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Impact of finite temperatures on the transport properties of Gd from first principles
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Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems,
besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming
from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all

these scattering effects on equal footing was recently suggested within the framework of the multiple scattering
formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin
fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal
resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with
experiments demonstrates that the proposed numerical scheme does provide an adequate description of the

electronic transport at finite temperatures.
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I. INTRODUCTION

Rare-earth elements may exhibit both ferromagnetic or
antiferromagnetic order in certain temperature regimes. Nowa-
days, it is commonly accepted that Gd, having the hcp
structure, possesses a simple ferromagnetic (FM) order up to its
Curie temperature 7,. However, in early experimental studies
a helical magnetic structure was observed in polycrystalline
Gd in the temperature range between 210 and 290 K [1].
Such a helical spin configuration is easily destroyed by a weak
magnetic field [1], leading to a collinear magnetic structure
in the system. This means that only in the absence of an
applied magnetic fields can this type of antiferromagnetism
be observed. Recent experiments on single crystals of Gd did
not reveal any anomalies in the low-field magnetization curves
and confirm that Gd has a normal ferromagnetic structure up to
its Curie temperature [2,3]. The Curie temperature determined
experimentally was found to be 289 K with a saturated
magnetic moment of 7.12up [4]. In another experimental
study the Curie temperature was determined to be 293.2 K
with an absolute saturation moment of 7.55up [5]. Although
Gd behaves like a simple ferromagnet it has nevertheless a
rather complex temperature dependence of its magnetization:
as the temperature decreases to 230 a spin-reorientation
occurs from the magnetization parallel to the ¢ axis to the
magnetization tilted by 30° with respect to the ¢ axis, reaching
its maximum tilt angle of 60° at around 7 = 180 K [2].
Such a behavior is quite demanding concerning an adequate
theoretical description. Therefore, in the present work the
direction of the magnetization is taken along the ¢ axis unless
it is mentioned otherwise.

Itis well established that the magnetism in Gd is dominated
by f electrons with a magnetic moment of 7up due to half
filling of the highly localized 4 f states. The observed excessive
magnetic moment is attributed to the valence 5d6sp band
exhibiting spin polarization due to the strong exchange field
created by the 4 f electrons [6], as is extensively discussed in
the literature [7—11]. In particular, these discussions concern
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the finite-temperature behavior of the magnetic moment of
the valence electrons [12] observed experimentally. In earlier
discussions it has been suggested to treat these on the basis
of the Stoner model [13]. Recent investigations by experi-
ment [9,14,15] as well as theory [10,11,16] based on first-
principles calculations clearly demonstrate the finite exchange
spitting of valence states above the Curie temperature despite
the vanishing total magnetization, which implies a much more
complicated picture of interactions than provided by the simple
Stoner model.

The rather different origin of the spin magnetic moment for
the f and 5d6sp electrons leads also to a different dynamical
behavior characterized in general by a different magnetization
dissipation rate. This would imply separate spin dynamics
equations for f and 5d6sp spin magnetic moments coupled
via the exchange interactions, as was considered in particular
in Gilbert damping calculations by Seib and Fahnle [17]. The
authors, however, point out that the common equation for
all types of spin moments can be used in the limit of slow
magnetization dynamics [18], which also allows us to use
a common Gilbert damping parameter calculated within the
adiabatic approximation.

