of this off-diagonal charge
order is a direct consequence of the spin-charge kinematic
interaction, which consists in the fact that the spin and charge
Hubbard operators form a common algebra and therefore the
charge HOs (and thus the charge degrees of freedom) are also
affected by the unitary transformation to the local coordinates
concerning the spin subsystem and they feel in this way the
incommensurability of the localized spin order. This is one of
the manifestation of strong-electron-correlation aspect in the
considered approach.

V. THE EFFECT OF THE DYNAMIC SPIN-CHARGE
INTERACTION ON THE SPIN DYNAMICS

Let us now study effects of the dynamic spin-charge
interaction on spin dynamics. The most important term of
such an interaction is given by the Hamiltonian of third order

H
(3)
s−h =

∑
k,q

[
tk+ Q

2
g+

k fk+qb
+
q

+ tk+q+ Q
2
g+

k fk+qa−q + (Q → −Q)
]

(48)

describing a decay of Bose quasiparticle, magnon, into two
Fermi quasiparticles, “electron” and “hole.” Note that this
process turns out to be associated with the highest energetical
parameter (t) in the t-t ′-J model.
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A. Renormalised “magnon” and spin Green functions

First we rewrite H
(3)
s−h in terms of c and d operators. Two

independent groups of terms emerge: the first is coming from
the U− and V − coefficients and the d operators, i.e., from
the d mode, and the second is coming from the U+ and V +
coefficients and the c operators, i.e., from the c mode:

H
(3)
s−h = H

(3)
d + H (3)

c ,

H
(3)
d = t0

∑
k,q

(
Md

k−q,qg
+
k fk−qd−q + H.c.

)
,

H (3)
c = t0

∑
k,q

(
Mc

k−q,qg
+
k fk−qcq + H.c.

)
, (49)

with the scattering amplitudes given by

Md
k−q,q = 1

2

[
U−

q γk−q+ Q
2

+ V −
q γk+ Q

2
+ (Q → −Q)

]
,

Mc
k−q,q = 1

2

[
U+

q γk−q+ Q
2

− V +
q γk+ Q

2
+ (Q → −Q)

]
. (50)

The latter can be rewritten in a more symmetrical form:

Md
k−q,q = 1

4

[
(U−

q + V −
q )
(
γk−q+ Q

2
+ γk+ Q

2

)
+ (U−

q − V −
q )
(
γk−q+ Q

2
− γk+ Q

2

)+ (Q → −Q)
]
,

Mc
k−q,q = 1

4

[
(U+

q − V +
q )
(
γk−q+ Q

2
+ γk+ Q

2

)
+ (U+

q + V +
q )
(
γk−q+ Q

2
− γk+ Q

2

)+ (Q → −Q)
]

(51)

from which we see that Md → 0 when q → QAF (q ′ → 0),
i.e., in the region where �d is a Goldstone mode, and Mc → 0
when q → 0, i.e., in the region near the BZ center where �c

is a Goldstone mode, as it should be in a correspondence to
the Adler theorem for scattering amplitudes. More precisely,
(Md )2 ∝ q ′ when q ′ → 0, and (Mc)2 ∝ q when q → 0. Below
we will consider spin fluctuations near the AF wave vector.

As usual in the case of quasiparticles with strong interaction
(here t) but small quasiparticle density (here density of the
doped holes n), the actual expansion parameter is proportional
to the density and is equal here to (t/J )n. This is why for small
n one can take into account only the lowest-order graphs,
which for the interaction (49) are the bubble graphs. (The
approximation is very good due to the absence of single loop
corrections in the spin-charge vertex, the reason is the same
as for AF state, see Refs. [75,76].) The Hamiltonian (49)
does not conserve the number of “magnons” and therefore
the spin-charge interaction induces not only a renormalization
of the diagonal Green functions Gc+c and Gdd+ but also an ap-
pearance of off-diagonal components. Then, for renormalized
magnon Green functions, we should introduce the matrix

ˆ̃G(q,iωn) = −
∫ β

0
dτeiωnτ {Tτ�q(τ )�+

q (0)} (52)

defined on vector operators

� =

⎡
⎢⎢⎣

dq

d+
−q

c+
−q
cq

⎤
⎥⎥⎦, �+ = (d+

q ,d−q,c−q,c
+
q ). (53)

Straightforward calculations show that the result of sum-
mation of infinite series of different bubble graphs can be
presented as a matrix Dyson equation ˆ̃G−1 = (Ĝ)−1 − �̂

written explicitly as

ˆ̃G−1 = −

⎡
⎢⎣

Ad − iωn Dd B C

Dd Ad + iωn C B

B C Ac + iωn Dc

C B Dc Ac − iωn

⎤
⎥⎦.

(54)

In (54), Ad = �d
q + �+

d (q,iωn), Ac = �c
q + �+

c (q,iωn),
Dd = −�−

d (q,iωn), Dc = −�−
c (q,iωn), B = −�+

cd (q,iωn),
C = �−

cd (q,iωn), and �±
c,d are the components of the matrix

polarization operator �̂. The latter are determined as follows.
The d components �±

d are given by

�±
d = 1

2

(
P d

2 ± P d
1

)
,

P d
1 (q,iωn) = t2

0

2

∑
+,−

∑
k

(
Md

k−q,q

)2 nF (E±
k−q) − nF (E±

k )

iωn + E±
k−q − E±

k

,

P d
2 (q,iωn) = t2

0

2

∑
+,−

∑
k

(
Md

k−q,q

)2 nF (E±
k−q) − nF (E∓

k )

iωn + E±
k−q − E∓

k

,

(55)

where P1 and P2 are due to decay of the d-magnon into
two fermions belonging to the same and different branches,
respectively. These expressions correspond to the bubble graph
for �+

d ≡ �dd+ , defined analytically as

�+
d (q,iωn) = t2

0

∑
k

∑
ωn

[(
Md

k−q,q

)2

×K11(k − q,iωm−n)K22(k,iωm

)]
, (56)

and to the similar bubble graph and similar analytical ex-
pression for �−

d ≡ −�dd ; they are obtained after summation
over imaginary frequency iωn. The expressions for the c

components �±
c have the same structure as (55) with Md

replaced by Mc. For the “mixed” components �±
cd one should

replace in (55) (Md )2 by MdMc [85].
The above written expressions describe the renormalization

of the magnon Green functions. To get expressions for
the renormalized spin Green functions, we have to use the
expressions for the Sα operators through the a,b operators,
of the latter through the c,d operators and the symmetry
properties of the magnon Green functions. After a bit long but
straightforward calculations, we get the following expressions
relating the renormalized spin Green functions G̃xx

s and G̃
yy
s

to the renormalized magnon Green functions:

G̃yy
s (q,iωn) = 1

2Fc
q {[G̃cc+(q,iωn) + G̃c+c(q,iωn)]

− [G̃cc(q,iωn) + G̃c+c+ (q,iωn)]}, (57)

G̃xx
s (q,iωn) = 1

2 [R(q + Q,iωn) + R(q − Q,iωn)], (58)
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where

R(q,iωn) = 1
2Fd

q {[G̃dd+ (q,iωn) + G̃d+d (q,iωn)]

+ [G̃dd (q,iωn) + G̃d+d+ (q,iωn)]} (59)

(the multimagnon contribution is neglected). Note that the
terms related to the c (d) operators cancel each other in the
expression for G̃xx

s (G̃yy
s ) and the terms containing one c and

one d operators cancel each other in the expressions for both
G̃xx

s and G̃
yy
s . As a consequence, even being renormalized

due to the spin-charge interaction, the out-of-plane spin Green
function G̃

yy
s remains sensitive only to the optical mode, while

the in-plane Green function G̃xx
s does only to the Goldstone

mode.
To calculate explicitly the Green functions we have first

to invert the 4×4 matrix (54) with frequency dependent
components. This is a quite difficult problem. The procedure
is simplified in the following cases.

