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We present systematic constructions of tensor-network wave functions for bosonic symmetry-protected
topological (SPT) phases respecting both onsite and spatial symmetries. From the classification point of view,
our results show that in spatial dimensions d = 1,2,3, the cohomological bosonic SPT phases protected by a
general symmetry group SG involving onsite and spatial symmetries are classified by the cohomology group
Hd+1[SG,U(1)], in which both the time-reversal symmetry and mirror-reflection symmetries should be treated as
antiunitary operations. In addition, for every SPT phase protected by a discrete symmetry group and some SPT
phases protected by continuous symmetry groups, generic tensor-network wave functions can be constructed
which would be useful for the purpose of variational numerical simulations. As a by-product, our results
demonstrate a generic connection between rather conventional symmetry-enriched topological phases and SPT
phases via an anyon condensation mechanism.
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I. INTRODUCTION

Recently, the interplay between symmetry and topology
in condensed matter physics attracts considerable interest
both theoretically and experimentally. After the discovery of
topological insulators [1–7], it is theoretically recognized that
there exist many new types of symmetric topological states of
matter. In the absence of topological order, symmetry could
protect different topological phases, which are often referred
to as symmetry-protected topological (SPT) phases [8–14]. In
particular, the bosonic SPT phases require strong interactions
to realize.

Previously, SPT phases have been theoretically investigated
using various different theoretical frameworks [12,15,16].
In particular, a wide range of SPT phases protected by
onsite symmetry groups have been systematically classified
and investigated [12], based on a definition of short-range-
entangled quantum phases. These SPT phases are found to be
directly related to the group cohomology theory, which we
will refer to as cohomological SPT phases.

Generally, in condensed matter systems spatial symmetries
(e.g., lattice space group) are present. It is known that such
symmetries could protect topological phases such as the
topological crystalline insulators in fermionic systems [17,18].
In bosonic systems, analogous but correlation-driven SPT
phases protected by spatial symmetries have been investigated
recently, for instance, using topological field-theory analysis
[19,20] and dimension reduction techniques [21]. However,
so far the systematic understanding of spatial-symmetry-
protected SPT phases is still lacking.

Apart from classification problems, it is certainly very
important to understand whether these SPT phases can be
realized in experimental systems. However, although it is
known that there exist a vast number of correlation-driven
SPT phases in two and higher spatial dimensions, very few
of them are shown to be realized in more or less simple and
realistic quantum models [22].

The challenge here, at least to some extent, is due to the
lack of physical guidelines and suitable numerical methods.
In history, the successful discovery of topological insulators

very much benefits from the band-inversion picture [4], which
is a very useful physical guideline. In this sense, it is highly
desirable to develop more physical guidelines for realizing
correlation-driven SPT phases.

In addition, in order to search for SPT phases in correlated
models, intensive numerical simulations are inevitable. It is
also desirable to develop new numerical methods suitable for
simulating SPT phases. In particular, for realistic models, one
usually has to perform variational simulations based on certain
choice of variational wave functions. Can one construct generic
wave functions for SPT phases that are suitable for numerical
simulations?

In this paper, we further develop a symmetric tensor-
network theoretical framework that is powerful to address
the conceptual and practical issues raised above. Let us first
describe the results of this paper. We mainly focus on the
bosonic cohomological SPT phases. The major results of
this work are twofold. First, we identify the interpretation
of cohomological SPT phases in a general tensor-network
formulation, which allows us to construct generic tensor-
network wave functions for SPT phases protected by onsite
symmetries and/or spatial symmetries (see Sec. III B). Such
generic tensor-network wave functions are suitable to perform
variational numerical simulations in searching for SPT phases
in practical model systems. Second, this interpretation shows
that, for a general symmetry group SG, which may involve both
onsite symmetries and spatial symmetries, these cohomolog-
ical SPT phases can be classified by Hd+1[SG,U(1)]. Here,
the (d + 1)th cohomology group Hd+1[SG,U(1)] is defined
such that the time-reversal symmetry and any mirror-reflection
symmetries act on the U (1) group in the antiunitary fashion,
while other symmetries act on the U (1) group in the unitary
fashion.

We would like to point out that the cohomological SPT
phases classified by Hd+1[SG,U(1)] may or may not host
gapless boundary states, related to whether one can choose a
physical edge such that the symmetry protecting the SPT phase
is still preserved along the boundary. For instance, in (2+1)
dimensions [(2+1)D], the inversion symmetry (equivalent to
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180◦ spatial rotation) generates a Z2 unitary group. Because
H 3[Z2,U(1)] = Z2, according to our main result, there is
one nontrivial SPT phase protected by inversion symmetry
alone in (2+1)D. However, near the edge the inversion
symmetry is always broken and gapless edge states are
not expected to present. This phenomenon is similar to the
inversion symmetry-protected topological insulators in weakly
interacting fermionic systems, e.g., axion insulators [23].

Previously, progresses on analytically understanding SPT
phases with onsite symmetries based on the tensor-network
formulation in (2+1)D were made [24]. Comparing with
earlier results, the current construction captures general spatial
symmetries and applies in one, two, and three spatial dimen-
sions, and therefore is more general. In addition, in the current
construction, the information of the SPT phases is encoded
in certain local constraints on the building-block tensors, i.e.,
the local tensors are living inside certain specific sub-Hilbert
spaces. Such local constraints can be easily implemented
in practical numerical simulations. We will provide some
concrete examples of such SPT tensor-network wave functions
in Sec. III E.

There are several by-products of this paper that are related
to the special cases of the more general results above. For
instance, when SG involves translation symmetries in two
and higher spatial dimensions d, our construction related to
Hd+1[SG,U(1)] clearly demonstrates so-called “weak topo-
logical indices,” whose physical origin is related to lower-
dimensional SPT phases. As a concrete example, previously
we demonstrated that there are four distinct featureless
Mott insulators on the honeycomb lattice at half-filling [25].
These distinct featureless Mott insulators now can be nicely
interpreted as the consequence of two weak topological
indices.

An more important by-product of this paper is a generic
relation in (2+1)D between the SPT phases and symmetry-
enriched topological (SET) phases via an anyon condensation
mechanism, which provides new physical guidelines realizing
SPT phases. SET phases are symmetric phases featuring
topological order and anyon excitations. The interplay between
symmetry and the topological order gives rise to so-called
symmetry-enriched phenomena such as symmetry fractional-
ization [26–35].

One can consider an SET phase characterized by a usual
Abelian discrete gauge theory, in which gauge charges feature
nontrivial symmetry fractionalizations. Such an SET phase
can be quite conventional in the sense that there are no
robust gapless edge states, and can be realized in rather
simple model systems [36,37]. It turns out that after the gauge
fluxes boson condense and destroy the topological order, the
resulting confined phase must be SPT phase if the condensed
gauge fluxes carry nontrivial quantum numbers and a certain
Criterion (see Sec. II) is satisfied.

This by-product signals that the traditional treatment on
confinement-deconfinement phase transitions [38] may be
worth being revisited when physical symmetries are imple-
mented. Although the general criterion on the relation between
SPT and SET phases is obtained using the tensor-network
formulation in Sec. III B, a major advantage of this by-
product is that it can be understood using more conventional
formulations which we will discuss below.

II. CONNECTION BETWEEN SET PHASES AND SPT
PHASES VIA ANYON CONDENSATION

In this section, we discuss a by-product of our general
results obtained in Sec. III B. Instead of using tensor-network
formulation, here we use (topological) field-theoretical lan-
guages, which do not require the reader to be familiar with
tensor-network formulations. The discussions in this section
suggest that the confinement-deconfinement phase transitions
of gauge theories, e.g., a usual Z2 gauge theory, need to be
reconsidered when symmetries are present because different
ways to confine the gauge fields may lead to different SPT
phases. For instance, it is well known that valence bond solids
(VBS) in quantum spin systems can be viewed as the confined
phases of gauge theories. At the end of this section, we discuss
the possible realizations of SPT VBS phases.

Previously, a related physical route to realize SPT phases
has been discussed [16,22,39], which states that condensing
vortices in superfluid carrying U(1) quantum numbers could
lead to SPT phases. The current discussion can be viewed
as analogous phenomena but in the context of topologically
ordered phases. In addition, in this work, general spatial and
onsite symmetries are considered and systematic results are
obtained.

A. Criterion to generate general cohomological SPT phases
via anyon condensation

The connection between SET phases and SPT phases via
anyon condensation can be quite general. In fact, the original
study understanding the so-called E8 state was achieved
by condensing bosonic anyons coupled with multilayers of
p + ip topological superconductors [40]. Later on, it was
understood that quite systematically, starting from a fermionic
SPT phase, after coupling with a dynamical gauge field and
condense the appropriate bosonic anyon, one could confine
the fermionic degrees of freedom and obtain a bosonic SPT
phase [41].

However, in those previous constructions of SPT phases,
before anyon condensation, the SET phases themselves
already feature gapless edge states. Indeed, before coupling
to the dynamical gauge fields, the systems are already in
fermionic SPT phases. In this paper, we study a different
type of generic connections between SET and SPT phases via
anyon condensations. Namely, the SET phases themselves
contain no symmetry-protected edge states. In fact, we will
consider particularly simple SET phases: the usual discrete
Abelian gauge theories with certain symmetries. Here, by
“usual” we mean that, for instance, for a Z2 gauge theory
we only consider the toric-code-type topological order and
do not consider the double-semion topological order. At the
superficial level, it is unclear how these simple SET phases
are connected with SPT phases.

We will state a Criterion to obtain cohomological SPT
phases via condensing (self-statistics) bosonic anyons in these
simple SET phases. A proof of this Criterion based on tensor-
network construction will be given in Sec. III C. Before provid-
ing this tensor-network-based argument, in Sec. II B we present
several examples demonstrating the application of this Crite-
rion using the K-matrix Chern-Simons effective theories [42].
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The topological quasiparticles in a usual Zn gauge theory
include the gauge charges and the gauge fluxes; both are self-
statistics bosonic. They can generate all other quasiparticles via
fusion. Let us consider a Zn1×Zn2× · · · ×Znk

finite Abelian
gauge theory, in the presence of a symmetry group SG that
could be a combination of onsite symmetries and spatial
symmetries. In the following discussion, we denote a general
gauge flux as an m quasiparticle, and a general gauge charge
as an e quasiparticle (they do not have to be unit gauge
charge/flux). SG can be a combination of onsite and spatial
symmetries. It turns out that SG may transform the topological
quasiparticles according to certain projective representations, a
phenomenon that has been called symmetry fractionalization.

It is known that the symmetry fractionalization pattern
in the above SET phase can characterized by the following
mathematical expression:

�g1�g2 = λ(g1,g2)�g1g2 , (1)

where g1,g2 ∈ SG, and �g is the symmetry transformation on
the quasiparticles, while λ(g1,g2) is an Abelian quasiparticle
in the theory. Physically, it means that the operation �g1�g2

on some quasiparticle a is different from the operation
�g1g2 on quasiparticle a by a full braiding phase between
quasiparticle a and λ(g1,g2). The associative condition of
symmetry operations dictates the following fusing relation:

λ(g1,g2)λ(g1g2,g3) = λ(g2,g3)λ(g1,g2g3). (2)

Here, we particularly focus on situations in which symmetry
operations would not change anyon types of λ(g1,g2). Because
�g can be redefined by a braiding phase factor with a
quasiparticle bg , λ(g1,g2) is well defined up to a fusion
with the quasiparticle bg1bg2b

−1
g1g2

(inverse means antiparticle.).
Mathematically, Eq. (2) indicates that λ(g1,g2) is a 2-cocycle
in the second-cohomology group H 2(SG,A), where A is the
fusion group of the Abelian quasiparticles in the SET phase.

For instance, consider a Z2 gauge theory with an onsite
Ising symmetry group Zonsite

2 = {I,g}, in which only the e par-
ticle features nontrivial symmetry fractionalization: although
g2 = I , when acting on the e particle g(e)2 = −1. The −1
phase factor here can be interpreted as the braiding phase
between the e particle with an m particle. Consequently, this
SET phase can be described using the formulation in Eq. (1)
by λ(g,g) = m, while all other λ’s are trivial.

Starting from the SET phase, our goal is to destroy the
topological order completely by boson condensing all the m

particles, while leaving the physical symmetry unbroken. It is
straightforward to show that as long as one of the condensed
m particles hosts nontrivial symmetry fractionalization, the m-
condensed phase would spontaneously break the symmetry.1

Therefore, in order to be able to preserve the symmetry, all
the m particles must have trivial symmetry fractionalization.
Namely, λ(g1,g2) in Eq. (1) can be chosen such that all λ(g1,g2)

1One way to see this is that the nontrivial projective representations
can always fuse into nontrivial representations of the identity
particle. Consequently, one can always construct gauge-invariant
order parameters breaking symmetry in the boson-condensed phase,
if the bosons feature nontrivial symmetry fractionalization.

do not contain e quasiparticles, while they may contain m

particles and their bound states (meaning that the e particles
could have nontrivial symmetry fractionalization).