It is well known that, in magnetic systems, the electrical
resistivity is caused by electron scattering by various magnetic
inhomogeneities in addition to the electron-phonon scattering
as well as scattering by impurities and other structural
defects. The latter contribution is responsible for the so-called
residual resistivity observed in the zero-temperature limit. The
resistivity part due to the phonon mechanism shows usually
a T° behavior at low temperatures and varies linearly with
T above the Debye temperature 7Tp. This behavior can be
described on the ab initio level and corresponding studies on
transition metals [19] lead in general to good agreement with
experimental data. In the present study not only the linear
dependence was obtained in the temperature region T > Tp
but it was found also well below Tp. A theoretical description
of the resistivity caused by thermal spin-fluctuation effects was
first given on the basis of the s-d (in rare earth d- f) model
Hamiltonian [20-22]. This approach suggests a 7> dependence
in the low-temperature limit and an almost constant resistivity
above the Curie temperature. In the intermediate-temperature
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regime the T dependence of the resistivity is expected to be
rather complex. Recent ab initio calculations of the param-
agnetic spin-disorder resistivity for a number of transition
metals and their alloys as well as rare-earth metals are based
on two alternative approaches: the disordered local moment
approach using the coherent-potential approximation (CPA)
formalism and averaging the Landauer-Biittiker conductance
of a supercell over the random noncollinear spin-disorder
configurations, with both leading in general to good agreement
with experimental values [10,23]. However, for a quantitative
description of the temperature-dependent electrical resistivity
from first principles one needs to combine the influence of
lattice vibrations and spin fluctuations, which is a nontrivial
task. Therefore, certain approximations are required to reach
this goal.

During the last years, the anomalous Hall effect (AHE) and
its dependence on the temperature attracts also much attention.
In the case of Gd, a number of theoretical investigations
have been performed to explain the unexpectedly large AHE
observed experimentally [24]. Previously, these studies were
performed on a model level. An earlier description of the AHE
of Gd was based on the uniform electron gas model accounting
for spin-orbit coupling effects leading, in turn, to an asymmetry
in the scattering process (skew-scattering mechanism) [25].
However, due to the high localization the electrons giving
rise to the magnetic moment are unable to participate in
conduction; therefore this model is not appropriate to describe
the AHE in rare-earth systems. The model developed by
Kondo [26] was based on the s-d (s- f) interaction leading to a
scattering of the conduction electrons by the thermally induced
spin moment tilting. In this model the necessary asymmetry
is due to the intrinsic spin-orbit coupling of the f electrons.
Therefore, the Hamiltonian describing the interaction of the
conduction and the localized electrons is valid when the orbital
angular moment of localized electrons remains unquenched.
This is not the case for Gd and therefore it cannot be used
to describe the AHE in this metal. Another model which
eliminated the above-mentioned constraint was developed by
Maranzana [27] and is based on Kondo’s model. In this model
the skew-scattering mechanism originates from the interaction
between the localized spin moment and the orbital momentum
of the conduction electron.

Within the discussed models the large AHE in Gd was
ascribed solely to the skew-scattering contribution. Another
scattering mechanism, the so-called side-jump mechanism,
first introduced by Berger [28,29], was accounted within a
model suggested by Fert [30]. It was demonstrated, particularly
for Gd, that the side-jump contribution is equally important
as the skew-scattering mechanism and should be taken into
account as well.

In this paper, we discuss the impact of finite temperatures,
taking into account thermal lattice vibrations and spin fluctu-
ations, on the transport properties in Gd from first principles
by making use of the alloy analogy model [31].

II. COMPUTATIONAL DETAILS

The electronic structure calculations are based on
the Korringa—Kohn—-Rostoker (KKR) Green’s function
method [32] implemented in the fully relativistic spin-
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polarized Munich SPR-KKR package with angular-momentum
cutoff /n.x = 4. A full four-component Dirac formalism is
employed to describe the electronic structure within Kohn—
Sham-Dirac density functional theory [33]. For spd elec-
trons the local density approximation was used with the
parametrization given by Vosko et al. [34]. To treat the highly
correlated 4 f states the local spin-density approximation 4+ U
(LSDA+U) method was used with the double counting part
of the LSDA+U functional evaluated within the so-called
atomic limit expression [35]. The temperature effects are
treated within the alloy analogy scheme based on the CPA
alloy theory [36-38], and assuming a frozen potential for the
atoms [31]. For the description of the magnetic spin fluc-
tuations the temperature-dependent magnetization data were
taken from experiment [5]. The calculation of the transport
properties of Gd is based on the Kubo-Stfeda formalism, with
the corresponding expression for the conductivity given by