(1) In the limit q ′ � √
(2)�̄c. In this case, the bare

magnon spectra and the scattering amplitudes for the d and
c modes tend to each other, �d

q ∼ �c
q ∼ ωq, Md ∼ Mc. Then,

the polarization operator components become approximately
equal as well: P c

1,2 ∼ P cd
1,2 ∼ P d

1,2 ≡ P1,2 and the expressions
for the magnon Green functions, magnon spectra, and spin
Green functions are simplified. Namely we get for the magnon
Green functions:

(G̃cc+ + G̃c+c)(q,iωn) = (G̃dd+ + G̃d+d )(q,iωn)

= 2
[ωq(ωq + 2�+

q (iωn)) − (iωn)2](ωq + 2�+
q (iωn)) − (2�−

q (iωn))2ωq

D(q,iωn)
, (60)

(G̃cc + G̃c+c+)(q,iωn) = (G̃dd + G̃d+d+ )(q,iωn) = −4(iωn)2�−
q (iωn)

D(q,iωn)
, (61)

with the determinant given by

D(q,iωn) = [(iωn)2 − ωq(ωq + 2P1(q,iωn)]

× [(iωn)2 − ωq(ωq + 2P2(q,iωn))]. (62)

The renormalized spectra of the two magnon modes are given
by solutions of the equation D(q,ω) = 0 on the real axis. They
are explicitly described by the equations

�̃d
q =

√
ωq
[
ωq + 2P2

(
q,�̃d

q

)]
,

�̃c
q =

√
ωq
[
ωq + 2P1

(
q,�̃c

q

)]
. (63)

Note that (63) are not expressions but equations with respect
to �̃c,d

q (ω) that should be solved self-consistently [in Eq. (63)
the argument ω is omitted].

Using (60)–(62), we obtain the following: for the out-of-
plane spin Green function the expression

G̃yy
s (q,iωn) = Fq

ωq + 2P1(q,iωn)

ω2 − ωq[ωq + 2P1(q,iωn)]
, (64)

and for the in-plane spin Green function the expression of the
form (58) with R(q,iωn) given by

R(q,iωn) = Fq
ωq + 2P2(q,iωn)

ω2 − ωq[ωq + 2P2(q,iωn)]
, (65)

where Fq = Fc
q = Fd

q [defined after Eqs. (25) and (26)].
Note that despite the degeneracy between the bare Goldstone
and optical modes in this limit, the two modes finally
remain distinguishable due to the presence of the different
polarization-operator components in the renormalized spectra.

(2) Another limit in which the inversion of the matrix (54)
is simplified is q ′ � √

2�̄c. In this case, one can neglect the
mixed components of the polarization operator with respect to
the pure components and consider the two modes separately,

i.e., represent the polarization operator as

�̂ =
[
�̂d 0̂
0̂ �̂c

]
, (66)

�̂d =
[

�dd+ �dd

�d+d+ �d+d

]
, �̂c =

[
�cc+ �cc

�c+c+ �c+c,

]
. (67)

For the Goldstone mode, this approximation is valid under the
additional condition (k−

F )4 �
√

q ′/�̄c), see comment in [86].
Performing explicit calculations we get for the magnon

Green functions corresponding to the block �̂d the following
expressions:

G̃dd+ (q,iωn) = G̃d+d (q, − iωn)

= �d
q + �+

d (q,iωn) + iωn

Dd (q,iωn)
, (68)

G̃dd (q,iωn) = G̃d+d+ (q,iωn) = �−
d (q,iωn)

Dd (q,iωn)
, (69)

Dd (q,iωn) = (iωn)2 − [
�d

q + P d
1 (q,iωn)

]
× [�d

q + P d
2 (q,iωn)

]
, (70)

and similar expressions for the Green functions corresponding
to the block �̂c obtained when replacing the index d by
c everywhere in (68)–(70). The solutions of the equations
Dd (q,ω) = 0, Dc(q,ω) = 0 on the real axis (if they exist)
determine the renormalized spectrum of the d and c modes in
this limit:

�̃d
q =

√[
�d

q + P d
1

(
q,�̃d

q

)][
�d

q + P d
2

(
q,�̃d

q

)]
,

�̃c
q =

√[
�c

q + P c
1

(
q,�̃c

q

)][
�c

q + P c
2

(
q,�̃c

q

)]
, (71)

those are not expressions but equations [with respect to
�̃c,d

q (ω)] that should be solved self-consistently.
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Using (68)–(70), we get for the out-of-plane spin Green
function in this limit,

G̃yy
s (q,iωn)

= Fc
q

�c
q+P c

1 (q,iωn)

(iωn)2−[�c
q+P c

1 (q,iωn)
][

�c
q + P c

2 (q,iωn)
] , (72)

while for the in-plane spin Green function G̃xx
s we get again

the general structure (58) in which R(q,iωn) is written as

R(q,iωn)

= Fd
q

�d
q+P d

2 (q,iωn)

(iωn)2−[�d
q+P d

1 (q,iωn)
][

�d
q+P d

2 (q,iωn)
] . (73)

The corresponding static susceptibilities are given by

χxx(q,0) ∝ Fd
q+Q[

�d
q+Q + P d

1 (q + Q,0)
] + (Q → −Q),

χyy(q,0) ∝ Fc
q

�c
q + P c

2 (q,0)
, (74)

so that the in-plane static susceptibility diverges as χxx ∝
[ 1

(q′+Q)2 + 1
(q′−Q)2 ] like in the spin wave approximation de-

scribed in Sec. IV. Here, we took into account that Fd
q±Q ∝

1
�d

q′±Q
.

3. In the limit q ′ ∼ √
2�̄c calculations are also simplified.

The q dependencies of the Mc and Md amplitudes become the
same—both are proportional to q ′ while (Mc)2

(Md )2 ∼ 1√
1+ζ

. As a

result, the polarization operators �+
d , �+

c , �+
cd , as well as �−

d ,
�−

c , �−
cd , have the same functional dependencies and differ

only by the numerical factors related to the amplitudes. In this
case one can reduce the 4 × 4 matrix ˆ̃G to the effective 2 × 2
matrix ˆ̃Geff in the way shown in Appendix. As follows from
the present there formulas, the equations for the renormalized
magnon spectrum can explicitly be written as

ω2 = ω2
1 + ω2

2

2
±
√(

ω2
1 − ω2

2

2

)2

+ A, (75)

where

ω2
1 = (

�̃d + P d
1

)(
�̃d + P d

2

)− P c
2 P d

1 ,

ω2
2 = (

�̃c + P c
1

)(
�̃c + P c

2

)− P c
1 P d

2 ,

A = [(
�̃d + P d

2

)
P c

1 − (
�̃c + P c

1

)
P c

2

]
× [(�̃c + P c

2

)
P d

1 − (
�̃d + P d

1

)
P d

2

]
(we omit the argument q, ω in �̃d , �̃c and P

c,d
1,2 for short).

Again, the formulas (75) are not expressions but equations
that should be solved self-consistently. Note that in this limit,
it is enough to calculate explicitly P d

l components, the P c
l

components will differ only by factor 1√
1+ζ

in the right-hand
side (rhs).

The expressions for the spin Green functions are very
cumbersome in this limit, we do not present them. We note
only that they have the structure general for all the limits:

G̃xx
s (q,ω)s = 1

2
[R(q + Q,ω) + R(q − Q,ω)],

R(q,ω) = Nd (q,ω)

Dω(q)
, G̃yy

s (q,ω)s = Nc(q,ω)

Dω(q)
(76)

with Dω given in Appendix, whose behavior determines the
main features of the spin dynamics.

B. Properties of the polarization operator and an impact of its
structure on the renormalized spin fluctuation spectra

In this section, we calculate the polarization operator
components. Near the AF boundary, calculations can be
performed analytically since the main contribution to the
integrals (55) comes from the momenta in the vicinities of the
minima in the hole spectra and therefore one can use quadratic
expansions for E±

k , while for the scattering amplitude one can
write explicitly(

Md
k−q,q

)2

≈
√

1 + ζ

8

(q ′
x sin(kx + Qx) + q ′

z sin(kz + Qz))2

q ′ . (77)

Below, we will omit everywhere the “prime” in q′, q′ → q,
i.e., consider q defined with respect to the AF wave vector
QAF, and q = |q|.