All the condensed m quasiparticles have trivial symmetry
fractionalization, but they may or may not carry nontrivial
usual symmetry representations (i.e., usual quantum numbers).
One may worry that condensing bosons carrying nontrivial
quantum numbers would also break the physical symmetry.
However, because the m quasiparticles are topological exci-
tations, symmetry breaking does not have to happen. In fact,
as long as the quantum numbers carried by the condensed
m quasiparticles are such that the identity quasiparticles
generated by fusing them (a local physical excitation) always
carry trivial quantum number, the symmetry is preserved even
after the m condensation.

Consequently, if we try to preserve the symmetry in the
m condensation, the quantum numbers carried by condensed
m particles cannot be arbitrary. First, they need to be one-
dimensional representations of the symmetry since higher-
dimensional representations can always fuse into nontrivial
representations for the identity quasiparticle. Let us denote the
one-dimensional representation for an m quasiparticle by χm,
and ∀ g ∈ SG, χm(g) ∈ U(1). We have

χm(g1g2) = χm(g1) · χm(g2)s(g1), ∀ g1,g2 ∈ SG. (3)

Here, s(g) = 1 if g is a unitary symmetry and s(g) = −1 if g

is an antiunitary symmetry.
In order to preserve symmetry in the m condensate (i.e., all

condensed identity particles carry trivial quantum numbers),
we have the following constraint on χ : if two gauge-flux
quasiparticles m and m′ fuse into the quasiparticle mm′, then
the quantum numbers carried by all the three quasiparticles
must satisfy

χm(g) · χm′ (g) = χmm′ (g), ∀ g ∈ SG. (4)

For example, this condition dictates that χm(g) ∈ Zn if m is
the gauge flux in the Zn gauge theory.

The question is, what is the symmetric phase after the m-
condensation?

Criterion. The above m-condensed phase is a cohomologi-
cal SPT phase characterized by a 3-cocycle:

ω
χ

λ (g1,g2,g3) ≡ χλ(g2,g3)(g1) ∈ H 3[SG,U(1)]. (5)

From Eq. (5), in order to realize a nontrivial SPT phase,
two ingredients are required in this anyon-condensation mech-
anism: (1) the e quasiparticles have some nontrivial symmetry
fractionalizations so that λ’s are formed by nontrivial m

quasiparticles; and (2) the quantum numbers carried by the
condensed m particles χ are nontrivial. We will justify this
Criterion using tensor-network formulation in Sec. III B. Here,
let us only show three facts confirming that the Criterion is
self-consistent. These facts are also useful to keep in mind in
our discussions on examples.

(i) ω
χ

λ (g1,g2,g3) is necessarily a 3-cocycle, which means
that it satisfies

ω
χ

λ (g1g2,g3,g4) · ω
χ

λ (g1,g2,g3g4)

= ω
χ

λ (g2,g3,g4)s(g1) · ω
χ

λ (g1,g2g3,g4) · ω
χ

λ (g1,g2,g3). (6)
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But, this 3-cocycle condition directly follows from the fusion
rule (2), Eq. (3), and the symmetry-preserving condition (4).

(ii) Choosing equivalent 2-cocycle λ(g1,g2) in Eq. (2)
to represent the same physical symmetry fractionalization
would at most modify ω

χ

λ (g1,g2,g3) by a 3-coboundary and
thus would not change its equivalence class. This fact is
straightforward to show realizing λ(g1,g2) in Eq. (2) is well
defined only up to a 2-coboundary, i.e.,

λ(g1,g2) → λ(g1,g2) · ε(g1) · ε(g2) · ε−1(g1g2). (7)

(iii) The quantum number χm(g) in Eq. (3) is also well

defined up to a 1-coboundary: χm(g) → χm(g) α
s(g)
m

αm
, where αm

like a gauge choice. It is straightforward to also show that, if
this modification of χm(g) preserves the relation Eq. (4), then it
can only induce a change of ω

χ

λ (g1,g2,g3) by a 3-coboundary.
Remark I. Time-reversal symmetry, mirror symmetries, and

the antiunitary transformation. The above Criterion needs to
be used with the following caution in mind. The Criterion
has a straightforward interpretation when SG only involves
unitary symmetries, including usual onsite symmetries, trans-
lational/rotational spatial symmetries, and their combinations.
However, the time-reversal T and mirror symmetriesP need to
be treated as antiunitary transformations. Namely, s(g) = −1
if g = T or g = P . And, generally, if one counts the total
number of T operations and mirror-symmetry operations in
g, then s(g) = −1 iff this total number is an odd number.
For instance, the product of two different mirror planes is
a rotational symmetry and should be treated as a unitary
transformation.

More precisely, if we consider the creation operator of an
m particle as m† ∼ eiφm , then in order to use the Criterion,
we assume that the transformation rules for the phase variable
φm as g : φm → −φm + θg if g = T or g = P , where eiθg is
a U(1) phase. Because T involves the complex conjugation
while P does not, this leads to T : m† → e−iθT m† and P :
m† → eiθPm.

Clearly, with these transformation rules, the T quantum
number χm(T ) carried by an m particle alone is only a
gauge choice and is not well defined. But, for instance,
the combination of the two transformations T · P should be
treated as a unitary transformation and its quantum number
carried by an m particle is well defined.

These transformation rules can be physically interpreted as
follows. In the usual discrete Abelian gauge theories, the e

particles and m particles are dual variables, and it is a matter
of choice to call which particles as gauge charges (fluxes).
However, if one treats e’s as particles, then the m’s need to be
treated as vortices. Under either T orP , if a particle transforms
into a particle (an antiparticle), then its vortex transforms into
an antivortex (a vortex). We assign the above transformation
rules for the m particles in order for the e particles to have
well-defined symmetry fractionalizations. We will come back
to this issue with a detailed field-theoretical discussion shortly
in Sec. II B.

Remark II. Definition of quantum numbers carried by m par-
ticles. In Eqs. (3) and (5), we introduce the quantum numbers
carried by an m particle χm(g), ∀ g ∈ SG. We first emphasize
the fact that, apart from the antiunitary transformations like
T ,P , these quantum numbers are numerically measurable for

a low-energy m particle using tensor-network algorithms (see
Sec. III B for details). However, it would be useful to sharply
define these quantum numbers in a way that is independent
of the tensor-network formulation. Below, we provide such a
definition using a symmetry-defect argument for onsite unitary
symmetries only.

The subtleties to define these quantum numbers for a given
m particle arise from the fact that an anyon m is not a local
excitation. To define how an m particle transforms under a
symmetry g, one has to find a way to define a local symmetry
operator �g acting on a finite region A covering the m particle.
It has been argued that [32,43], for an onsite unitary g, �g

can be interpreted as the following physical transformation of
the wave function: (1) creating a pair of symmetry-g defects;
(2) adiabatically braiding one of the symmetry defects around
the m particle and finally annihilating with the other symmetry
defect (the path of the moving symmetry defect encloses of a
region A covering the m particle); (3) applying the symmetry
transformation g for the physical degrees of freedom within
A only. The quantum number carried by the m particle is the
Berry’s phase accumulated over this process, relative to the
Berry’s phase obtained via the same process in the ground
state.

The ambiguity in defining quantum numbers of the m

particle using the above symmetry-defect argument can now
be understood. The symmetry defects created in pair may or
may not contain other anyons, e.g., an e particle, which have
nontrivial braiding statistics with the m particle being studied.
Different choices of the symmetry defects used in the above
process may lead to different quantum numbers due to braiding
statistics between the e particle in the symmetry defects and the
m particle being studied. Therefore, to well define the χm(g)
quantum number, one needs to make a particular choice of the
symmetry defects. As will be proved in Secs. III C and III D, it
turns out that the quantum numbers χm(g) in the Criterion are
defined such that the symmetry defects in the above process
have trivial symmetry fractionalizations. We denote this choice
of the symmetry defect as the canonical choice of symmetry
defect. The canonical choice of symmetry defects rules out
the possibility that the g1-symmetry defects contain extra e

particles having nontrivial statistics with λ(g2,g3) in Eq. (5),
and thus well define the χλ(g2,g3)(g1).

However, for spatial symmetries and the time-reversal
symmetry, it is unclear how to systematically create symmetry
defects. For these symmetries, unfortunately we currently do
not know to define the quantum numbers χm(g)’s independent
of the tensor-network formulation. We will provide the measur-
able meaning of these quantum numbers in the tensor-network
language in Sec. III D.

B. Examples: Anyon-condensation-induced SPT phases
in the Chern-Simons K -matrix formalism

The purpose of this section is to demonstrate the application
of the Criterion [Eq. (5)] in some simple examples, within
a convenient field-theory description: the multicomponent
Chern-Simons theory, or the K-matrix formulation. In par-
ticular, this formulation has been further developed by Lu
and Vishwanath to successfully describe the SPT phases and
their gapless edge states [15]. All the SPT phases studied here
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can be realized by condensing visons in a usual Z2 gauge
theory, which may be useful to motivate microscopic model
realizations of them.

The topological Lagrangian of a general multicomponent
Chern-Simons theory is

L = − 1

4π

∑
I,J

KIJ εμνλaI
μ∂νa

J
λ +

∑
I

aI
μj

μ

I , (8)

where j
μ

I , for I = 1,2, . . . ,N , are the currents of quasiparticles
coupling with gauge fields aI

μ. For the usual Z2 gauge theory,

the K matrix can be chosen to be KZ2 = (0 2
2 0).

Physically, this mutual Chern-Simons theory can be in-
terpreted as follows. Let us start from a boson superfluid
phase, formed by boson b, and consider the vortices. For
the purpose of physical arguments below, it is convenient
to introduce the boson number conservation U(1) symmetry
which can be removed later. The well-known boson-vortex
duality states that one can describe the system as

L = − 1

2κ
(εμνλ∂νaλ)2 − aμjμ

v , (9)

where jμ
v is the current of the vortices. We will use �v to denote

the single vortex operator. The gauge flux of aμ is the density
of the original boson b: j

μ

b = 1
2π

εμνλ∂νaλ. In the superfluid
phase, the vortices are gapped and the U(1) Goldstone mode
is described by the photon mode of aμ [i.e., the Maxwell-type
dynamics in the first term in Eq. (9)].

Now, let us consider the vortex condensed phase (i.e., the
Mott insulator phase of the boson b). One way to describe the
vortex condensation is to introduce an additional gauge field
av to describe the vortex current: jμ

v = 1
2π

εμνλ∂νa
v
λ . In order to

have vortex condensation captured, the dynamics of av should
be Maxwell type. Consequently, the vortex condensed phase
is described by

Lv cond = − 1

2κ
(εμνλ∂νaλ)2 − 1

2κv

(
εμνλ∂νa

v
λ

)2

− 1

2π
εμνλaμ∂νa

v
λ. (10)

If one ignores the higher-order Maxwell dynamics, and
only focuses on the topological terms, the Chern-Simons
description of the vortex condensate is found to have the form
of Eq. (8) with K triv = (0 1

1 0). The two component gauge

fields can be identified: a1
μ = aμ and a2

μ = av
μ. Equations of

motion tell that the quasiparticle current jμ

1 should be identified
with that of 2π -av

μ-flux (i.e., vortex �v), and the quasiparticle
current j

μ

2 is that of the 2π -aμ-flux (the original boson b). As
explained in Ref. [15], these quasiparticles could transform
nontrivially under global symmetry, and many SPT phases can
be described by this K triv effective theory by demonstrating
the existence of symmetry-protected gapless edge states.

One can now view a Z2 topologically ordered state
described by KZ2 = (0 2

2 0) as an intermediate phase between
the superfluid phase and the vortex condensed phase. Instead
of directly condensing �v , one could first condense the
double vortices �2

v . Such double-vortex condensate can be
again formulated by introducing the double-vortex current
j

μ

dv = 1
2π

εμνλ∂νa
dv
λ carrying two unit aμ gauge charges (a term

−2aμj
μ

dv in the Lagrangian), and add some Maxwell dynamics
for adv ,

Ldv cond = − 1

π
εμνλaμ∂νa

dv
λ + · · · , (11)

where the ellipsis includes Maxwell dynamics for aμ and adv
μ .