Oy = mTr(ju(G+—G_)juG_ —JuGTJ(GT=G))e
T (AR e T A M
4TiNQ . .
with the relativistic current operator j = —|e|ce and the elec-

tronic retarded and advanced Green’s functions G* evaluated
at the Fermi energy Er by means of the relativistic multiple
scattering or KKR formalism [32]. The angular brackets
denote a configurational average which here is carried out
using the coherent-potential approximation (CPA) which takes
into account the so-called vertex corrections (VCs) [37]. In the
last equation, N is the number of sites and €2 is the volume of
the unit cell. As was justified by previous work [39] the second
term in the Eq. (1) has been omitted.

The Gilbert damping parameter [40,41] was calculated
within the linear-response theory using the Kubo—Greenwood-
like equation:

hy

== r Tr(T,ImG ™ T,ImG ™)., )

where M; is the saturation magnetization, y is the gyromag-
netic ratio, and 7}, is the torque operator [41].

III. RESULTS
A. Electronic structure

The electronic structure of Gd has been calculated by
using the experimental lattice parameters a = 3.629 A,
c/a =1.597. As was mentioned above, the 4 f electrons
have been treated as the valence electrons with correlations
described within the LSDA + U scheme with the Coulomb
parameter U = 6 eV and the exchange parameter J = 0.9 eV.

The spin magnetic moment obtained in the calculations
for T = 0 K equals to 7.63p and accordingly is in a good
agreement with the experimental saturated magnetic moment
of 7.55u g per atom [S5]. The dominating contribution of 74 g is
associated with the f electrons, while the excessive spin mag-
netic moment of 0.63 u g is a result of the exchange splitting for
the 5d6s6p electrons due to a strong exchange field produced
by the f electrons, as was discussed previously [6,11,12].
The persistence or vanishing of the exchange splitting with
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FIG. 1. Spin-resolved DOS of Gd for various temperatures.
Bottom panel shows magnified area.

increasing temperature is a matter of debate both in theory
and experiment. Several experimental reports indicate that it
collapses approaching the Curie temperature [7], while others
demonstrate that the exchange splitting persists even in the
paramagnetic state [9,42]. The spin-resolved total density
of states (DOS) calculated in the global frame of reference
with the quantization axis along the average magnetization
at finite temperatures is represented in Fig. 1. Obviously, a
temperature increase results in changes of the majority and
minority spin DOS due to the spin mixing caused by the
thermal spin fluctuations. This leads to the same DOS for
both spin directions at T > T,. The energy positions of the f
states are almost unchanged in the whole temperature region.
However, the exchange splitting of the spin-up and spin-down
5d6s6p states (having the main contribution to the DOS at the
energies around E ) decreases (as it depends on the average
magnetization of the system) with increasing temperature. In
particular, this results in an increase of the DOS at the Fermi
level in the paramagnetic state.

B. Electrical resistivity

One of the central transport properties of metallic systems
is their electrical resistivity. The experimentally measured
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FIG. 2. Temperature-dependent electrical resistivity: (top) in-
plane, (bottom) out-of-plane components. Black solid circles show
experimental results [5], empty blue triangles show only thermal
lattice vibrations, empty green diamonds show only spin fluctuations,
empty red circles show total resistivity including both effects
simultaneously, and brown dashed line corresponds to the sum of
individual contributions.

temperature-dependent resistivity of Gd exhibits an anisotropy
with different magnitudes along the hexagonal axis (p,,) and
in the basal plane (py,) [5] (see Fig. 2). Both p(T) curves are
characterized by an abrupt slope change close to the Curie
temperature.