To perform explicit calculations, we have to fix the
symmetry of the spiral state. We will consider the spiral state
of the uniaxial (1,0) symmetry, Qx = Q, Qz = 0, since first,
it is energetically favorable with respect to the (1,1) state, as
was shown in earlier papers [42,47–49] and confirmed by our
calculations (Sec. VI) and second, it is this symmetry that is
observed experimentally in the magnetically ordered incom-
mensurate state in low-doped cuprates. Analytical calculations
give for this case the following expressions for P d

1 and P d
2 (for

one chosen pocket):

ReP d
2 (q,ω)

= �
q1

√
α

q
{[−ω�

+ + sgn(ω�
+)F ((ω�

+)2 − (2k−
F )2)]

+ [ω−�
− − sgn(ω−�

− )F ((ω−�
− )2 − (2k−

F )2)]

+ [−ω−�
+ + sgn(ω−�

+ )F ((ω−�
+ )2 − (2k+

F )2)]

+ [ω�
− − sgn(ω�

−)F ((ω�
−)2 − (2k+

F )2)]},
ImP d

2 (q,ω)

= �
q1

√
α

q
{[F ((2k−

F )2 − (ω�
+)2) − F ((2k−

F )2 − (ω−�
− )2)]

+ [F ((2k+
F )2 − (ω−�

+ )2) − F ((2k+
F )2 − (ω�

−)2)]}, (78)

where

F (X) = θ (X)
√

X, ω = ω± + �/aq̄, ω−�
± = ω± − �/aq̄,

ω± = ω/aq̄ ± q̄, q̄ = q1/
√

α,

α =
(

1 + b

a

q2
2

q2
1

)−1

, � = t2

2π
√

(1 + ζ )ab
. (79)

The expressions for P d
1 are given by (78), (79) when setting

� = 0,

P d
1 (q,ω) = P d

2 (q,ω,� = 0). (80)
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In (78) and (79), � is the fermion gap at the minima of the
fermion spectrum, � = 2|Bk=(π/2,π/2)| = 2tQ, q1, q2 are re-
spectively the q components orthogonal and parallel to the AF
BZ boundary near the considered pocket, θ (X) is the Heaviside
theta function, � is the effective interaction, k±

F = √
πn±ε

are the Fermi wave vectors in the direction perpendicular to
the AF boundary for E±

k branches, respectively, where n± =
(1/N )

∑
k nF (E±

k − μ) are the populations of these bran-
ches and ε = √

b/a. (When calculating we used for the
scattering amplitude |Md

k−q,q|2 ≈ |Md |2 where |Md |2 is the
amplitude at the fermion spectra minimum k = (π/2,π/2);
we neglect the small changes in the fermion effective masses
due to the term Bk and the weak momentum dependence of
the electron gap, fixing its value at the minimum of hole
dispersion.) Note that the case of a formally negative (k+

F )2

(when calculated as (k+
F )2 = (k−

F )2 − �/a) corresponds to
the unpopulated E+

k branch, and k+
F should be set equal

to zero in (78) in this case. The expressions (78) and (79)
are written for one pocket. The global expressions for P d

1,2
contain a sum over four pockets. Note that for the pockets
centered at (π/2,π/2), (−π/2,−π/2), the q1 component of q
is parallel to the (1,1) direction while for the pockets centered
at (−π/2,π/2), (π/2,−π/2), the q1 component is parallel to
the (1,−1) direction.

Note that in the limit Q = 0, the expressions for P d
2 and

P d
1 coincide, P d

2 = P d
1 . Since k+

F and k−
F in Eq. (78) coincide

as well, the expressions (78) and (79) are reduced to those
obtained earlier for the doped AF state, see Ref. [69]. Note
also that in the latter case the interaction � is higher than
in the spiral state when calculated with the same parameter
values, namely it is twice higher than in the spiral state with
only the lowest branch E−

k filled. In other words, in such
a spiral state, the effect of the electron-spin interaction is
twice reduced with respect to the collinear AF state. As a
consequence, the Goldstone mode, whose instability is at the
origin of the instability of the AF state above a certain, quite
low, critical hole concentration nAF

c [69,87,88], remains stable
for n > nAF

c when the order is spiral.
The expressions (78) and (79) are written for the d

components of the polarization operator. We remind the reader
that in the limit q ′ � √

2�̄c, the d and c components of the
polarization operators coincide, P c

1,2 = P d
1,2, and that in the

limit q ′ ∼ √
2�̄c they differ only by a numerical factor while

having the same ω, q dependencies: P c
1,2 = 1√

1+ζ
P d

1,2. Below,
we will omit the superscript d in the polarization operators
P d

1,2 for short.
The knowledge of the analytical form of the momentum and

energy dependencies of the polarization operator allows us to
get formulas for certain characteristic lines whose location in
the ω-q plane largely determines the form of spin fluctuation
dispersion, as we will see later on. These lines are given by the
equations

ω1(q) = aq̄(2k−
F − q̄), ω2(q) = aq̄(q̄ − 2k−

F ),

ω3(q) = aq̄(2k−
F + q̄), (81)

for P1 and

ω�
2 (q) = aq̄(q̄ − 2k−

F ) + �, ω�
3 (q) = aq̄(2k−

F + q̄) + �

(82)

for P2, see Ref. [89]. First, they are the lines of square-root
singularities in the real and imaginary parts of P1 and P2.
Second, they are the lines of onset of ImPl 
= 0, namely, ImP1

is nonzero only in the area between the lines ω2(q) and ω3(q),
while ImP2 is nonzero in the area between ω�

2 (q) and ω�
3 (q).

We will call the latter areas Cont1 and Cont2, respectively (that
stands for the continuum 1 and continuum 2), to emphasize that
in these areas there is a two-particle electron-hole contribution
to the spin susceptibility in addition to the one-particle
contribution from localized spins. Depending on parameters,
the locations of these lines and of the Cont1 and Cont2 can
vary significantly, see Fig. 2. Figure 2(a) corresponds to the
case when only the lower fermion branch E−

k is filled—in this
case, the Cont2 lies entirely at positive ω. Figures 2(b) and 2(c)
correspond to the case when the E+

k band is also filled—the
Cont2 descends into negative ω; in Fig. 2(b), the fillings of the
two branches differ significantly, in Fig. 2(c), the filling of the
branch E+ approaches the filling for E−. The limit n+ = n−,
k+
F = k−

F corresponds to the AF state: the blue and black lines
in Fig. 2 coincide. For parameters typical for cuprates (which
we discuss in the following subsection), the situation is at the
limit between the cases in Figs. 2(a) and 2(b). A reader can
already take a look of Fig. 3 plotted for parameters typical for
cuprates in which the Cont2 related to the polarization operator
P2 is shown by orange color and the Cont1 related to P1 by
grey.

Outside the two continua, the bosonic excitations have no
damping. The renormalization of their spectrum with respect
to the noninteracting spin-wave spectrum and of their spectral
weight are determined by ReP1 and ReP2. Since the latter have
square-root singularities at the borders of the continua, the
quasiparticle spectral weight diminishes in approaching any
continua border and vanishes on it. Schematically, it is seen
from the following: outside the continua, the susceptibility
can be written as Imχres(q,ω) = aqδ(ω − �̃q) with a spectral

weight given by aq = �̃q

�q
{1 − �q

�̃q
[ ∂P (q,ω)

∂ω
|ω=�̃q

]}−1
(�q and �̃q

are bare and renormalized dispersions respectively and P is
a polarization operator at the origin of the renormalization),
so that aq is zero at the point where P exhibits a square-root
singularity. As to the renormalization of the dispersion, the
properties of P1, and P2 are such that the low-energy part
of the Goldstone mode should obligatory soften with respect
to the spin-wave spectrum. Indeed, as follows from Eq. (78),
the RePl is negative below (in ω) the continuum Contl and
therefore if acted alone, RePl (l = 1 or l = 2) would tend to
soften the dispersion when the spin-wave spectrum lies below
the Contl. Since the bare Goldstone mode �d

q in its initial
part (low ω, low q) lies obligatory below Cont2 and on the
other hand for such q, ω, |ReP2| is much higher than |ReP1|,
the renormalized dispersion of the Goldstone mode �̃d should
soften with respect to the spin-wave dispersion �d .