The mutual Chern-Simons term here is just the KZ2 in the K-
matrix formulations. In such a gauge-charge-2 condensate, the
bosonic topological quasiparticles include the unpaired single
vortex: �v , or the π flux of adv

μ (labeled as quasiparticle m), and
the quantized π -flux vortex of aμ (labeled as quasiparticle e).
Note that in this continuum theory, the π flux and −π flux
are microscopically distinct, and we label e† as the creation
operator the π flux of aμ. Consequently, e is the operator
creating the −π flux. In addition, e†e† = b†.

Remark III. In this formulation, the relation between the
symmetry transformation laws of the quasiparticles e,m in
the double-vortex condensate and the quasiparticles �v,b the
single-vortex condensate is now established: the quantum
numbers carried by �v are the same as those carried by m, and
the quantum numbers carried by b are twiceof those carried
by e.2

The bulk Chern-Simons effective theory (8) is accompanied
with an effective edge theory:

Sedge =
∑
I,J

∫
dt dx

4π
KIJ ∂tφI ∂xφJ − VIJ ∂xφI ∂xφJ + · · · ,

(12)

where the KIJ term is the universal Berry’s phase,
leading to the Kac-Moody algebra [∂xφI (x),∂yφJ (y)] =
2πiK−1

IJ ∂xδ(x − y). The VIJ term is nonuniversal and depends
on details of the edge, and the ellipsis represents other
symmetry-allowed terms describing local dynamics.

The phase variables φI ’s in Eq. (12) can be interpreted
as the phases of quasiparticles: eiφI can be identified with the
quasiparticle creation operator for the current jμ

I in Eq. (8). For
example, in the double-vortex condensate, one has K = KZ2 ,
φ1 = φm, and φ2 = φe, where m† ∼ eiφm, e† ∼ eiφe . On the
other hand, in the single-vortex condensate, we have K = K triv,
φ1 = φv , and φ2 = φb, where �†

v ∼ eiφv , b† ∼ eiφb .
As explained in Refs. [15,31], in the absence

of symmetry, cosine terms describing local dynamics∑
I CI cos(

∑
J KIJ φJ + χI ) are allowed in the ellipsis in

Eq. (12) (we only consider bosonic systems in this paper).
And when these terms are large, often the edge states can
be fully gapped by pinning the phase variables to their
classical minima. However, in the presence of symmetry, the
transformation rules of φI sometimes dictate that the edge
states can only be gapped out after spontaneously breaking the
symmetry. When this happens for systems without topological

2The first half of this statement is in fact implicitly related to
our definition of the quantum numbers carried by the m particle as
explained in Remark II. The canonical symmetry defects in measuring
these quantum numbers for onsite unitary symmetries do not contain e

particles, and consequently would not be affected by the confinement
phase transition.
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TABLE I. Five examples of SPT phases studied in this section.

SG H 3[SG,U(1)]

Zonsite
2 ≡ {I,σ } Z2

ZT P
2 ≡ {I,T · P} Z2

Zonsite
2 ×ZT

2 ≡ {I,σ }×{I,T } Z2
2

Zonsite
2 ×ZP

2 ≡ {I,σ }×{I,P} Z2
2

ZT P
2 ×ZT

2 	 ZP
2 ×ZT

2 Z2
2

order, i.e., K = K triv, the bulk state can be identified as an SPT
phase with symmetry-protected edge states.

We will apply the Criterion [Eq. (5)] for the symmetry
groups (SG) in Table I in (2+1)D. Here, σ is an onsite unitary
Ising symmetry, T is the time reversal, P is a mirror-reflection
symmetry, and T · P is their combination. According to the
Criterion and Remark I, T and P should be both treated as
antiunitary, but T · P is unitary. One can see that although
the SG’s of the former two examples (latter three examples)
in Table I are physically very different, at the mathematical
group-theoretical level, they are identical.

The explicit forms of the inequivalent 3-cocycles can be
obtained by direct calculations. In these simple examples,
it turns out that one can always choose the 3-cocycle ω

such that ω(g1,g2,g3) = −1 for certain g1,g2,g3, while all
other ω(g1,g2,g3) = 1. We list the nontrivial cocycles in
Tables II and III. The trivial cocycle can be chosen such that
ω(g1,g2,g3) = 1, ∀ g1,g2,g3.

Remark IV. Time-reversal and mirror symmetries. In order
for the two-component mutual Chern-Simons theories of
either K triv or KZ2 to be symmetric under T or P , it is
required that the a1

μ and a2
μ to transform oppositely under

these symmetries. Consequently, denoting the densities of the
two types of quasiparticles coupled with a1

μ (a2
μ) as ρ1 (ρ2),

if one has T : ρ1 → ρ1 (P : ρ1 → ρ1), one must also have
T : ρ2 → −ρ2 (P : ρ2 → −ρ2), and vice versa.

For instance, if one requires P : e† → eiαe e†, then P :
m† → eiαmm, where eiαe , eiαm are phase factors. After choos-
ing a P symmetric edge along the x direction, these lead to the
following rules in the effective theory (12): P : φe(t,x,y) →
φe(t,−x,y) + αe; φm(t,x,y) → −φm(t,−x,y) + αm. As dis-
cussed in Remark I, to use the Criterion, we always require
that under either P or T , φm flips sign but φe does not.

All SPT phase examples discussed in this section can be
realized via the anyon-condensation Criterion starting from
a SET phase with usual Z2 topological order. Our strategy
is two step. For a given SPT 3-cocycle ω(g1,g2,g3), using
the Criterion, we look for the Z2 topologically ordered SET
phase with desired symmetry properties χm(g1) and λ(g2,g3).
Second, we condense the m particle and demonstrate the

TABLE II. SG = Zonsite
2 = {I,σ } or SG = ZT P

2 = {I,T · P}. De-
noting Zonsite

2 /ZT P = {I,u}, two inequivalent 3-cocycles ω0 (trivial)
and ω1 form a Z2 group.

Cocycle ω ω(g1,g2,g3) = −1 iff

ω1 g1 = g2 = g3 = u

TABLE III. SG = Zonsite
2 ×ZT

2 , or SG = Zonsite
2 ×ZP

2 , or SG =
ZT P

2 ×ZT
2 . Denoting Zonsite

2 /ZT P = {I,u} and ZT
2 /ZP

2 = {I,η}, the
four inequivalent 3-cocycles ω[0,0] (trivial), ω[1,0], ω[0,1], ω[1,1] form
a Z2

2 group. Note that u is a unitary transformation and η is an
antiunitary transformation.

Cocycle ω ω(g1,g2,g3) = −1 iff

ω[1,0] g1,g2,g3 all contain u

ω[0,1] g1 contains u and g2,g3 both contain η

ω[1,1] g1 contains u and g2,g3 both contain
either u or η except for g2 = g3 = uη

resulting phase is indeed an SPT phase by studying its edge
effective theory (12).

1. SG = Zonsite
2

As the simplest example of the Criterion, let us consider the
SPT phase corresponds to the 3-cocycle ω1 for SG = Zonsite

2 =
{I,g} in Table II. The desired Z2 topologically ordered SET
phase can be easily identified:

χλ(g2,g3)(g1) = ω1(g1,g2,g3)

⇒ χm(g) = − 1,λ(g,g) = m, (13)

while all other χ,λ’s are trivial. Namely, this is an SET phase
in which the gauge charge e features nontrivial symmetry
fractionalization: g(e)2 = −1, and the gauge flux m has no
nontrivial symmetry fractionalization but carries a nontrivial
Ising quantum number χm(g) = −1.

These symmetry transformation properties can be im-
plemented in the K-matrix formulation with K = KZ2 and
g : m† → −m†; e† → i · e†. In the corresponding edge theory
(12), these lead to

g : φm → φm + π ; φe → φe + π/2. (14)

In this SET phase, it is perfectly fine to have a gapped edge
without breaking physical symmetry. For example, symmetry
allows C cos(2φm + χm) term in the ellipsis. When this term
is large enough, the edge states will be gapped out by pinning
2φm to a semiclassical minimum, which does not break the
physical symmetry. Note that eiφm itself is an anyon operator
and does not correspond to a local order parameter.

Next, we condense the m particles (the remaining single
vortices) to destroy the topological order without breaking the
symmetry. The resulting single-vortex condensate is described
by K = K triv. According to Remark III, we have g : �†

v →
−�†

v; b† → −b†. In the corresponding edge theory (12), these
lead to

g : φv → φv + π ; φb → φb + π. (15)

These are exactly the symmetry properties of the Zonsite
2 SPT

phase studied in Ref. [15], where it is shown that it is impossi-
ble to gap out the edge states without spontaneously breaking
the Zonsite

2 symmetry. In Ref. [15], Eq. (15) was obtained
by systematically investigating all possible self-consistent
transformation rules and searching for symmetry-protected
gapless edge states. But here, with the help of the Criterion and
knowledge of the 3-cocycle ω1, Eq. (15) is directly obtained.
These results are summarized in Table IV.
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TABLE IV. The symmetry properties of the nontrivial SPT phase
protected by SG = Zonsite

2 = {I,g}, and the SET phase before the
anyon condensation.

3-cocycle SET bulk SPT edge

ω1 g : m† → −m† g : φv → φv + π

e† → i · e† φb → φb + π

2. SG = Zonsite
2 ×ZT

2

There are three nontrivial cohomological SPT phases
protected by SG = Zonsite

2 ×ZT
2 = {I,g}×{I,T }, whose cor-

responding nontrivial 3-cocycles are listed in Table III. We
discuss them separately:

(i) ω[1,0]: We need χm(g) = −1 and λ(g,g) = m in the
SET phase (all other λ’s are trivial). After condensing m

particles, gapless edge states are protected by g alone, as
already discussed in Eq. (15).

(ii) ω[0,1]: We again need an SET phase with χm(g) = −1,
but λ(T ,T ) = m (all other λ’s are trivial). The latter condition
dictates that the e particles are Kramers doublets because they
form projective representations under time reversal: T (e)2 =
−1. The symmetry transformation rules in the bulk effective
theory can be implemented as g : m† → −m†; e† → e†, while
T : m† → m†; e† → −i · e. In the corresponding edge theory,

g : φm → φm + π ; φe → φe,

T : φm → −φm; φe → φe + π/2. (16)

More precisely, for example, the first rule should be interpreted
as φm(t,x,y) → φm(−t,x,y,) + π and we have been ignoring
the space-time coordinates to save notations. After condensing
m particles, the resulting phase is described by K = K triv with
the following symmetry transformations on the edge degrees
of freedom:

g : φv → φv + π ; φb → φb,

T : φv → −φv; φb → φb + π. (17)

Clearly, the cosine terms cos(φv + χv) and cos(φb + χb) are
not allowed by symmetry and gapless edge states are protected.
These are indeed the symmetry properties of another SG =
Zonsite

2 ×ZT
2 SPT phase studied in Ref. [15].

(iii) ω[1,1]: We need an SET phase in which χm(g) = −1,
and both λ(g,g) = λ(T ,T ) = m [i.e., both g(e)2 = T (e)2 =
−1]. In the edge theory of this SET phase,

g : φm → φm + π ; φe → φe + π/2,

T : φm → −φm; φe → φe + π/2. (18)

After condensing m particles, the resulting phase is described
by K = K triv with the following symmetry transformations on
the edge degrees of freedom:

g : φv → φv + π ; φb → φb + π,

T : φv → −φv; φb → φb + π. (19)

The edge theory of this SPT phase was also pointed out in
Ref. [15]. Again, in this paper, using the Criterion, all these
SPT phases are directly obtained. The results of this part are
summarized in Table V.

TABLE V. The symmetry properties of the three nontrivial SPT
phases protected by SG = Zonsite

2 ×ZT
2 = {I,g}×{I,T }, together with

those of the corresponding SET phases before anyon condensations.

3-cocycle SET bulk SPT edge

ω[1,0] g : m† → −m†

e† → i · e†

T : m† → m†

e† → e

g : φv → φv + π

φb → φb + π

T : φv → −φv

φb → φb

ω[0,1] g : m† → −m†

e† → e†

T : m† → m†

e† → −i · e

g : φv → φv + π

φb → φb

T : φv → −φv

φb → φb + π

ω[1,1] g : m† → −m†

e† → i · e†

T : m† → m†

e† → −i · e

g : φv → φv + π

φb → φb + π

T : φv → −φv

φb → φb + π

3. SG = Zonsite
2 ×Z P

2

Again, there are three nontrivial cohomological SPT phases
as listed in Table III. Because the analysis is similar to
the previous case, we only list the results in Table VI.
Note that we will choose a P symmetric edge along the x

direction, and will again ignore the space-time coordinates
to save notations: e.g., P : φ → ±φ + α really means P :
φ(t,x,y) → ±φ(t,−x,y) + α. We find that the three nontrivial
SPT phases obtained here are consistent with earlier results
in Ref. [20] obtained by directly studying the symmetry
transformations in the K triv effective theory without resorting
to group cohomology.