In addition to the total p(7T") values, we investigated its
temperature dependence caused only by lattice vibrations (vib)
or only by magnetic fluctuations (fluct), which appear to be
of comparable magnitude. From this one has to conclude
that these sources of the temperature-dependent resistivity are
additive only in the case of weak disorder (low temperatures),
which does not hold when approaching the Curie temperature
(strong disorder) [43]. In this regime they must be taken into
account simultaneously, since only then the overall behavior of
the resistivity curves agrees well with experiment. This allows
us to conclude that the maximum of the experimental p,, (close
to the Curie temperature) is not a result of short-range magnetic
order as was suggested in earlier literature [5], since the present
calculations are based on the single-site CPA. The present
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FIG. 3. Total DOS at the Fermi level depending on the
temperature.

results suggest its origin as a combination of two competitive
mechanisms. On the one hand, thermally induced disorder
grows, leading to a resistivity increase and, on the other hand,
the effective DOS around Er relevant for the conductivity
increases with increasing T < T, (Fig. 3), which effectively
reduces the resistivity.

While the calculated resistivities agree with the exper-
iment rather well, there is a quantitative underestimation
(see Fig. 2). This can have various sources. One could be
the so-called ““‘frozen-potential” approximation used in the
present calculations. This approach allows us to account for
the most significant contributions to the resistivity, but it
neglects the changes in the local magnetic moments with
increasing temperature. Nevertheless, as the Gd local magnetic
moment is rather robust and does not depend essentially
on the temperature, this approximation seems to be well
justified. A second reason, which is more crucial for p,;,
might be the neglect of the anisotropy of the thermal atomic
displacements. A third source for discrepancy may be the use
of the single-site approximation by the CPA, which neglects
the coherent scattering or interference effects which might
show up in multiple scattering.

C. Anomalous Hall effect

As was already mentioned, Gd shows a rather large AHE,
which is well described within a model that accounts at the
same time for skew-scattering and side-jump mechanisms [30].
However, within this model only electron scattering by
thermally induced spin fluctuations is discussed, while the con-
tribution from the electron-phonon mechanism is completely
neglected. Within the present calculations both contributions
are taken into account. The resulting total anomalous Hall
resistivity can be seen in Fig. 4 (top panel) in comparison
with experimental results (for polycrystalline samples as well
as single crystals) and the theoretical result obtained on the
basis of model calculations by Fert [30]. One can see that the
anomalous Hall resistivity shows a pronounced temperature
dependence: the resistivity increases from zero at 7 =0 K
to a maximum value just below the Curie temperature and
then drops to zero as the magnetization vanishes with further
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FIG. 4. Anomalous Hall resistivity depending on the tempera-
ture: Top panel compares with experimental results (Exp.1 [44],
Exp.2 [44], Exp.3 [45,46]) and results from model calculations [30].
Bottom panel shows individual contributions. Empty blue triangles
show only thermal lattice vibrations, empty green diamonds show
only spin fluctuations, empty red circles show total resistivity
including both effects simultaneously, brown dashed line corresponds
to the sum of individual contributions.

increasing temperature. Overall there is a qualitative and
quantitative agreement of our first-principles results with
experiment as well as with the model calculations. In Fig. 4
(bottom panel) the individual contributions arising from the
scattering by the lattice vibrations and spin fluctuations
are shown. One can see that both mechanisms provide
contributions nearly of the same order of magnitude. The
qualitative behavior of the total AHR is determined by the
scattering due to spin disorder, while the contribution due to
lattice vibrations shows, as expected, a monotonic increase
with temperature. It is interesting to compare the sum of
the individual contributions with the total AHR. From Fig. 4
(bottom panel) one can see that the total AHR significantly
exceeds the sum of these contributions. Therefore for the
correct description of the total AHR it is necessary to account
simultaneously for the combination of scattering due to the
thermal lattice vibrations and spin fluctuations.
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FIG. 5. Gilbert damping parameter in Gd represented as a func-
tion of temperature. Empty blue triangles show only thermal lattice
vibrations, empty green diamonds show only spin fluctuations, empty
red circles show total resistivity including both effects simultaneously.