Inside the continua the form of SF spectra is settled by a
competition between one-particle (magnon) and two-particle
(electron-hole) contributions. We will see later on that inside
the Cont2, the two-particle processes can even dominate
the spin dynamics (that happens for parameters typical for
cuprates) so that it becomes of the relaxation type. Since due
to the square-root singularities, ImPl and RePl behave in a
quite sharp way near the borders, some sort of pinning of
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FIG. 2. Possible locations in the energy-momentum space of the characteristic lines ω2(q), ω3(q), ω�
2 (q), and ω�

3 (q) [Eqs. (81) and (82)]
and of the two continua, Cont1 and Cont2 [corresponding to the areas between the ω2(q), ω3(q) lines and the ω�

2 (q), ω�
3 (q) lines, respectively].

In fact, (a) and (b) are plotted for the parameter values characteristic for cuprates and Q obtained self-consistently for n = 0.04, they differ
only by the values of the inverse effective hole mass a in Eq. (31): (a) a = 0.11 eV and (b) 0.15 eV that are, respectively, slightly lower and
higher than the estimated limits for a (see Sec. VI A). The plot (c) shows the tendency of evolution with decreasing Q, i.e., with approaching
the collinear AF state; in the limit Q → 0, there is a degeneration, and the blue and black lines coincide. The plots correspond to the (1,0)
direction [for the (1,0) spiral state]; the wave vectors are defined with respect to QAF and q stands for qx , q ≡ qx . The energies are in eV.

incoherent SFs spectra to one of the coninua’s border will
occur in this case.

VI. SPIN FLUCTUATIONS IN CUPRATES

A. Spiral-state spin fluctuations for parameter
values typical for cuprates

Let us now apply the developed above general formulation
to cuprates. For this, we have to fix the parameter values
and then to perform self-consistent calculations based on
the obtained equations. First, the incommensurability wave
vector Q should be determined self-consistently. This can be
done by minimizing the free energy, i.e., from the equation
∂E
∂Q = 0 (for T = 0). The spin contribution Es to E equals
to Es = −NJQ/8 (for simplicity, we keep only the dominant
term neglecting “zero-point” fluctuations having usually a very
small density). The hole contribution Eh is given by Eh =∑

k,± E±
k nF (E±

k − μ). When taking into account the explicit
expressions for E±

k [Eq. (38)], we get for the (1,0) spiral state

(Q = (Q,0)): E
(1,0)
h = −QtN (n− − n+) + ∑

k εk(n−
k + n+

k ) so
that for the total energy, we have

E(1,0)/N = −JQ/8 − Qt(n− − n+) + π (n2
+ + n2

−)
√

ab,

(83)

n± = (1/N)
∑

k nF (E±
k − μ) are the populations of the E±

k
bands; the total hole concentration is n = n− + n+. [This
energy is lower than the energy of the (1,1) spiral state
E(1,1)/N , as seen from similar calculations for the latter state
and as known from earlier papers.] When n+ � n− (that is
always the case for the parameter values discussed below), we
get for the spiral incommensurability wave vector in the (1,0)
state, Q = 4t

J
(n− − n+) ≈ 4t

J
n.

Second, one should take into account a renormalization
of the charge parameters. Such a renormalization appears
due to the spin-hole interaction H

(3)
s−h. The latter leads to the

fermion self-energy, which in shorthand notations is written as
�̂ = M2K̂Ĝ so that the renormalized matrix fermion Green
function is given by ( ˜̂K)−1 = K̂−1 − �̂. We will not perform

125110-13



F. ONUFRIEVA PHYSICAL REVIEW B 95, 125110 (2017)

FIG. 3. The two branches of the bare boson spectrum, �d (q) and
�c(q), and the two continua, Cont1 and Cont2, for the parameters
typical for cuprates and n = 0.04 (plotted in the ω-q space near AF
wave vector, the energies are in eV). (The parameter values are given
in Sec. VI A.) The grey and orange shaded areas show the continua
Cont1 and Cont2 associated with the two-particle “electron-hole”
fluctuations originated from the fermions of the same and different
branches respectively. Other notations are as in Fig. 2.

explicit calculations to get the renormalized charge parameters.
We expect that the renormalization should be similar to that
in the commensurate AF state. It was shown [74–80] that the
dressing of holes on the AF background reduces the bandwidth
by a factor Zh, which is of the order of J/t , while the hole
dispersion is as in Eq. (30). The parameters of the dressed-hole
dispersion for the t-J model with only nn hopping were
obtained in Refs. [74–78], later on they were recalculated
taking into account the bare hopping beyond nn [79,80]. The
absolute values of x1, x2 [Eq. (30)], or equivalently of a, b

[Eq. (31)], depend on J/t ; for reasonable for cuprates values,
J = 0.125 eV, t/J = 2.5, and an estimated range for t ′, t ′′,
t ′ = −(0.25 − 0.35)t , t ′′ = (0.12 − 0.16)t , the latter estima-
tions give a ∼ 0.12 − 0.14 eV and ε = √

b/a ∼ 1. (These
estimations correspond very well to the experimental data for
the dispersion of a hole on the AF background [90,91].) The
part of the hole spectrum with Bk also should be renormalized
: Bk → ZB

h Bk. Then, the first term in the expression for
E

(1,0)
h is renormalized by the factor ZB

h as well, and the
equation for Q becomes Q = (4tZB

h /J )n. The fermionic gap
is renormalized as well: � = 2ZB

h tQ. We suppose that ZB
h

is also of the order of J/t . Further, since in fact it is not J

but the Goldstone mode velocity that participates in the renor-
malization of the hole spectrum, and since this velocity is
lowering significantly in the renormalized spin spectrum,
we should use for the estimations of ZB

h the effective J

corresponding to the renormalized velocity. (The effect of the
softening of the Goldstone mode is explained qualitatively
in Sec. V B and obtained numerically in this section, see
below.) Incorporating this effect we take ZB

h ∼ 0.25 and
correspondingly Q ∼ 2.5n. And finally, one should take
into account a renormalization of the fermion quasiparticle
residue—by a factor Zres. This leads to the appearance of
the factor Z2

res in the expression for the polarization operator
that can be incorporated in the effective interaction �: � →

�Z2
res. The estimated range for Zres is 0.35 − 0.4. We will

use Zres = 0.38 as in [76]. The last parameter we need for
numerical calculations is the exchange-interaction anisotropy:
we use 1 − ζ = 0.003, that is, of the same order that observed
experimentally [53–56].