4. SG = ZT P
2 ×ZT

2 � Z P
2 ×ZT

2 and SG = ZT P
2

As mentioned before, both T ,P send φm to −φm up to
phase shifts. These phase shifts are changing under gauge
transformation φm → φm + δ and are not well defined. But
their combination T · P should be treated as a unitary
transformation sending φm to φm up to a well-defined phase
shift, whose possible values are limited to 0 and π since
(T · P)2 = I assuming m particles have trivial symmetry

TABLE VI. The symmetry properties of the three nontrivial SPT
phases protected by SG = Zonsite

2 ×ZP
2 = {I,g}×{I,P}, together with

those of the corresponding SET phases before anyon condensations.

3-cocycle SET bulk SPT edge

ω[1,0] g : m† → −m†

e† → i · e†

P : m† → m

e† → e†

g : φv → φv + π

φb → φb + π

P : φv → −φv

φb → φb

ω[0,1] g : m† → −m†

e† → e†

P : m† → m

e† → i · e†

g : φv → φv + π

φb → φb

P : φv → −φv

φb → φb + π

ω[1,1] g : m† → −m†

e† → i · e†

P : m† → m

e† → i · e†

g : φv → φv + π

φb → φb + π

P : φv → −φv

φb → φb + π
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TABLE VII. The symmetry properties of the three nontrivial SPT
phases protected by SG = ZT P

2 ×ZT
2 	 ZP

2 ×ZT
2 = {I,P}×{I,T },

together with those of the corresponding SET phases before anyon
condensations.

3-cocycle SET bulk SPT edge

ω[1,0] P : m† → −m

e† → i · e†

T : m† → m†

e† → e

P : φv → −φv + π

φb → φb + π

T : φv → −φv

φb → φb

ω[0,1] P : m† → −m

e† → i · e†

T : m† → m†

e† → −i · e

P : φv → −φv + π

φb → φb + π

T : φv → −φv

φb → φb + π

ω[1,1] P : m† → −m

e† → e†

T : m† → m†

e† → −i · e

P : φv → −φv + π

φb → φb

T : φv → −φv

φb → φb + π

fractionalization. Using the anyon-condensation mechanism
(the Criterion) and the cocycles listed in Tables III and II,
one can straightforwardly obtain the three nontrivial SPT
phases protected by SG = ZT P

2 ×ZT
2 	 ZP

2 ×ZT
2 and the one

nontrivial SPT phase protected by SG = ZT P
2 = {I,T · P}.

After choosing a P symmetric edge along the x direction, we
list the results in Tables VII and VIII. One can easily check
that indeed the cosine terms cos(φv + χv) or cos(φb + χb) are
forbidden by symmetry, and the symmetry-allowed terms like
cos(2φv + χv) or cos(2φb + χb) would spontaneously break
the symmetry after gapping out the edge modes. These SPT
phases, to our knowledge, have not been pointed out before.

C. Possible realizations: SPT valence bond solids

Valence bond solids (VBS) can be realized in quantum spin-
1
2 model systems [36,44–46]. They spontaneously break the
lattice translational symmetry but preserve the spin-rotational
symmetry/time-reversal symmetry. The characteristic of a
VBS phase is the long-range bond-bond correlation function. It
is quite popular to visualize these phases as if the neighboring
spin- 1

2 ’s form static spin-singlet valence bond patterns, which
suggests that they may be adiabatically connected to a limit in
which the global wave functions are simply direct products of
all the valence bonds.

However, from a general point of view, this picture of
VBS may be misleading: the long-range bond-bond correlation
function does not imply that the wave function can be always
adiabatically connected to a direct product state. Motivated
by the examples studied in Table VII, below we propose new

TABLE VIII. The symmetry properties of the nontrivial SPT
phase protected by SG = ZT P

2 , and the SET phase before the anyon
condensation.

3-cocycle SET bulk SPT edge

ω1 T · P : m† → −m†

e† → −i · e

T · P : φv → φv + π

φb → φb + π

types of SPT-VBS phases protected by a mirror symmetry P
and the time-reversal symmetry T . In fact, it is even unclear
whether these SPT-VBS phases are already realized in existing
models featuring VBS phases.

One could understand a VBS phase in spin models with a
half-integer spin per unit cell by starting from a Z2 quantum
spin liquid (QSL) phase. Quite generally, in a Z2 QSL,
the e particles are the Kramers-doublet spinons, and the m

particles are the spinless visons. Namely, the fact that the e

particles are Kramers doublets basically comes for free. It
is well known that the half-integer spin per unit cell would
dictate that the visons have nontrivial translational symmetry
fractionalization. Consequently, condensing the visons would
break translational symmetry but preserve the spin-rotational
symmetry, resulting in a VBS phase. But, the VBS phase can
be still symmetric under certain mirror reflection. For instance,
the columnar VBS pattern on the square lattice is symmetric
under the mirror reflection around the line crossing the bond
centers along a column. The vison would certainly have trivial
symmetry fractionalization under the T and P defined here.

Let us particularly pay attention to the two SPT phases
characterized by ω[0,1] and ω[1,1] in Table VII. Before the m-
particle condensation, the corresponding two SET phases both
have Kramers-doublet e particles, and their difference lies in
the presence/absence of symmetry fractionalization of P . In
both cases, one could realize the corresponding SPT phases
by condensing the m particle (vison) which is odd under the
combination T · P: m† → −m.

Namely, whether the topological trivial VBS or the SPT-
VBS is realized completely depends on which vison is
condensed: the T · P even vison or the T · P odd vison.
This is an energetic question and one needs to numerically
measure this quantum number for the low-energy visons
near the condensation. However, as mentioned before, such
measurement is nontrivial to perform and we currently only
know how to do it using tensor-network-based algorithms (see
Sec. III C for details).

Note that although we propose the SPT-VBS phases using
the anyon-condensation mechanism from Z2 QSLs, one does
not have to realize the Z2 QSL in spin models in order to realize
the SPT-VBS phases. The anyon-condensation mechanism
is simply one route to ensure that SPT-VBS phase can be
obtained. As stable phases, SPT-VBS phases may be obtained
via other routes,3 or even first-order phase transitions, which
do not involve QSLs.

III. SYMMETRIC TENSOR-NETWORK
CONSTRUCTIONS IN (2+1)D

In this section, we develop a general formulation to
construct/classify (2+1)D cohomological bosonic SPT phases
protected by both onsite symmetries as well as spatial
symmetries by projected entangled pair states (PEPS). For

3For instance, the VBS phase in the context of the easy-plane
deconfined criticality is obtained by condensing magnetic vortices
coupling with a U(1) gauge field. It would be interesting to understand
whether the T · P quantum number discussed here can be generalized
to these vortexlike objects.
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FIG. 1. The Z2 symmetric wave function on the honeycomb
lattice. Each site contains three qubits. The six qubits around each
plaquette are all in the same spin state. The Z2 symmetry flips spins,
which acts as σx .

each class we provide generic tensor wave functions, which
are useful for numerical simulations.

A. A simple example: Z2 SPT

Before developing a general formulation, we will study
a simple example: the SPT phase protected by onsite Z2

symmetry [13].
Let us first focus on the fixed-point wave function of the

nontrivial Z2 SPT phase. Here, we follow the convention in
Ref. [47]. The system lives on a honeycomb lattice, where
each lattice site contains three qubits, as shown in Fig. 1 as
three circles. The six spin 1

2 ’s around a plaquette are either all
in the |0〉 state or all in the |1〉 state, forming Z2 domains. The
fixed-point wave function for the nontrivial Z2 SPT phase is

|ψ〉 =
∑
C

(−1)NC |C〉, (20)

where C denotes Z2 domain configurations and NC is the
number of domain walls in C.

The nontrivial SPT state can be represented with tensors
given in Fig. 2. A site tensor has six internal (virtual) legs,
where each internal leg represents a qubit. Here, we choose
tensors to be the same for both sublattices. Notice that a
physical leg and the two inner indices connected to it are

FIG. 2. The tensor state representing the nontrivial Z2 SPT wave
function defined in Eq. (20). An internal leg supports two-dimensional
Hilbert space. Physical states are labeled by numbers in the circle,
while virtual states are labeled by numbers at the end of internal legs.

FIG. 3. Symmetry conditions for the Z2 symmetric state. Here,
X is short for σx , and Wg (W−1

g ) denotes the associated gauge
transformation. For the wave function defined in Eq. (20), Wg =
|11〉〈00| + i|10〉〈01| + i|01〉〈10| + |00〉〈11|.

always in the same state. So, after contraction, physical legs
within one plaquette share the same state. Further, the extra
±i phase contributes −1 for each domain-wall loop. In this
way, one can easily check that the tensor-network state indeed
represents the wave function defined in Eq. (20).

It is instructive to see how the Z2 symmetry acts on local
tensors. A local tensor is not invariant under g action, but
the transformed tensor differs from the original one by some
gauge transformation on internal legs, labeled as Wg (W−1

g ), as
shown in Fig. 3. For tensors defined on Fig. 2, we obtain that

Wg = |11〉〈00| + i|10〉〈01| + i|01〉〈10| + |00〉〈11|. (21)

We point out here, Wg does not form a Z2 group. Instead, we
have

W 2
g = σz ⊗ σz. (22)

So, after applying Ising symmetry twice, we are left with
the σz action on all internal legs, and trivial action on all
physical legs. Notice, the σz action on every internal leg is
a special kind of gauge transformation, which leaves every
single tensor invariant, as indicated by tensor equations on
Fig. 4(a). This kind of gauge transformation forms a group,
named as the invariant gauge group (IGG). IGG is essential
for tensor-network constructions of nontrivial phases.

Here, IGG is a Z2 group since σ 2
z = I. In general, a

nontrivial Z2 IGG leads to the Z2 toric-code topological order
[48–50]. However, we claim that the Z2 topological order
is killed due to tensor equations in Fig. 4. To see this, we
first point out that a site tensor is invariant under single-leg
σ z action on internal legs of one plaquette. Notice that the
single-leg σz action anticommutes with Wg , while double-leg
σz ⊗ σz action commutes with Wg:

Wgσz = −σzWg. (23)

The physical meaning of the single-leg σz action is to create a
(topologically trivial) Z2 symmetry charge excitation. To see
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FIG. 4. (a) Gauge transformations which leave local tensors invariant. Here, Z is short for σz. (b) The condensation of visons carrying Z2

symmetry charge.

this, we first point out that action of Z2 symmetry g on a local
patch R is naturally defined as acting g on physical sites of R

and Wg on the boundary virtual legs of R. If R contains one
tensor with a single-leg σz action, we get an extra minus sign
due to Eq. (23), which is interpreted as a Z2 symmetry charge
inside R.

The fact that a site tensor is invariant under two single-leg
σz actions indicates the existence of a particular subgroup of
IGG, the “plaquette IGG,” whose elements only have nontrivial
action on internal legs within one plaquette. By multiplying
all nontrivial plaquette IGG elements of all plaquettes, we
recover the nontrivial element of the original Z2 IGG, which is
double-leg σz action on every internal leg. The decomposition
of IGG element into plaquette IGG elements is essential for
the construction of generic wave functions of SPT phases.

As we will see, the toric-code topological order is killed due
to the presence of the plaquette IGG. We put the system on a
torus. The topological degenerate ground states are captured
by inserting the noncontractible σz loops. Since every tensor
is invariant under two single-leg σz actions, the wave function
with noncontractible σz loop turns out to be the same as the
original wave function. So, there is no topological ground-state
degeneracy, and the state has no topological order.

The physical reason can be interpreted as vison (m)
condensation. A pair of m particles are created at two ends
of a double-leg σz ⊗ σz string. As indicated in Fig. 4(b), the
creation of a pair of bond states of Z2 symmetry charges and
visons leaves the wave function invariant. In other words, these
bound states (m particles carrying Z2 odd quantum number)
are condensed, thus killing the topological order.

There remains one question to be answered: What is the
SET phase (Z2 topological order with Z2 symmetry) before
condensation? To see this, let us reexamine Eq. (22): two Z2

symmetry defects Wg fuse to a vison, which means e carries
fractional Z2 quantum number and m has the trivial symmetry
fractionalization pattern.