Comparing the calculated anomalous Hall resistivity with
experimental data, one notices that the discrepancy is more
pronounced at low temperatures and nearly nonexistent as
we approach T¢ (see Fig. 4). On one hand, the spread of
experimental data is rather large. It would be helpful to
have more reliable experimental data to better reveal any
systematics in the discrepancies. On the other hand, the
discrepancies are connected, of course, to the approximations
used in the calculations, which were discussed in the previous
section.

D. Gilbert damping

Nowadays, much attention is payed to the ultrafast
magnetization dynamics in various materials, including Gd
as an important example of rare-earth materials. At the
same time, in case of Gd there is a lack of studies, both
theoretical and experimental, particularly dealing with the
dissipation channels in the slow magnetization dynamics
regime. Our work is meant to fill this gap on the theory
side.

In the present work, the Gilbert damping parameter for
Gd has been calculated in the limit of slow magnetization
dynamics [18]. It describes the magnetization dissipation for
the whole system, accounting for f-like and 5d6sp-like spin
magnetic moments characterized by their slow simultaneous
coherent motion. The corresponding results of calculations of
the Gilbert damping as a function of temperature up to the
Curie temperature are shown in Fig. 5. The separate contribu-
tions due to thermal lattice vibrations and spin fluctuations are
shown together with the curve accounting for both sources si-
multaneously. One can see a monotonic decrease of the Gilbert
damping due to electron-phonon scattering with rising temper-
ature. On the other hand, the curve representing the effect of
the electron scattering due to thermal spin fluctuations exhibits
adecrease in the low-temperature region due to the dominating
breathing Fermi-surface dissipation mechanism, while above
150 K the increase of the Gilbert damping is determined by the
increase of thermal magnetic disorder leading to magnetization
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dynamics due to electron scattering events accompanied by
spin-flip electron transitions. However, approaching the Curie
temperature, the Gilbert damping reaches a maximum at 275 K
with a following decrease up to the Curie temperature. This
behavior correlates with the temperature-dependent behavior
of the resistivity p,.(T) and can be associated with the
decrease of probability of spin-flip scattering of transport
electrons caused by a modification of the electronic structure
discussed above. A similar nonmonotonic behavior has been
found for the temperature dependence of the total Gilbert
damping.

IV. CONCLUSIONS

In summary, we have studied the transport properties in the
highly correlated system Gd from first principles. The electron-
electron correlation effects were approximately accounted for
by using the LSDA+U approach, resulting in an adequate
description of the electronic structure. In turn, it enables a
proper physical description of the transport properties. In this
contribution we discussed the impact of finite temperatures
(including the impact of thermal lattice vibrations and spin
fluctuations) on the electrical resistivity as well as on the
anomalous Hall resistivity. The applied approach based on the
single-site CPA describing thermal lattice vibrations and spin
fluctuations allows us to analyze individual contributions to
the longitudinal and transverse resistivities arising due to these
mechanisms. In both cases it turned out that, in order to obtain
reasonable agreement with experimental data, it is necessary
to account for a combination of the contributions connected
with the phonon scattering and scattering by spin disorder
because the simple sum of these contributions, especially for
the AHR, significantly deviates from experiment. In the case
of the longitudinal resistivity a slight anisotropy was observed
which is in agreement with experimental results. For the out-
of-plane resistivity a small experimentally detected maximum
in the vicinity of the Curie temperature was fully reproduced.
The emergence of this maximum according to experimental
findings was attributed so far to the magnetic short-range-order
effect. However, in the present calculations such an ordering
was completely neglected because the distribution of the
spin magnetic moments are considered absolutely random.
Accordingly, the origin of this maximum is solely due to spin
disorder.

In case of the AHR a small anisotropy was observed
as well. The calculated temperature-dependent AHR with
magnetization pointing along the ¢ axis agrees surprisingly
well with the experimental data. The maximum occurred just
below the Curie temperature and the further abrupt drop is well
reproduced.
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