The results of calculations performed with these parameters
for the hole concentration n = 0.04 are presented in Figs. 3–6.
First, in Fig. 3, we show the two branches of the bare boson
spectra [Eqs. (18) and (19)] and the two continua, Cont1 and
Cont2. The locations of the continua in this and the following
figures correspond to a = 0.12 eV, which is the low limit of
the estimated range a = 0.12 − 0.14 eV. For higher values of
a, Cont2 moves down into negative ω area (the tendencies
see in Fig. 2), and the discussed below effects are even
more pronounced. The plot in Fig. 3 (and in the following
figures) corresponds to the (1,0) direction [for the spiral of the
(1,0) symmetry]; in this case q̄ = qx/

√
2α, k±

F = (k±
F )x/

√
2α,

where qx and (k±
F )x are the components of q and k±

F in the
(1,0) direction. Since we took the spectrum of the dressed
holes practically isotropic, we have α = 1/2 and therefore
q̄ = qx in the equations (78) and (79). Below we renote qx ≡ q.
Self-consistent calculations of the renormalized spectra show
that the most important consequences of the dynamic spin-
charge interaction concern the in-plane fluctuations while the
dispersion of the mode �c is roughly conserved, see Ref. [92].
The renormalized boson spectrum associated with the in-plane
fluctuations is presented in Fig. 4. The first remarkable feature
is that the low-energy fluctuations keep a resonant character
only in a small area in the q-ω space, see the magenta line
with square symbols. Of course, in the limit ω → 0, q → 0,
the resonance mode still has a linear dispersion, �̃d = c̃q, as it
should be in a correspondence to the Goldstone theorem while
the velocity is strongly reduced, c̃ < c, (see the discussion
in the end of Sec. V B). The Goldstone mode lies slightly
above the Cont1. It is accompanied by a second “mode” lying
inside the Cont1 and therefore damped (shown by the magenta
line with triangle symbols, hardly distinguishable from the
magenta line with square symbols in this scale); the effect
is qualitatively the same as in commensurate doped AF state
[69,87]. Figure 5(a) shows how these two modes appear in
the response function ImR(q,ω) [we remind that the spin
Green function ImGxx

s is related to the ImR(q,ω) as given
by Eq. (58)].

Above certain characteristic energy ω = ω∗, coherent
quasiparticles disappear, they decay on electron-hole pairs.
Technically, for ω > ω∗, solutions of the Eq. D(q,ω) = 0 (i.e.,
poles of the magnon Green functions) disappear outside the
Cont2. They exist formally inside Cont2, however, the absolute
values of ImP2(q,ω) are so high for corresponding q and ω that
there are no coherent quasiparticles inside the continuum as
well. The form of the spin response function as a function of q,
ω is determined mainly by ImPl(q,ω), i.e., by the two-particle
electron-hole response, in a way as it usually happens in
itinerant-magnetism systems (when a role of polarization
operator is roughly speaking played by the bare electron-hole
susceptibility χ0). The q dependencies of ImR(q,ω) for
different ω belonging to the interval ω∗ < ω < ωc = � are
shown in Fig. 5(b). The maxima in the q dependencies of
ImR(q,ω) for fixed ω determine the “dispersion” of these
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FIG. 4. The renormalized boson spectrum corresponding to the
in-plane fluctuations in the (1,0) direction for the uniaxial spiral state
(1,0) (calculated for the parameter values given in Sec. VI A and
for the hole concentration n = 0.04). The magenta and green lines
correspond respectively to the spectrum of resonant and relaxation
type. The low-energy magenta line with square symbols corresponds
to the Goldstone mode, it lies slightly above the continuum Cont1,
its lower-energy counterpart mode lying inside the continuum and
damped is shown by the magenta line with triangles; the two modes
are hardly distinguishable in the present scale but the corresponding
δ-function peaks and smooth maxima appear clearly in Fig. 5(a). The
high-energy magenta line with circles corresponds to magnonlike
fluctuations that can be seen as a transformation of the AF-state spin
waves that get a gap due to the incommensurability of the magnetic
order. The green line below ωc corresponds to the incoherent spin
excitations of the two particle electron-hole origin that are settled
inside the gap in the coherent excitation spectra. Other notations are
as in Figs. 2 and 3.

relaxation-type fluctuations (the green line in Fig. 4). These
maxima occur near the low-q border of Cont2, this happens
due to a sharp behavior of the ImP2, ReP2 near the continuum

borders. As a consequence, the “dispersion” of this relaxation
mode follows roughly the downward dispersion of the line
ω�

2 (q). The intensity of this mode increases with increasing ω,
as seen in Fig. 5(b).

Such a behavior occurs until the energy reaches the value
ωc = �. Starting from ωc, the low-q border of Cont2 is
determined by the ω�

3 (q) line with the upward dispersion,
and the dispersion of the relaxation “mode” follows this
upward tendency. At the same time, for ω > ωc, coherent
excitations, magnons, are restored, see the magenta line with
circle symbols in Fig. 4, see Ref. [93]. For the parameters used,
the restored-magnon branch lies slightly above the Cont2, the
spectral weight is reduced due to proximity to the continuum
(see the discussion in Sec. V B); the form of ImR(q,ω) as a
function of q for different ω from this energy range, is shown
in Fig. 5(c). One should emphasize that under small change in
parameter values, the magnon branch can move into Cont2 still
remaining close to its border; in this case it keeps a resonant
character but acquires a damping.

In order to compare with the experimentally observable
spectra, one should plot not the spectrum of bosons but the
spectrum of spin fluctuations that is displaced by ±Q with
respect to the boson spectrum [see Eq. (58)]. We present
in Fig. 6 the in-plane spin excitation spectrum in the (1,0)
direction displaced by −Qx ≡ −Q. [We do not plot the inner
pattern (close to QAF) corresponding to the mirror reflection of
the spectra at q − Q > 0 to q − Q < 0, hardly distinguishable
by neutrons.]

Summarizing the obtained above features of the spin
dynamics, we notice the following. (1) The presence of
the characteristic energy ωc = � that separates two compo-
nents with qualitatively different behavior, one with resonant
magnonlike fluctuations having an upward dispersion (at
ω > ωc) and another with relaxation-type fluctuations having a
downward dispersion (at ω < ωc). (2) The two components are
not crossing at QAF but form in the overall dispersion a sort of a
neck around energy ωc. The neck width �qneck is proportional
to Qα (in the α direction). The characteristic energy of the
neck, ωc, is linear in Qα as well. Herein Qα is proportional to

FIG. 5. Response functions ImR(q,ω), as a function of q for different intervals of ω (a) 0 < ω < ω∗ (the δ-function peaks and the maxima
correspond to the low-energy magenta lines in Fig. 4), (b) ω∗ < ω < ωc (the maxima correspond to the green line below ωc in Fig. 4), and (c)
ω > ωc (the δ-function peaks correspond to the magenta line with the circle symbols in Fig. 4 and the maxima correspond to the green line
above ωc). The relation of R(q,ω) to the in-plane spin Green function is given by Eq. (58).
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FIG. 6. Dispersion of the in-plane spin fluctuations in the (1,0)
direction; the spectrum is shifted by Q with respect to the boson
spectrum in Fig. 4, see Eq. (58). The notations are the same as in Fig. 4.
Note that the calculations have been performed with the isotropic
hole spectrum (ε = 1), i.e., with the round hole Fermi pockets, and
thus the SF component below ωc shown by the green line has a
largest dispersion possible for equal other parameters, see Ref. [94];
in the opposite limit of very small ε corresponding to the FS strongly
elongated along the (0,π )-(π,0) direction, the dispersion is practically
vertical and the width in q is equal to Q everywhere below ωc.

doping n if the spiral state occurs immediately upon doping
or to n − nAF

c if it is preceded by the collinear AF state.
(3) The high-energy magnonlike component can be roughly
represented as a transformation of the AF-state spin waves,
which get a gap due to the incommensurability of magnetic
order, have a reduced spectral weight, and are accompanied for
fixed ω by a continuum of two-particle fluctuations. (4) The
fluctuations corresponding to the component below ωc are
anisotropic being incommensurate in one in-plane direction
and commensurate in the other. They are overdamped and
resemble spin excitations in itinerant-magnetism systems.
Note that although this component reflects an impact of
mobile holes, the spectra are not directly a spin response
of doped holes: two contributions, from localized spins and
mobile holes, are unified in a common structure of the
Green functions more typical for localized spin systems.
The incommensurability wave vector (the characteristic wave
vector of this component at low energies), kinc, is neither the
localized-spin spiral wave vector Q nor the 2kF as it would be
in the metallic SDW phase. Its value depends on parameters
(and then should be material dependent) but it is always much
smaller than 2kF . The q width of the spectra decreases towards
ωc. (5) The Goldstone mode survives only at very low energies
in a small area in a vicinity of q = Q, ω = 0. It disappears if
the spiral order is not static but quasistatic as in cuprates;
however, a strong response around q = Q should subsist at
very low energies.