Let us summarize the previous discussion. We start from
an SET phase with Z

g

2 topological order, where e particles
carry fractional Zs

2 quantum number, as indicated in Eq. (22).
Equation (23) tells us that the single-leg σz action creates
nontrivial Zs

2 symmetry charge.4 The plaquette IGG defined
on Fig. 4(a) leads to the condensation of visons carrying
nontrivial Z2 charges. In the following, we show that any
state satisfying these tensor equations is either a nontrivial Z2

SPT phase or a spontaneously symmetry-breaking phase in the
thermodynamic limit.

One way to see this is to gauge the Zs
2 symmetry. It is known

that gauging the nontrivial Zs
2 SPT phase gives us the double-

semion topological order [51]. Let us verify it in the tensor-
network formulation. As shown in Fig. 5, for the gauged Z2

SPT state, physical degrees of freedom live on links. The phys-
ical state on the link is determined by the “difference” of the
two internal legs. The Z2 symmetric condition for g and Wg in
Fig. 3 becomes a new IGG element, as indicated in Fig. 6. Simi-
lar to the ungauged theory, Wg also satisfies Eqs. (22) and (23).

According to Eq. (22), the gauged tensor state actually
holds an Z4 global IGG: {I,Wg,σz ⊗ σz,Wg · (σz ⊗ σz)}. Z4

flux, labeled as m0 (m†
0), is created at ends of Wg strings. And

ends of σz ⊗ σz strings are double-Z4 flux, labeled as m2
0. To

see the physical meaning of single-leg action of σz, we first
note that it is a self-boson. Braiding m0 around it, one obtains
π phase according to Eq. (23). So, the single-leg action of σz

corresponds to a double-Z4 charge e2
0. Due to the existence

4One may wonder whether the local Zs
2 charge of an m particle is

well defined since we can always attach e particle to the symmetry
defect Wg , which will change the result of local symmetry action
due to the nontrivial braiding phase between e and m. However, if
we always require that symmetry defects have the trivial symmetry
fractionalization pattern, quantum numbers of m particles are well
defined.
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FIG. 5. Tensors representing the double-semion fixed-point wave
function.

of nontrivial plaquette IGG elements, bound states of m2
0 and

e2
0 are condensed, as shown in Fig. 4(b). All other particles

sharing nontrivial braiding statistics with m2
0e

2
0 are confined.

Then, the remaining topological order can be determined by
the following table:

����������Charge
Flux

0 1 2 3
0 I × b ×
1 × s × s̄

2 b × I ×
3 × s̄ × s

Here, s and s̄ are semions and b is a self-boson. The fusion and
braiding rules of the remaining quasiparticles are the same as
the double-semion topological order. So, the condensed phase
holds a double-semion topological order.

Then, we conclude that the ungauged phase is the nontrivial
Z2 SPT. Notice that b boson may condense in the long
wavelength, thus killing the double-semion topological order.
In the ungauged theory, this corresponds to the spontaneously
symmetry-breaking phase.

B. General framework

Let us summarize what we have learned from the above
simple example. To construct the SPT state on tensor networks,
we require that

(i) the tensor network state is symmetric, as shown in
Fig. 3;

FIG. 6. IGG for double-semion topological order.

(ii) tensors have some nontrivial IGG structure, as shown
in Fig. 4;

(iii) the symmetry transformation rules and IGG elements
are interplaying with each other, as given in Eqs. (22) and (23).

We will follow the above strategy in this part and develop a
general framework for SPT phases on tensor networks. The
3-cohomology classification naturally emerges from tensor
equations.

1. Symmetries

Let us first discuss how to impose symmetries on tensor
networks [50,52–58]. We focus on the case where the state is a
one-dimensional (1D) representation of symmetry group SG:

g ◦ |�〉 = eiθg |�〉, ∀ g ∈ SG. (24)

Here, SG includes both onsite symmetries as well as lattice
symmetries.

Consider a PEPS state formed by site tensors. We assume
that for a symmetric PEPS state, the symmetry-transformed
tensors and the original tensors are related by a gauge
transformation [up to a U (1) phase factor]:

�gWgg ◦ T = T (25)

Here, T represents the tensor states with all internal legs
uncontracted, namely, T = ⊗

a T a , where Ta represents a
local tensor at site a. Wg is a gauge transformation, which
acts on all internal legs of the tensor network:

Wg =
⊗
(a,i)

Wg(a,i), (26)

where (a,i) labels a leg of site a. If legs (a,u) and (b,v) are
connected, according to the definition of gauge transformation,
Wg(a,u) · W t

g(b,v) = I. �g is a tensor-dependent U(1) phase.
In the following, we will focus on systems defined on an
infinite lattice, for which we can always absorb �g to Wg .
So, the symmetric condition for a tensor wave function can be
expressed as

Wgg ◦ T = T. (27)

To be more clear, we can write the above equation explicitly
as

[Wg(a,u)]αα′ · [Wg(a,v)]ββ ′ . . . g ◦ (
T a

uv...

)i

α′β ′...

= (
T a

uv...

)i

α′β ′..., (28)

where Ta labels a tensor at site a, and u,v . . . labels legs of
tensor T a .

2. Invariant gauge group

The invariant gauge group (IGG) is a subgroup of gauge
transformations, whose element leaves every tensor, or equiv-
alently the tensor state before contraction (T), completely
invariant [48–50]. Notice that a general gauge transformation
only leaves the physical wave function invariant, while
could transform the site tensors nontrivially. To make the
discussion below clear, we denote any element in IGG as
a global IGG element since by definition this element is a
gauge transformation involving all virtual legs on the tensor
network.
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FIG. 7. (a) An example of the plaquette IGG element λp . (b) The plaquette IGG element formed by complex number χ and χ−1. This kind
of plaquette IGG exists for any PEPS state. (c) A site tensor lives on the subspace which is invariant under action of IGGs. Here, p1,p2,p3,p4

are four neighboring plaquettes around the tensor and α,β,γ,δ denote legs of the tensor. The last equation indicates that a global IGG element
is obtained from multiplication of plaquette IGG elements.

We also introduce a special type of IGG element, the
plaquette IGG element λp, where λp acts nontrivially only
on internal legs of plaquette p, as shown in Fig. 7(a). The
plaquette IGG is a generalization of the single leg action of σz

in Fig. 4. For any given plaquette p, the collection of plaquette
IGG elements {λp} acting on p forms a subgroup of IGG. To
construct SPT, we further assume that any global IGG element
can always be decomposed into the product of plaquette IGG
elements, λ = ∏

p λp. Namely, plaquette IGG elements can
generate the full IGG.

For SPT tensor wave functions, we have assumed that the
decomposition from a global IGG element to the product of
plaquette IGG elements always exists. One may ask whether
the decomposition is unique. The answer is no. To see this, we
consider the decomposition of the trivial action I on all internal
legs. There is a special kind of plaquette IGG element: for
every plaquette λl = λu = λr = λd = χ , where χ is a complex
number, as shown in Fig. 7(b). We also label this IGG element
as χp. Then,

∏
p χp = I. We assume that this is the only way to

decompose I. Notice that the identity
∏

p χp = I directly leads
to the fact that the phase factor χ in any plaquette is the same.
So, for any global IGG element, there is only one global phase
ambiguity to decompose into the plaquette IGG elements λp

reads as

λ =
∏
p

λp =
∏
p

χpλp. (29)

It turns out that this phase ambiguity is essential to get SPT
phases, and naturally gives 3-cohomology classification.

3. Cohomology from symmetry equations on PEPS

For group elements g1,g2, we have

T = Wg1g1Wg2g2 ◦ T = Wg1g2g1g2 ◦ T. (30)

Since Wg1g1Wg2g2 and Wg1g2g1g2 only differ by a gauge
transformation, they both leave T invariant. So, they should
differ up to an IGG element, which we label as λ(g1,g2),

Wg1g1Wg2g2 = λ(g1,g2)Wg1g2g1g2, (31)

which generalizes Eq. (22). According to associativity

(Wg1g1Wg2g2)Wg3g3 = Wg1g1(Wg2g2Wg3g3), (32)

we get

λ(g1,g2)λ(g1g2,g3) = Wg1 g1λ(g2,g3)λ(g1,g2g3), (33)

where we define ab ≡ aba−1. Particularly, for a leg i, we have

( Wggλ)(i) = Wg(i) · λs(g)[g−1(i)][Wg(i)]−1, (34)

where s(g) is complex conjugate if g contains time-reversal
action.

One can decompose λ’s into λp’s, and due to the phase
ambiguity (29), λp’s satisfy

λp(g1,g2)λp(g1g2,g3)

= ωp(g1,g2,g3) Wg1 g1λp(g2,g3)λp(g1,g2g3), (35)

where ωp(g1,g2,g3) is the phase IGG satisfying I =∏
p ωp(g1,g2,g3).
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In Appendix B, we prove ωp satisfies the 3-cocycle
condition

ωp(g1,g2,g3)ωp(g1,g2g3,g4) g1ωp(g2,g3,g4)

= ωp(g1g2,g3,g4)ωp(g1,g2,g3g4), (36)

and ωp is defined up to a coboundary

ωp(g1,g2,g3) ∼ ωp(g1,g2,g3)
χp(g1,g2)χp(g1g2,g3)

g1χp(g2,g3)χp(g1,g2g3)
. (37)

The action of g on ωp (χp) follows a very simple rule:
for a leg i, we have (gωp)(i) = ω

s(g)
g−1(p)[g

−1(i)], where s(g) is
complex conjugate if g contains time reversal. Then, consider
ωp, we have

(i) for unitary onsite symmetry g, gωp = ωp’
(ii) for time-reversal symmetry T , Tωp = ω∗

p;
(iii) for translation and/or rotation symmetry Ti and Ci ,

Tiωp = Ciωp = ωp;
(iv) for reflection symmetry σ , σωp = ω−1

p .

4. Methods to construct generic SPT tensor wave functions

Now, we have developed a general way to write tensor
equations for SPT phases: Eqs. (31), (33), and (35). The next
step is to answer the following question: Given a symmetry
group SG and a cohomology class [ω], how do we construct
generic SPT wave functions from tensor equations? This
problem actually can be decomposed to three parts:

(1) Figure out the group structure for λ’s, λp’s, and Wg’s
to realize the SPT phase.

(2) Obtain the representation of the IGG and symmetry on
tensor networks.

(3) Find subspace of tensors, which are invariant under
IGG action on internal legs as well as symmetry actions on
both physical legs and virtual legs.

The second and the third parts are relatively easy to solve,
and we give examples in Sec. III E. Here, we focus on the first
part, and we provide two methods in the following.

The first way is to start from exact solvable models. If there
exists an exact solvable model realizing some SPT phase, one
can construct a fixed-point wave function by PEPS. Then, one
can extract tensor equations as well as the group structure for
λ’s, λp’s, and Wg’s. For example, as we show in Sec. III A, to
realize a nontrivial Zs

2 SPT, λ’s form a Z
g

2 group. λp’s form
group Z2×U(1) for any plaquette p. And Wg is a projective
representation with coefficient in Z2, which anticommutes
with nontrivial λp.

Notice that the group structure for IGG and Wg does not
depend on whether SG is onsite or spatial. So, we are also able
to figure out IGG and Wg for spatial SPT phases. For example,
as we will show in Sec. III E, for the nontrivial inversion SPT
phase, λ’s form a Z

g

2 group, which is the same as the case for Zs
2

onsite SPT phase. The only difference is that for the inversion
SPT and Z2 onsite SPT, the IGGs have distinct representations
on internal legs.

For every SPT phase protected by a discrete symmetry
group and also some SPT phases protected by continuous
symmetry groups, one can write exact solvable models. So,
one is able to realize those generic SPT wave functions by
tensors.

The second way is related to a mathematical object named
as crossed module extensions. It is known in mathematical
literatures that crossed module extensions of SG by U(1) are
classified by H 3[SG,U(1)]. And as we show in Appendix B,
our tensor constructions can be viewed as a representation
of crossed module extensions. So, given a crossed module
extension, we are able to figure out the group structure for
IGG and Wg’s.

C. A by-product: General anyon-condensation mechanism
for realizing SPT phases

Using the above results, here we prove the Criterion of the
anyon-condensation mechanism. We will start from an SET
phase with discrete Abelian topological order and condense m

particles to confine the gauge field, and demonstrate the Crite-
rion to realize SPT phases. For the purpose of presentation, we
will consider ZN topologically ordered SET phases with the
symmetry group SG, but one can straightforwardly generalize
the discussion below for SET phases with any discrete Abelian
gauge groups ZN1×ZN2 . . . .

In order to represent a regular ZN topological order in
the tensor-network formulation, one needs to introduce a
nontrivial global IGG [48–50], labeled as H . In particular,
there is a nontrivial global IGG element J ∈ H satisfying
JN = I, and representing the ZN gauge transformation. Here,
J is nontrivial means that it is not U(1)-phase multiplications
on the virtual legs. A J string is interpreted as a ZN flux line,
while the ZN gauge flux and its antiparticle are created at two
ends of the J string. Aside from the nontrivial ZN IGG, there
is always “trivial” IGG X, whose elements are loops of phases.
So, we start from tensor states with an Abelian IGG H×X.

In the presence of symmetry SG and IGG H×X, the tensor
equations read as

Wg1g1Wg2g2 = ξ (g1,g2)η(g1,g2)Wg1g2g1g2, ∀ g1,g2 ∈ SG,

(38)

where ξ (g1,g2) ∈ X, and η(g1,g2) ∈ H . ξ ’s and η’s both
satisfy the 2-cocycle condition

ξ (g1,g2)ξ (g1g2,g3) = g1ξ (g2,g3)ξ (g1,g2g3),

η(g1,g2)η(g1g2,g3) = Wg1 g1η(g2,g3)η(g1,g2g3). (39)

We point out that η’s label the symmetry fractionalization
pattern of ZN charges.

How about the symmetry properties for fluxes? To see
this, let us study the symmetry action on ZN flux line
J : WggJ ∈ H×X. Since we are studying phases featuring
symmetry fractionalizations, we require that the anyon types
are invariant under symmetry action:

WggJ = χJ (g) · J, (40)

where χJ (g) ∈ X, and [χJ (g)]N = 1. Further, χJ : SG → ZN

is a representation of SG since
Wg1 g1Wg2 g2J = χJ (g1) g1χJ (g2) · J

= ξ (g1,g2)η(g1,g2)Wg1g2 g1g2J = χJ (g1g2) · J, (41)

where we use the fact ξ (g1,g2)η(g1,g2) commute with J . So,

χJ (g1g2) = χJ (g1) g1χJ (g2). (42)
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Notice that both time reversal T and reflection P should be
treated as antiunitary operations.

To proceed, we point out that the building blocks for X are
plaquette phase IGGs:

χ =
∏
p

χp, ∀ χ ∈ X. (43)

Here, χp ∈ Xp, where Xp ⊂ X is the plaquette IGG of p,
whose elements are loops of phases along virtual legs of
plaquette p. As before, the decomposition to plaquette phase
IGG elements has a single-phase ambiguity:

χ =
∏
p

χp =
∏
p

εpχp. (44)

Here, εp(i) = ε±1, where ±1 pattern follows as Fig. 7(b).
Then, according to Eqs. (42) and (44), we obtain

χp,J (g1) g1χp,J (g2) = ωp,J (g1,g2)χp,J (g1g2), (45)

where ωp,J (g1,g2)(i) = ωJ (g1,g2)±1. Because χJ (g)N = 1,
clearly phase factors χp,J (g) and ωp,J (g1,g2) can be chosen
to be ZN elements. It is straightforward to check that ωp,J

satisfies the 2-cocycle condition

ωp,J (g1,g2)ωp,J (g1g2,g3) = g1ωp,J (g2,g3)ωp,J (g1,g2g3).
(46)

It turns out that ωJ (g1,g2) ∈ ZN labels the symmetry fraction-
alization pattern of ZN fluxes.

For onsite symmetries, we can restrict to one internal
leg i. Then, Eq. (45) becomes a relation for phase fac-
tors. We can always tune ωp,J to be trivial by redefining
χp,J (g) → εJ (g)χp,J (g). In other words, onsite symmetry
fractionalization patterns for fluxes are always trivial for the
case IGG equals H×X. Notice, fluxes can carry fractional
spatial symmetry quantum numbers in general.

Now, let us derive the Criterion to obtain SPT phases
by condensing fluxes. In this tensor formulation, we require
nontrivial plaquette IGG for every plaquette. The plaquette
IGG for p is labeled as Hp×Xp.

To kill the topological order, we require the decomposition
of J as

J =
∏
p

Jp =
∏
p

εpJp, (47)

where Jp is a nontrivial plaquette IGG element for plaquette
p. Again, the decomposition has a U(1) ambiguity εp,J . As
shown in Fig. 7(d), the bound state of ZN fluxes and Jp is
condensed according to the above equation. Notice that there
is a canonical choice for Jp such that JN

p = I . So, we can
choose Hp

∼= ZN , and Hp×Xp is an Abelian group. Further,
as we prove in Appendix B, elements of plaquette IGG for
different plaquettes commute. Thus, we conclude the whole
IGG is Abelian.

To see the symmetry action on Jp or, equivalently, the
symmetry quantum number carried by Jp, we have

WggJ =
∏
p

WggJp = χJ (g) · J =
∏
p

χp,J (g)Jp. (48)

Due to the U(1) ambiguity, we conclude
WggJp = εp,J (g)χp,J (g)Jp. (49)

We further have

Wg1 g1Wg2 g2Jp

= εp,J (g1)χp,J (g1) g1εp,J (g2) g1χp,J (g2) · Jp

= ξ (g1,g2)η(g1,g2)Wg1g2 g1g2Jp = εp,J (g1g2)χp,J (g1g2) · Jp,

(50)

where we use the fact that ξη commutes with Jp. Comparing
with Eq. (45), we conclude

ωp,J (g1,g2) = εp,J (g1g2)

εp,J (g1) g1εp,J (g2)
(51)

is a 2-coboundary. Namely, in this tensor formulation,
symmetry-preserving flux condensation requires fluxes to have
no symmetry fractionalization.

In the following, we focus on a simple case:

χJ (g) = 1, ∀ g ∈ SG. (52)

If instead χJ (g) is nontrivial phase factor for symmetry g, the
quantum number carried by the flux will depend on the details
of the region of local-symmetry action as well as the flux string
configuration. Although this situation is not violating basic
principles, it is rather unlikely in usual models. In addition,
the main purpose of this section is to derive the Criterion
for anyon-condensation mechanism, where we assume the
quantum numbers of the flux are independent of the details
of local symmetry action. Consequently, in this section, we
do not consider this situation and focus on the cases given by
Eq. (52).

We choose a canonical gauge such that JN
p = I , and ηp =

Jm
p for η = Jm, ∀ m. In particular, we have

ηp · η′
p = (η · η′)p. (53)

Then, according to Eq. (39), we have

ηp(g1,g2)ηp(g1g2,g3) = ηp(g2,g3)ηp(g1,g2g3). (54)

Let us define

ω1(g1,g2,g3) =
Wg1 g1ηp(g2,g3)ηp(g1,g2g3)

ηp(g1,g2)ηp(g1g2,g3)

=
Wg1 g1ηp(g2,g3)

ηp(g2,g3)
, (55)

which is the quantum number of condensed fluxes. We also
define

ω2(g1,g2,g3) =
Wg1 g1ξp(g2,g3)ξp(g1,g2g3)

ξp(g1,g2)ξp(g1g2,g3)
. (56)

Following Appendix B, one can prove ω1 and ω2 are both
3-cocycles. The obtained SPT phase is characterized by [ω] =
[ω1][ω2], where [. . .] means equivalent class up to coboundary.
Notice that even before anyon condensation (without nontrivial
plaquette IGG Hp), ω2 is still present: it is “background” SPT
index unaffected by anyon condensation. However, because
ω2 is obtained from the algebra of phase factors (instead of
matrices), ω2 can be nontrivial only due to spatial translational
symmetries (i.e., ω2 is only describing weak SPT indices).
The strong SPT indices can only appear due to ω1. So, we
have proved the Criterion as in Sec. II.
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FIG. 8. Measurement of the quantum number χm0 (g) carried by an m particle for a local unitary symmetry g. According to Eqs. (40)
and (52), J commute with Wg , so we conclude that the quantum number is obtained by χm0 (g)Jp = WggJp .

D. Algorithms to measure anyon quantum numbers

It would be useful to be able to numerically measure the
quantum numbers carried by the low-energy m particles inside
the SET phase near the condensation phase transition. Such
measurements, together with the Criterion, would allow one
to predict the nature of the resulting symmetric phases. Now,
let us present several “conceptual” algorithms to measure
these quantum numbers. Although these algorithms could
be implemented in the existing tensor-network algorithms
[59] to practically measure these quantum numbers, here our
focus is mainly to clarify conceptual issues. In particular,
the quantum numbers introduced in the previous section may
appear somewhat formal, and it would be ideal to explicitly
demonstrate their measurable meanings.

We again focus on ordinary ZN gauge theories. As
discussed before, the two ends of an open string created by a
sequence of J operations on the virtual bonds actually describe
an elementary m particle (coined m0) and its antiparticle
(coined m

†
0). In order to simulate the low-energy excitations

within the topological sectors corresponding to m0 and m
†
0,

one needs to further variationally optimize the tensors over
finite regions (about correlation-length size) near the centers
of these m particles. Namely, a low-energy excitation state
|�ex〉 hosting m0 and m

†
0 quasiparticles is obtained by only

modifying these local tensors (coined excited-state local
tensors) while leaving all other tensors in the network (coined
ground-state local tensors) the same as the ground state (apart
from multiplying a sequence of J operations on the string).

Our basic scheme is to use the symmetry transformation
rules on the ground-state local tensors to obtain the symmetry
properties of m0 and m

†
0. Let us start from discussing the

measurement of the quantum number of an onsite unitary
symmetry g ∈ SG, as shown in Fig. 8. For example, let us focus
on m0. The local action of g on m0 is described by applying
Wg on a loop of virtual legs enclosing m0 (but not enclosing
m

†
0), together with applying the physical transformation g on

the physical legs inside the region enclosed by the Wg loop.
Physically, such a tensor-network operation corresponds to
braiding a g-symmetry defect (described by the end point of the
Wg string) around m0. It turns out that the condition WggJ = J

[i.e., Eqs. (40) and (52)] dictates that the g-symmetry defect
itself has no symmetry fractionalization. It also dictates that
the m0 is transformed by this local action back to the same
topological sector.

Now, quantum number carried by m0: χm0 (g) has direct
measurable meaning. After applying the local action of g on

m0, one obtains a new physical state |� ′
ex〉, corresponding

to applying symmetry g only on m0 but not on m
†
0. Due

to symmetry, |� ′
ex〉 can at most differ from |�ex〉 by a

phase factor, which is exactly the measurable meaning of
χm0 (g). Note that the variationally determined excited-state
local tensors around m0 only introduce a common global
phase ambiguity in the physical state |�ex〉 and |� ′

ex〉, and
consequently not affecting their relative phase χm0 (g).

Similar discussion can be naturally extended to rotational
spatial symmetries, which can be treated as unitary operations.
The only modification is that one needs to choose the position
m0 to be invariant under the rotations in order to respect these
symmetries.

The more interesting and nontrivial situation is the time
reversal T and mirror reflection P . It is straightforward
to show that the assumptions (40) and (52) lead to the
following transformation rules: T : e → e†,m → m, and P :
e → e,m → m†. In addition, the quantum numbers χm(g)
should be treated as an element in H 1(SG,ZN ) but with T
and P acting antiunitarily on ZN . However, their combination
T · P should be treated as unitary and the corresponding
quantum number is sharply measurable. Below, we present
such an algorithm, which is depicted in Fig. 9.

Let us choose the positions of m0 and m
†
0 to be P image

of each other. For example, we will consider the situation
that m0 (m†

0) is located in the left (right) half of the sample,
and the mirror is the vertical line. Consequently, |�ex〉 is T ·
P symmetric. Our goal is to measure the quantum number
χm0 (T · P). This quantity may appear to be strange because
we know that the combination T · P would send m0 to m

†
0,

a different quasiparticle. But, it turns out that this is exactly
what is required to sharply measure χm0 (T · P).

Similar to previous examples, our plan is to apply T · P
only on m0 and obtain a new excited physical state |� ′

ex〉. But
because of the nature of P , the |� ′

ex〉 should be obtained by
gluing (i.e., contracting virtual legs) between the original left
half of the tensor network with the T · P transformed left-half
tensor network (which is now on the right half). Specifically,
the T · P transformed left-half tensor network is obtained
by transforming the physical legs of the left half via T · P ,
together with applying WT T · WP · T −1 on all the virtual legs
cut by the mirror line. The procedure to obtain |� ′

ex〉 is shown
in Fig. 9(b).