The described picture corresponds to the normal phase. It
is, however, practically not sensitive to a presence or absence
of SC order of d symmetry (the symmetry taking place in
cuprates) in the case of low to moderate doping. Indeed, the
mobile holes responsible for the behavior of the component

below ωc are those near the Fermi level. At low and up to
moderate doping, the Fermi pockets are small and located
in the vicinity of (±π/2, ± π/2) where the d-wave SC gap
vanishes, �SC(k) → 0. As a result, the component below ωc

is almost insensitive to the presence of SC pairing while the
component above ωc being related to localized spins is not
sensitive at all. Thus the spin dynamics should not undergo a
qualitative change in crossing Tc.

The obtained results are in a very good agreement with ex-
periments for low and moderately doped cuprates [21,26–33],
see also reviews [20,36]. This concerns firstly the existence of
the characteristic energy ωc, which separates two components
with qualitatively different behavior. As in experiment, the
component above ωc has an upward dispersion, the spin
excitations are of resonant type but have the spectral weight
reduced with respect to spin waves in insulating undoped
cuprates. As in experiment, the component below ωc is quite
narrow in q (see Ref. [94]) and has a slight downward dis-
persion, the spin excitations are anisotropic in the momentum
space being incommensurate in one in-plane direction and
commensurate in the other. This concerns secondly the overall
form of the dispersion close to that which the experimentalists
call sometimes the OPEN-hour-glass shaped sometimes Y

shaped. This concerns finally the doping evolution of the
characteristic energies and characteristic wave vectors, namely
the monotonic increase with doping of the low-energy in-
commensurability, of the characteristic energy ωc, and of the
neck-width around ωc; for the form of the experimental spin
excitation dispersion see Fig. 8(a), for the doping dependencies
of certain characteristics see figures in Refs. [27,20].

On the other hand, they shed light on the difference of the
behavior observed in this doping range from the archetype
behavior of near-optimally-doped cuprates despite the similar
in some extent form of the spin excitation dispersion in
the SC state. Namely, our results explain the absence of a
resonance in both normal and SC states in contrast to the near
optimal doping for which the resonance is a most prominent
feature of the SC-state spin dynamics, the incommensurability
of the fluctuations even at ωc for low doping versus the
commensurability at ωc for the near optimally doped SC state,
the narrow dispersion of the low-energy component at low
doping versus the much larger dispersion of the spin-exciton
mode in the near-optimal-doping SC state, the absence of a
qualitative change in the spin dynamics when crossing Tc in the
former case versus the flagrant change with total disappearance
of the low-energy resonant component above Tc in the latter
case, and finally the different symmetries in the q space of the
low-energy spin excitations in the two cases.

B. Scenario for spin dynamics above critical doping nc.
Comparison of theoretical and experimental results for cuprates

As we have shown, the static ordered spiral state becomes
unstable at the critical doping n = nc at which the incommen-
surability wave vector Q reaches its critical value Qc. Exper-
imental observations in cuprates also show a disappearance
of the incommensurate magnetic order above n = 0.08–0.09.
Meanwhile, the normal-state spin dynamics observed for
higher doping, i.e., for the paramagnetic (PM) state, keeps
many features described in this article and corresponding to
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FIG. 7. Theoretical predictions for doping evolution of the
normal-state spin excitation spectra in high-Tc cuprates for the
paramagnetic state, n > nc (shown in a schematic way).

the ordered spiral state. This could be understood if adopting
the natural hypothesis that the PM state developing above nc

preserves the spiral correlations on a finite-energy scale [that
would happen in the case of the phase transition of second
order, i.e., when the point n = nc is a quantum critical point
(QCP)]. Such a PM state would correspond to long-lived
(with a characteristic time τ0) regions of incommensurate
AF spiral correlations. The finite-energy SRO phase with
local incommensuration should keep general features of the
static-phase SF spectra for ω > τ−1

0 . On the other hand, the SFs
should develop a spin gap (rather a pseudogap, see comment
[95]) �s ∼ τ−1

0 .
When τ−1

0 (controlled by n − nc) is very small, the main
spin excitation features related to the two components above
and below ωc should be preserved while the Goldstone mode
should disappear, see the schematic plot in Fig. 7(a). This
would explain very well the normal state spin dynamics
observed in YBa2Cu3O6+x (YBCO) for moderate doping (for
example, for x = 0.6 [22–24], corresponding approximately to
doping n ∼ 0.1–0.12), including the absence of a resonance
at ωc, the upwardly dispersed spin excitations (reminiscent
of spin waves in Neel AF) for ω > ωc, the incommensurate
spectrum with a slight downward dispersion for ω < ωc, the
small spin “gap” in the total spin response function, and finally
the overall form of the dispersion.

With increasing τ−1
0 (increasing doping) the low-energy

part of the component below ωc should be progressively
washed out. Since simultaneously the energy ωc increases
with doping, a significant part of this component should still
survive, as schematically shown in Fig. 7(b). Other tendencies
of doping evolution are the same as for the static spiral state
since they concern the preserved part of the spin fluctuation
spectrum; they are discussed in detail in the previous section.

With further increasing doping the effective gap �s contin-
ues to increase and either the low-energy component is washed
out completely—if �s becomes at some doping higher than ωc

(that would explain the normal state spin dynamics in YBCO7)
or some part of this component around ωc is preserved—if �s

remain smaller than ωc; this could be material dependent. The
overall doping evolution of the normal-state SF spectra above
nc arising from the described above picture is shown in a
schematic way in Fig. 7.

If we compare with the experimentally observed doping
evolution summarized schematically in Fig. 8(b) taken from
the review [36] (one should consider the normal state), the

FIG. 8. Experimental neutron data for the spin-fluctuation spectra
in high-Tc cuprates. (a) The SF dispersion near the AF wave vector
in low-doped cuprates, namely in YBa2Cu3O6.45 (reproduced from
Ref. [21]). (b) Schematic summary of the doping evolution of spin
dynamics through the phase diagrams in high-Tc cuprates, YBCO
family (reproduced from Ref. [36]); the TN and Tc are the AF and SC
transition temperatures, the red line indicates the stability range of
static incommensurate uniaxial magnetic order, the insets show the
dispersion and spectral weight distribution of the SFs near the AF
wave vector.

resemblance is striking. One should, however, note that in our
discussion above we did not take into account the effect of
the temperature, rather we tacitly assumed T � �s , which
more or less corresponds to the experimental observations for
the normal state of moderately and highly doped cuprates:
the spin gap �s measured at T ∼ 100 K is equal to tens of
meV. However, in other experimental conditions, namely in
those corresponding to another T regime, the low-energy spin
dynamics can be different. So, what is the role of temperature?

From a very general point of view concerning the behavior
near a QCP, one can expect that the “high-energy” dynamics,
for ω � T , ω � τ−1

0 , should be qualitatively the same as for
the ordered state whatever T , while the low-energy dynamics
will depend on the T regime and namely on the relation
between T and τ−1

0 . In the low-T regime, T � τ−1
0 , the

behavior should be qualitatively the same as that discussed
above in this section, namely the SF spectrum should exhibit
a gap, and moreover this gap should not change with T . In the
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high-T regime, T � τ−1
0 [“quantum critical regime” (QCR)],

the low-energy fluctuations should become scale invariant in
space and time. The scaling description of this regime demands
the renormalization group approach that is of course beyond
our present scope. Although the behavior in this regime should
depend on the type of system (it was studied for a very
limited number of models [96]), the universal features are the
disappearance of the gap and the relaxation type of dynamics.
Note that in our case the critical mode is the optical mode,
and therefore it is commensurate; that its low-energy part lies
outside the continuum; and that the dynamical exponent z = 1.