If one naively uses the phase difference between this |� ′
ex〉

and |�ex〉 to measure χm0 (T · P), one will find that it is not
well defined. The reason is that the global phase factor of
|�ex〉 is not properly chosen yet. In order to sharply measure
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FIG. 9. (a) The procedure to create |�ex〉 which is T · P invariant.
One first creates a pair of m0 and m

†
0 from ground state, and then

move away from each other. The global phase of |�ex〉 by requiring
the wave-function overlap between adjacent states to be real and
positive. (b) |� ′

ex〉 is obtained by gluing between the original left
half of the tensor network with the T · P transformed left-half tensor
network. The T · P transformed left-half tensor network is obtained
by transforming the physical legs of the left half via T · P , together
with applying WT T · WP · T −1 on all the virtual legs cut by the
mirror line. χm0 (T · P) is defined as phase difference between |�ex〉
and |� ′

ex〉.

χm0 (T · P), one needs to fully determine the global phase
factor of |�ex〉 relative to the ground state in the following
sense. In order to construct |�ex〉, one can imagine to first
create a pair of m0 and m

†
0 near each other, and then further

move them away from each other to a large distance, while
maintaining T · P over the whole process, as shown in
Fig. 9(a). This process would create a sequence of states,
with ground state as the first one and |�ex〉 as the last one.
The global phase factor of |�ex〉 is determined by requiring
the wave-function overlap between adjacent states in this
sequence to be positive and real.

Because the global phase factor of |�ex〉 is fixed, the only
ambiguity in the tensor-network construction of |�ex〉 is a
global phase factor eiθ on the left half and e−iθ on the right
half. But, this relative phase ambiguity would not affect the
phase difference between this |� ′

ex〉 and |�ex〉 discussed above.
Namely, the phase difference between this |� ′

ex〉 and |�ex〉 is
now sharply measurable, which is nothing but χm0 (T · P).

E. Examples

We present some explicit examples for the (2+1)D SPT.
Let us consider square lattice with a d = 2 qubit on each site.
For simplicity, we will focus on the case where all tensors are
translationally invariant. We label the legs of a site tensor as
α,β,γ,δ, and plaquette IGG elements act as λl,λu,λr ,λd , as
shown in Fig. 7.

1. SPT phases protected by inversion symmetry

Consider nontrivial SPT phases protected by inversion
symmetry I. According to the discussion in the previous
part, the inversion-protected SPT phases are classified by
H 2[ZI

2 ,U(1)] = Z2. Namely, there is only one nontrivial
phase.

We start with a tensor network with Z2 global IGG {I,λ}.
Tensor equations for this nontrivial SPT phase are

WII · WII = λ,

WIIλp = −λp, (57)

where λp is the plaquette IGG element. For a single-leg action,
we have

IWI (i) = W t
I [I(i)], i = α,β,γ,δ

Iλj = λt
I(j ), j = l,u,r,d. (58)

Here, due to translational invariance, we define λj �
λp(j ), ∀ p.

The simplest solution requires internal bond dimension
D = 6. IGG elements are represented as

λ = σ0 ⊕ (−σ0 ⊗ σ0),

λl = λu = σz ⊕ (σz ⊗ σz),

λr = λd = σz ⊕ (−σz ⊗ σz) (59)

and the inversion operation on internal legs is

WI (i) = σx ⊕ (σy ⊗ σx). (60)

Now, let us determine the constraint Hilbert space for the
nontrivial SPT phase. As shown in Fig. 7(c), we require
that the single tensor lives in the subspace which is invariant
under action of plaquette IGG elements, where the nontrivial
plaquette IGG element in Eq. (59). Further, we require the
single tensor to be inversion symmetric: WII ◦ T a = T a ,
where WI is given in Eq. (60). Then, by solving these
linear equations, we obtain a DI = 74 dimensional (complex)
Hilbert space. We point out that the original Hilbert space for
a site tensor is dD4 = 2592 dimensional.

It is also straightforward to check that the only nontrivial
cocycle phase is ω(I,I,I) = −1, which cannot be tuned away.

2. SPT phases protected by time-reversal
and reflection symmetries

Now, we study a more interesting example: 2D SPT phases
protected by ZP

2 ×ZT
2 (reflection and time-reversal) symmetry.
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The four group elements are {I,P ,T ,PT }, where T = σxK
and P is the reflection along the y axis. As we mentioned
above, both P and T should be treated as “antiunitary” action.
Then, PT should be treated as a unitary action. Namely, we
have

H 3
[
ZP

2 × ZT
2 ,U(1)

]= H 3
[
Z2 ×ZT

2 ,U(1)
]= Z2 × Z2. (61)

The tensor equations for these SPT phases are

WT T WT T = λ(T ,T ),

WP PWP P = λ(P,P ),

WP PWT T = WT T WP P,

WP PWT Tλp = −λp, (62)

where λ(T ,T ),λ(P,P ) belongs to the global Z2 IGG. Different
choice of λ’s gives different SPT phases.

By definition, the actions of symmetry on W ’s and λ’s are

TWR(i) = W ∗
R(i),

PWR(α/γ ) = W t
R(γ /α) = [

W−1
R (α/γ )

]t
,

PWR(β/δ) = WR(β/δ) (63)

as well as

Tλj = λ∗
j ,

Pλl/r = λ−1
r/ l,

Pλu/d = (
λ−1

u/d

)t
. (64)

To realize these SPT phases, we start from D = 6 PEPS.
Without any constraint, a single tensor lives in a dD4 = 2592
dimensional (complex) Hilbert space. IGG elements are
chosen as

λ = σ0 ⊕ (−σ0 ⊗ σ0),

λl = σz ⊕ (σz ⊗ σz), λr = σz ⊕ (−σz ⊗ σz),

λu = σz ⊕ (σz ⊗ σ0), λd = σz ⊕ (−σz ⊗ σ0). (65)

In the following, we discuss each class in Z2×Z2 sepa-
rately.

(1) λ(T ,T ) and λ(P,P ) are both trivial. We get a trivial
symmetric phase in this case.

(2) λ(T ,T ) = I, λ(PT ,PT ) is nontrivial. Time-reversal
and reflection symmetries on internal legs are represented as

WT (i) = σx ⊕ (σx ⊗ σ0),

WP (α) = WP (β) = σ0 ⊕ (σ0 ⊗ iσy),

WP (γ ) = WP (δ) = σ0 ⊕ [σ0 ⊗ (−iσy)]. (66)

The constrained subspace is an 80-dimensional real Hilbert
space.

(3) λ(P,P ) = I, λ(T ,T ) is nontrivial. Time-reversal and
reflection symmetries are represented as

WT (α) = WT (β) = σx ⊕ (iσy ⊗ σ0),

WT (γ ) = WT (δ) = σx ⊕ (iσy ⊗ σ0),

WP (i) = σ0 ⊕ (σ0 ⊗ σx). (67)

The constrained subspace is an 88-dimensional real Hilbert
space.

(4) λ(T ,T ) and λ(PT ,PT ) are both nontrivial. Time-
reversal and reflection symmetries are represented as

WT (α) = WT (β) = σx ⊕ (iσy ⊗ σ0),

WT (γ ) = WT (δ) = σx ⊕ (−iσy ⊗ σ0),

WP (α) = WP (β) = σ0 ⊕ (iσ0 ⊗ σy),

WP (γ ) = WP (δ) = σ0 ⊕ (−iσ0 ⊗ σy). (68)

The constrained subspace is an 80-dimensional real Hilbert
space.

3. Weak SPT phases protected by lattice group

In this part, we consider the interplay of translation with
point group. It is known that in the presence of translation, there
are more SPT phases, which are named as weak indices [60].
In Ref. [61], the authors find that weak indices can be elegantly
incorporated into the cohomology formulation by treating
translation in the same way as the onsite symmetry. Weak
indices can be explicitly calculated using Künneth formula. In
(2+1)D, assuming the symmetry group SG = Z2×G, where
Z2 denotes translational symmetry on the plane, the formula
reads as

H 3[Z2 × G,U(1)] = H 3[G,U(1)] × (H 2[G,U(1)])2

× H 1[G,U(1)], (69)

where H 3[G,U(1)] classify the strong indices, (H 2[G,U(1)])2

are weak indices capturing (1+1)D SPT phases, and
H 0[G,U(1)] simply capture different charges in a unit cell.

In our tensor construction of SPT phases, we show that it
is indeed natural to treat lattice symmetry in the same way
as onsite symmetry. Not surprising, the interplay between
translation and point group leads to new “weak SPT” phases.

Let us consider a spin system in a honeycomb lattice, as
shown in Fig. 10. In Ref. [25], the authors obtain four classes
of featureless insulators, which can be captured by two Z2

indices χC6 and χσ . The Z2×Z2 classification can actually be
understood as weak indices, which comes from the interplay
between C6, σ and translation T1, T2. We leave the detailed
calculation in Appendix D.

FIG. 10. (a) The honeycomb lattice and generators of the lattice
symmetry group. u,v label sites while a,b,c label bonds in one
unit cell. (b) The IGG element formed by phases. We require
χa · χb · χc = 1.
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IV. SPT PHASES IN (3+1)D

It is natural to generalize tensor construction of SPT phases
to (3+1)D. Before going into these higher dimensions, we
would like to mention that in Appendix A we go to the lower
dimensions and prove our results on (1+1)D SPT.

As the same in (2+1)D, the symmetric tensor condition
reads as

Wgg ◦ T = T (70)

where T labels the (3+1)D tensor network before contraction,
and Wg is the gauge transformation associated to symmetry g.

Then, Wgg satisfies the group multiplication rules up to an
IGG element:

Wg1g1Wg2g2 = λ(g1,g2)Wg1g2g1g2. (71)

Due to associativity, λ(g1,g2) satisfies the 2-cocycle condition

λ(g1,g2)λ(g1g2,g3) = Wg1 g1λ(g2,g3)λ(g1,g2g3). (72)

In general, the nontrivial IGG leads to nontrivial topological
order in (3+1)D. In order to kill the topological order, we
introduce cubic IGG {λc}, where λc only acts nontrivially on
the internal legs of cubic c. We further assume any IGG element
λ can be decomposed to product of cubic IGG elements:

λ =
∏

c

λc. (73)

Let us discuss the uniqueness of the above decomposition. We
introduce the plaquette IGG {ξp}, which acts nontrivially only
on legs belonging to plaquette p. Then, we can define a special
kind of cubic IGG {ηc}, where any ηc can be decomposed as
multiplication of plaquette IGG elements

ηc =
∏
p∈c

ξ c
p. (74)

If we further require ξc1
p = (ξc2

p )−1 for p = c1 ∩ c2, then, we
get the decomposition of I as

I =
∏

c

ηc. (75)

In other words, the decomposition of a given IGG element λ

is not unique. We can always attach such kind of ηc to get
new decomposition. Then, roughly speaking, the cubic IGG
element λc(g1,g2) should satisfy a “twist” 2-cocycle condition,
where the “twist factors” take value in {ηc}.

We can further prove ηc(g1,g2,g3) satisfies condition
similar to 3-cocycles. We notice that the decomposition of ηc to
plaquette IGG elements ξp’s is also not unique; we can always
attach some phase factor to ξp such that the multiplication of
ξp is invariant. Then, ξp should satisfy a “twist” 3-cocycle
equation, where the “twist factor” is labeled as ωp. As shown
in Appendix E, through some tedious calculations, we prove
that ωp satisfies the 4-cocycle condition, where time-reversal
and/or reflection symmetries are treated as antiunitary:

ωp(g1,g2,g3,g4)ωp(g1,g2,g3g4,g5)ωp(g1g2,g3,g4,g5)

= g1ωp(g2,g3,g4,g5)ωp(g1,g2g3,g4,g5)ωp(g1,g2,g3,g4g5)
(76)

and ωp are defined up to coboundary

ωp(g1,g2,g3,g4)

∼ ωp(g1,g2,g3,g4)

× χp(g1,g2,g3) · χp(g1,g2g3,g4) · g1χp(g2,g3,g4)

χp(g1g2,g3,g4) · χp(g1,g2,g3g4)
.

(77)

V. DISCUSSION

In summary, by using tensor networks, we develop a general
framework to (partially) classify bosonic SPT phases in any
dimension, as well as construct generic tensor wave functions
for each class. We find that for a general symmetry group
SG, which includes both onsite symmetries as well as lattice
symmetries, the cohomological bosonic SPT phases can be
classified by Hd+1[SG,U(1)], where d + 1 is the space-time
dimension. Here, time-reversal and reflection symmetries
should be treated as antiunitary. An important by-product is
a generic relation between SET phases and SPT phases: SPT
phases can be obtained from SET phases by condensing anyons
carrying integer quantum numbers.