For the most delicate intermediate-T regime, one could
expect that the low-energy spin dynamics combines the
features of the two limit regimes, namely, that the low-energy
SFs are still characterized by a gap �̃s , whose value decreases
with T , while the fluctuations immediately above this gap keep
the features of QCR, i.e., are overdamped, commensurate, and
satisfy scaling laws. As to the “high-energy” spin excitations,
as we already told their behavior should be the same as for all
other T regimes.

Coming back to cuprates. As we already emphasized,
when T � �s , the spin dynamics in the PM state should
be as described in the beginning of this subsection and as
schematically shown in Fig. 7. For higher T , one should
expect (i) for low energies-the presence of a gap and of
commensurate overdamped fluctuations immediately above
this gap and (ii) for high energies, ω � T , ω � τ−1

0 , -spin
dynamics qualitatively the same as for the ordered spiral state
(with, of course, an additional damping of spin excitations).
As to the high-T QCR regime, T � �s , it should be hardly
reachable for moderately and highly doped cuprates in view
of high �s .

On the contrary, the QCR should be easily attainable in
relatively low-doped cuprates for doping in the immediate
proximity to nc (on both sides of the QCP, n < nc and n > nc,
see Ref. [97]) when the T = 0 optical mode gap is small.
Quite probably the effects observed in low-doped (n < nc)
cuprates, such as the persistence of low-energy excitations
upon heating while, starting from T = 150 K, the magnetic
response becomes commensurate [27,36], are fingerprints of
the QCR behavior.

VII. SUMMARY AND DISCUSSION

In summary, we have studied the ordered spiral state
appearing upon doping of the Mott-Neel insulator. The goal
was to take into account in the most accurate way the intrinsic
interrelation between spin and charge degrees of freedom in
such a strongly correlated system. This study was based on
the t-t ′-J model with anisotropic exchange interaction. Since
the t-J model was used in many ways to study the high-Tc

cuprate physics, we first summarize the important points of
our approach and the made approximations.

We used the representation of the Hubbard operators
(HOs) via Fermi/Bose operators that is the extension of the
Dyson-Maleev representation for localized spins to the algebra
Spl(1,2) formed by the eight HOs of the t-J model. This
representation is well adapted for studying the spin dynamics
of spin-charge systems with localized spin ordering, which
breaks the rotational symmetry and it has several advantages

with respect to the slave-fermion/slave-boson representations.
First, it preserves the local constraint between the spin and
charge degrees of freedom (very important if one wishes
to treat correctly the spin-charge interrelation) while in the
slave-particle approaches this constraint is relaxed completely
in the often used mean-field approximation, which leads to
uncontrollable results. Secondly, in our representation, the spin
(charge) HOs are linear in Bose (Fermi) operators in leading
order while in the slave-particle representation the physical
spins and charges turn out to be composite two-particle
objects of auxiliary quasiparticles, spinons, and holons, so
that a calculation of their (four-particle) correlation functions
is an additional problem. And thirdly, the introduced by
this representation Bose quasiparticles describe fluctuations
above the ordered ground state, and their number is small
at low T [98] so that the probability of the collisions with
other Bose quasiparticles (described by high-order terms on
Bose operators) tends to almost zero when T → 0. (This is
not so for the Bose quasiparticles introduced through the
SF/SB representations: the auxiliary quasiparticles, spinons
and holons, describe the ground state while the fluctuations
above this ground state are the local-constraint fluctuations,
which are quite difficult to treat.) Therefore, in the absence
of charges (n = 0), we would have a quantum Bose liquid
with practically undamped quasiparticles well described by
the quadratic Hamiltonian. The presence of charges leads to
the possibility of a decay of the boson into two fermions—a
process described by the Hamiltonian H

(3)
s−h and important

even at T = 0— moreover this process is associated with
the highest energy parameter t . [When n is small (as in
underdoped cuprates) one can neglect the decay into more
than two fermions.]

It is the latter interaction that leads to unconventional
spin dynamics that is very different from that in the doped
antiferromagnetic state [69] as well as in the spiral state
in insulating systems. In the latter case, such processes
are simply absent; the important difference from the doped
AF state arises from the fact that the fermions themselves
change when the localized spin order is incommensurate:
the incommensurability induces an off-diagonal order in the
fermion subsystem and a gap � ∝ |Q| in the fermion spectrum.
The effect arises from the kinematic spin-charge interaction
and is approximation independent. The dynamic interaction
with these gapped fermions leads to the unconventional q and
ω dependencies of the polarization operator responsible for
the renormalization of the boson quasiparticle dispersion. The
results are obtained by a summation of a series of bubble
graphs that in the case of small n is a very good approximation.
The polarization operator is calculated analytically for q in a
proximity to QAF. The incommensurability wave vector is
determined self-consistently.

For the typical for cuprates high value of the corresponding
interaction constant (t), this behavior of the polarization
operator results in the appearance of a gap in the coherent
spin excitation spectrum. The upper branch of this spectrum
corresponds to the magnonlike fluctuations that get a gap equal
to � and acquire a reduced spectral weight being accompanied
for fixed ω by a continuum of two-particle excitations. The
lower branch of the coherent spectrum is what is left of the
Goldstone mode (mandatory in the long-range ordered state as
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responsible for the breaking of continuous symmetry). Being
truncated by the gap from above, the Goldstone mode survives
only in its initial part at very low energies. Inside the gap,
incoherent spin excitations of two-particle electron-hole origin
are settled. They have a slight downward dispersion (given by
peaks in broad spectral densities) that roughly follows the
low-q border of the gapped electron-hole continuum.

Thus globally the spin dynamics is mainly determined
by the two components with qualitatively different behavior
of spin excitations that are magnonlike above ωc = � and
of a relaxation type below ωc. All the details are discussed
in the end of Sec. VI A. The behavior is very close to what
is observed experimentally in low- and moderately- doped
cuprates. The absence of the X-type crossing of the two
components at QAF, the absence of a resonance at ωc, the
relaxation character and the narrowness of the dispersion of the
component below ωc are the most prominent features of this
spin dynamics and are contrasting with the archetype behavior
in the SC state of near optimally doped cuprates. One can say
that the form of the dispersion is OPEN-hour-glass-shaped
since the spin excitations at ωc remain incommensurate or
that it is Y shaped because the dispersion of the component
below ωc is rather steep, see Ref. [94]. Note that the ordered
state characterized by these properties is not an SDW state in
an itinerant-charge system with the incommensurability wave
vector 2kF but the state with the spiral order of localized spins
in the presence of doped holes. We emphasize again that the
described spin dynamics is characteristic for both normal and
SC states at low and moderate doping.

Further, we found that this ordered state becomes unstable
at a certain critical doping nc. We have argued that adopting
the hypothesis about the presence of finite-energy spiral corre-
lations in the paramagnetic state above nc and based on the re-
sults obtained for the static spiral state, it is possible to explain
practically all the details of the doping evolution of the normal-
state spin dynamics in cuprates from low to high doping (com-
pare the theoretical Fig. 7 and the experimental Fig. 8(b) above
Tc). This concerns the Y -shaped form of the dispersion and the
absence of a resonance in contrast to the X-shaped form and
the resonance in the SC state of near optimally doped cuprates.
This concerns the presence of a spin gap (our �s), which in
our scenario is controlled by n − nc. And this concerns the
persistence of high-energy magnonlike excitations observed
for all doping including in the overdoped regime [99–101].

We discussed also the effect of temperature in proximity to
the QCP and argued that above a certain T , the spin excitations
at ω immediately above the spin gap �s should be commen-
surate and that in the close proximity to the QCP this should
happen at the lowest energies. This effect could possibly be
responsible for the T behavior observed in YBCO6.45 [23,36]
where low-energy spin excitations survive upon heating but
become commensurate starting from 150 K. The latter could
signal a transition to the quantum critical regime.

We hope that all these results can shed light on the
origin of highly unconventional normal-state spin dynamics
in cuprates. We would also like to add several words that are a
speculation about the behavior in the SC state. As we mention
in Ref. [95], in the metallic state above nc in addition to the
contribution related to the finite-energy spiral correlations,
there is also the conventional direct hole contribution to the

spin response function. This contribution, usually small in the
normal state, can be strongly enhanced in the SC state of
d-wave symmetry in the way discussed in Refs. [8,10] (the
spin-exciton scenario), see also Refs. [11–14]. It is important
to clarify that a necessary condition for the emergence of the
spin-exciton mode is the extension of the Fermi surface until
or almost until the saddle-point at (0,π ) and the coherence of
the charge quasiparticles in this momentum region (otherwise
there is no divergence of the two-fermion response function
at the electron-hole continuum border and the spin response
remains weak). The spin-exciton scenario is elaborated within
a pure itinerant electron approach. When both, the dynamic
spiral correlations of localized spins and the static SC order
are present, as on our opinion happens in the SC state of
underdoped cuprates, the spin dynamics is determined by
a competition between the two mechanisms and a relation
between different characteristic energies. For low doping, the
spin dynamics in the SC state is qualitatively the same as in the
normal state, as was emphasized before, i.e., the low-energy
behavior is dominated by the spiral-correlation scenario. On
the other hand, starting from the near-optimal doping, the
condition of the coherence of the charge quasiparticles in
the near-(0,π ) region, necessary for the existence of the
spin-exciton mode, is fulfilled (as known from the ARPES
experiments), while the spiral correlations are weakened. As
a result, for this doping range the SC-state low-energy spin
dynamics should be dominated by the spin-exciton mode
and the behavior as a whole should be characterized by
the X-shaped dispersion in the SC state, by the resonance
which disappears in the normal state, etc., (see Ref. [102])
i.e. by the archetypal behavior observed experimentally for
near optimally doped cuprates. For intermediate doping, the
picture should progressively change from the one limit case to
the other and should be material dependent. These speculations
allow one to get a qualitative insight on the overall picture of
the SC-state spin dynamics in cuprates; a quantitative study of
the spin dynamics resulting from the competition between the
two mentioned mechanisms is beyond the scope of this article.

It is also worth mentioning certain results obtained for the
charge dynamics, namely the asymmetry of the Fermi pockets
with respect to the AF BZ boundary (close to that observed
in certain ARPES experiment [81,82]) and especially the
appearance of the off-diagonal order in the charge subsystem
induced by the spiral correlations of localized spins. As shown
in [83], this order has a certain relation to the so-called
intra-unit-cell magnetic order observed in cuprates in the
pseudogap phase [84].

As a final remark, after the submission of the manuscript,
we learned about the latest neutron experiment on the
HgBa2CuO4+δ (HBCO) family of high-Tc cuprates performed
for moderate [107] and near optimal doping [108]. Basically,
the discovered spin dynamics fits into the theoretical scheme
described in the present paper. This concerns the global shape
of the spin excitation dispersion, in particular the existence
of the two characteristic energies, the first (our ωc) above
which the spin excitations are magnonlike with the dispersion
reminiscent of that in AF insulator but with a gap and a reduced
spectral weight, and the second (our �s) below which there
is a global spin gap, see Fig. 4 in Ref. [107] and Fig. 1l in
Ref. [108]. [The narrowness of the dispersion of the component
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below ωc in the normal state also corresponds qualitatively to
our scenario although for the HBCO family the dispersion is
extremely narrow, much more than for the YBCO family and
namely for YBCO6.6 [25]. With such narrowness, of the order
of the experimental resolution, it is difficult to judge whether
SFs corresponding to this component are commensurate or
incommensurate, whereas in YBCO6.6 for which the normal
state spin dynamics is globally the same while the dispersion
of the low-energy component is larger than the resolution, the
low-energy SFs are clearly incommensurate, see, e.g., Fig. 10
in Refs. [24,25], see comments [94,109]]. This concerns the
absence of a resonance in the normal-state spin response.
This also concerns finally the evolution of the spin dynamics
with doping: for the underdoped HBCO sample, no qualitative
difference between the spin dynamics in the normal and SC
state was found [107], while for the near optimally doped
sample, the low-energy behavior in the SC state is found to be
dominated by the spin-exciton mode and very different from
the normal state behavior [108]. Although the doping level in
the former case is moderate rather than low, it is clear that the
tendency is universal—the precise doping at which the picture
corresponding to the one limit case changes for the picture
corresponding to the other limit case should depend on details
in the carrier band structure and other parameters and should
be material dependent. [This probably is the reason why for
the YBCO family the behavior in the SC state is of the optimal-
doping type already for x = 0.6 (corresponding approximately
to n = 0.1), while for the HBCO family, the SC-state behavior
is still of the normal-state type for approximately the same n.]
This is all the more so as the different families of cuprates differ
by the number of CuO2 layers, by the crystal structure and by
the importance of disorder effects. The HBCO family, which
is single-layered, does not have such strong disorder effects
as the LSCO family and in addition has a simple tetragonal
structure may reveal the most basic cuprate behavior.
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APPENDIX: EXPRESSIONS FOR RENORMALIZED
GREEN FUNCTIONS AND SPECTRUM OF BOSONS

IN THE LIMIT q ′ ∼ √
2�̄c

As seen from the expressions (50) and (51) for the
scattering amplitudes Mc and Md , in the limit q ′ ∼ √

2�̄c

both amplitudes are proportional to q ′, while (Mc)2

(Md )2 ∼ 1√
1+ζ

.

As a result, the polarization operators �+
d , �+

c , �+
cd , as well

as �−
d , �−

c , �−
cd , have the same functional dependencies and

differ only by the numerical factors related to the amplitudes.
In this case, one can reduce the 4×4 matrix ˆ̃G to the effective
2×2 matrix ˆ̃Geff in the way shown below. First, we introduce
the vector operators

φ =
[
Mddq − Mcc+

−q
Mdd+

−q − Mccq

]
,

φ+ = (Mdd+
q − Mcc−q, Mdd−q − Mcc+

q ). (A1)

Then, the renormalized effective matrix Green function is
given by

( ˆ̃Geff)−1 = (Ĝeff)−1 − �̂eff, (A2)

where Ĝeff is the diagonal bare Green function with the
components

Geff
11 = M2

dGdd+ + M2
c Gcc+ = −(α − β)

(iωn − �d )(iωn + �c)
(A3)

and Geff
22 (q,iωn) = Geff

11 (−q, − iωn), while �̂eff is the matrix
polarization operator

�̂eff =
[

�+
iωn

−�−
iωn−�−

iωn
�+

−iωn

]
. (A4)

Above we denoted α = iωn(M2
c − M2

d ), β = �cM
2
d + �dM

2
c ,

�+
iωn

= �eff
11 (q,iωn), �−

iωn
= �eff

12 (q,iωn) and took into ac-
count that �eff

22 (q,iωn) = �eff
11 (−q,−iωn), �eff

12 (q,iωn) =
�eff

21 (−q,iωn) and �±
q = �±

−q. Then, the determinant Dω ≡
det( ˆ̃Geff) is given on the real axis by

Dω = [(�+
ω )2 − (�−

ω )2](αω − β)(α−ω − β)

+�+
ω [(αω − β)(ω + �d )(ω − �c)

+ (α−ω − β)(ω − �d )(ω + �c)]

+ (ω2 − �2
d

)(
ω2 − �2

c

)
, (A5)

above, we omit the wave vector argument in �±, α, β and
the ω and q arguments in �d , �c for short. By definition, this
determinant is equal to the determinant of the initial 4 × 4
Green function (54). Note that �±

ω introduced above differ
from �±

c,d (q,ω), �±
cd (q,ω) used in the main text only by the

factors related to the scattering amplitudes. Coming back to the
notations in the main text and using the polarization operators
P d

1,2 and P c
1,2, we can explicitly write down the equations for the

renormalized spectrum (given by the solutions of the equation
Dω = 0) in a quite compact way. The explicit expressions are
presented in the main text, see Eq. (75).
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