This work leaves several interesting future directions. On
the conceptual side, it is known there are bosonic SPT phases
beyond group cohomology classification. Famous examples
include time reversal [16,62,63] (or reflection [21]) SPT
phases in (3+1)D, which has a Z2×Z2 classification. However,
group cohomology only captures a Z2 class: H 4[ZT

2 ,U(1)] =
H 4[ZP

2 ,U(1)] = Z2. The other Z2 is beyond our framework.
It would be interesting to understand whether our framework
can be further generalized to capture this missing index.

It is also interesting to generalize our formulation to
construct generic wave functions for topological ordered
phases as well as SET phases. We first point out that it is
straightforward to “(dynamically) gauge” the onsite unitary
discrete symmetries on tensor networks [64]. Tensor networks
invariant under symmetry g satisfy the tensor equation T =
Wgg ◦ T. By gauging symmetry g, the new tensor equation
becomes T = Wg ◦ T, where Wg is interpreted as gauge flux.
Namely, for topological phases, we require additional global
IGG elements, which cannot be decomposed into plaquette
IGG elements. By gauging onsite unitary symmetries of SPT
phases [51], we are able to write generic wave functions
for Dijkgraaf-Witten type [65] of topological ordered phases.
Similarly, some SET phases can be obtained by gauging part
of the symmetries [28,29,66,67].

As shown in Refs. [24,68], the SPT phases protected by
onsite symmetries can also be classified by MPO injective
PEPS. It would be interesting to see the connection between
these two approaches.

As conjectured in Ref. [69], all topological ordered phases
in (2+1)D with gapped boundaries can be realized by exactly
solvable models, string-net models, which have natural PEPS
representations [70–75], and are described by tensor equations
involving matrix product operators rather than gauge transfor-
mations. Our formulation is incapable to construct string-net
models beyond the cohomological classes, such as the double
Ising theory. Can we generalize our formulation to capture
all string-net models? In addition, it would be interesting to

125107-18



ANYON CONDENSATION AND A GENERIC TENSOR- . . . PHYSICAL REVIEW B 95, 125107 (2017)

generalize our formulation to fermionic cases using fermionic
tensor network [76–82]. We leave all these questions to future
work.

On the practical side, it would be interesting to perform
variational numerical simulations based on the symmetric
tensor-network wave functions proposed here, and to test their
performance. In particular, efficient gradient-based variational
algorithms on tensor-network wave functions have been
proposed [83], which are exactly suitable to carry out these
simulations.
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APPENDIX A: SPT PHASES IN (1+1)D

In this Appendix, we rederive the classification of 1D
SPT [8,9,11,84] using the formulation we set in the main
text. In particular, it is clear that time-reversal and reflection
symmetries act nontrivially on the 2-cohomology phase.

Consider an infinite MPS state with symmetry SG, then
we can express the symmetric condition for a local tensor as
(see Fig. 11)

T = Wgg ◦ T, (A1)

where T represents a tensor network before contraction, g ∈
SG, and Wg is the gauge transformation associated with g.

Now, let us identify the IGG element. A single tensor is
invariant if we multiply a phase χ to its left leg and χ∗ to its
right leg. Therefore, we at least have a U(1) IGG for a generic
MPS. In the following, we will focus on the U(1) IGG.

Given the symmetry condition as well as the U(1) IGG, we
are able to list the tensor equation as follows:

Wg1g1Wg2g2 = ω(g1,g2)Wg1g2g1g2, (A2)

where ω(g1,g2) is an IGG element, which acts ω(g1,g2)
[ω∗(g1,g2)] on the left (right) leg. Due to associativity
condition, we obtain the 2-cocycle condition for ω as

ω(g1,g2)ω(g1g2,g3) = g1ω(g2,g3)ω(g1,g2g3), (A3)

where g1ω � g1 · ω · g−1
1 . For onsite unitary g1, the action is

trivial. If g1 is some antiunitary operator, such as time-reversal

FIG. 11. Symmetries and IGG in matrix product states.

symmetry, g1ω = ω∗. For reflection symmetry σ , it maps the
right (left) leg to the left (right) leg, so σω = ω∗.

Notice the symmetry operation is defined up to an IGG
element. Namely, we have

T = Wgg ◦ T = ε(g)Wgg ◦ T. (A4)

So, the equivalence condition for ω(g1,g2) is

ω ∼ ω
ε(g1g2)

ε(g1) g1ε(g2)
. (A5)

In other words, ω is defined up to a coboundary. In summary,
the 1D symmetric phase is classified by H 2[SG,U(1)], where
time-reversal and reflection symmetries impose complex
conjugation on the U(1) phase factor.

APPENDIX B: THE 3-COHOMOLOGY CLASSIFICATION
FROM TENSOR EQUATIONS IN (2+1)D

First, we discuss commutation relations between the IGG
elements of plaquette p1 and p2 for later convenience:

υp1p2 ≡ (
λ1

p1

)−1(
λ2

p2

)−1
λ1

p1
λ2

p2
. (B1)

υp1p2 still belongs to IGG according to the definition. Appar-
ently, for the case where p1 ∩ p2 = ∅ or they share only a
common site, λ1

p1
and λ2

p2
commute. When p1 and p2 share

a common edge v, υp1p2 can only have nontrivial action on
v. However, there is no such kind of nontrivial IGG, so λ1

p1

and λ2
p2

still commute. When p1 = p2 ≡ p, υp ≡ υp1p2 can
act nontrivially on legs of p. So, υp belongs to IGG of the
plaquette p. To conclude, we have(

λ1
p1

)−1(
λ2

p2

)−1
λ1

p1
λ2

p2
= λ′

p1
δp1p2 . (B2)

As shown in the main text, λ’s satisfy the 2-cocycle relation

λ(g1,g2)λ(g1g2,g3) = Wg1 g1λ(g2,g3)λ(g1,g2g3). (B3)

According to Eqs. (29) and (B2), we can decompose IGG
elements as

λ(g1,g2)λ(g1g2,g3) =
∏
p

λp(g1,g2)λp(g1g2,g3),

Wg1 g1λ(g2,g3)λ(g1,g2g3) =
∏
p

Wg1 g1λp(g2,g3)λp(g1,g2g3).

(B4)

Further, due to the phase ambiguity in Eq. (29), we conclude

λp(g1,g2)λp(g1g2,g3)

= ωp(g1,g2,g3) Wg1 g1λp(g2,g3)λp(g1,g2g3). (B5)

Now, we prove ωp(g,g′,g′′) satisfies the 3-cocycle con-
dition. We implement two ways to calculate the expression
λp(g1,g2)λp(g1g2,g3)λp(g1g2g3,g4):

λp(g1,g2)λp(g1g2,g3)λp(g1g2g3,g4)

= ωp(g1,g2,g3) Wg1 g1λp(g2,g3)λp(g1,g2g3)λp(g1g2g3,g4)

= ωp(g1,g2,g3) Wg1 g1λp(g2,g3)ωp(g1,g2g3,g4)

× Wg1 g1λp(g2g3,g4)λp(g1,g2g3g4)
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= ωp(g1,g2,g3)ωp(g1,g2g3,g4) g1ωp(g2,g3,g4)

× Wg1 g1Wg2 g2λp(g3,g4) Wg1 g1λp(g2,g3g4)λp(g1,g2g3g4),
(B6)

where we use Eq. (B5) to obtain the result. Notice that in the
last line, we use the fact that Wg always commutes with ωp,
so Wggωp = gωp. Using another way to calculate, we get

λp(g1,g2)λp(g1g2,g3)λp(g1g2g3,g4)

= λp(g1,g2)ωp(g1g2,g3,g4)

× Wg1g2 g1g2λp(g3,g4)λp(g1g2,g3g4)

= ωp(g1g2,g3,g4) λp(g1,g2)Wg1g2 g1g2λp(g3,g4)λp(g1,g2)

× λp(g1g2,g3g4)

= ωp(g1g2,g3,g4)ωp(g1,g2,g3g4) λp(g1,g2)Wg1g2 g1g2λp(g3,g4)

× Wg1 g1λp(g2,g3g4)λ(g1,g2g3g4)

= ωp(g1g2,g3,g4)ωp(g1,g2,g3g4) Wg1 g1Wg2 g2λp(g3,g4)

× Wg1 g1λp(g2,g3g4)λ(g1,g2g3g4). (B7)

Comparing the above results, we conclude ωp satisfies the
3-cocycle equation

ωp(g1,g2,g3)ωp(g1,g2g3,g4) g1ωp(g2,g3,g4)

= ωp(g1g2,g3,g4)ωp(g1,g2,g3g4). (B8)

The action of g on ωp follows a very simple rule: for a leg i, we
have (gωp)(i) = ω

s(g)
g−1(p)[g

−1(i)], where s(g) is trivial (complex
conjugate) for unitary (antiunitary) symmetry.

According to Eq. (29), we note that λp(g,g′) is de-
fined up to a complex number. We can define λ′

p(g,g′) =
χp(g,g′)λp(g,g′). Then, we have

λ′
p(g1,g2)λ′

p(g1g2,g3)

= ω′
p(g1,g2,g3) Wg1 g1λ′

p(g2,g3)λ′
p(g1,g2g3). (B9)

Thus, we can always tune ω to be some U(1) phase factor. In
the following, we will restrict ourselves for the case where ω’s
and χ ’s are phase factors. Now, let us calculate ω′

p(g1,g2,g3):

λ′
p(g1,g2)λ′

p(g1g2,g3)

= χp(g1,g2)λp(g1,g2)χp(g1g2,g3)λp(g1g2,g3)

= χp(g1,g2)χp(g1g2,g3)ωp(g1,g2,g3) Wg1 g1λp(g2,g3)

× λp(g1,g2g3)

= χp(g1,g2)χp(g1g2,g3)
g1χp(g2,g3)χp(g1,g2g3)

ωp(g1,g2,g3) Wg1 g1λ′
p(g2,g3)

× λ′
p(g1,g2g3), (B10)

where we use the fact that Wgχp = χp in the last line.
Comparing the above two equations, we conclude

ω′
p(g1,g2,g3) = ωp(g1,g2,g3)

χp(g1,g2)χp(g1g2,g3)
g1χp(g2,g3)χp(g1,g2g3)

. (B11)

It is straightforward to check that ω′
p also satisfies the 3-

cocycle condition in Eq. (36). In other words, the ωp is well
defined up to 3-coboundary constructed by 2-cochain χ . So,

ωp are classified by 3-cohomology H 3[SG,U(1)], where the
symmetry group SG may have nontrivial action on coefficient
U(1).

Notice that the physical wave function is invariant under
gauge transformation V as well as the IGG transformation
W̃g = ε(g)Wg , where ε(g) ∈ IGG. If ωp classify the PEPS
wave functions, ωp should be invariant (up to coboundary)
under these two kinds of transformations. For any gauge
transformation V , Wg → V WggV −1g−1. Then, it is straight-
forward to prove that ωp is invariant.

Now, let us consider IGG transformation. For
W̃g = ε(g)Wg , we have

W̃g1g1W̃g2g2 = λ̃(g1,g2)W̃g1g2g1g2, (B12)

where λ̃(g1,g2) = ε(g1) Wg1 g1ε(g2)λ(g1,g2)ε−1(g1g2).
Restricting to one plaquette, we calculate

λ̃p(g1,g2)̃λp(g1g2,g3)εp(g1g2g3)

= εp(g1) Wg1 g1εp(g2)λp(g1,g2) Wg1g2 g1g2εp(g3)λp(g1g2,g3)

= εp(g1) Wg1 g1εp(g2) Wg1 g1Wg2 g2εp(g3)λp(g1,g2)λp(g1g2,g3),

(B13)

where we use Eq. (B12) several times. In the second line, we
have used the fact that λpεp = λεp as well as Eq. (31). On the
other hand,

W̃g1 g1̃λp(g2,g3)̃λp(g1,g2g3)εp(g1g2g3)

= εp(g1)Wg1 g1(εp(g2) Wg2 g2εp(g3)λp(g2,g3)ε−1
p (g2g3))εp(g1)

× Wg1 g1εp(g2,g3)λp(g1,g2g3)

= εp(g1) Wg1 g1εp(g2) Wg1 g1Wg2 g2εp(g3)

× Wg1 g1λp(g2,g3)λp(g1,g2g3). (B14)

According to Eq. (35), we conclude that

λ̃p(g1,g2)̃λp(g1g2,g3)

= ωp(g1,g2,g3) W̃g1 g1̃λp(g2,g3)̃λp(g1,g2g3). (B15)

So, one obtains the same 3-cocycle for εp transformation.
We now make a general remark: our tensor construction for

SPT phases in (2+1)D is related to crossed module extension
known in the mathematical literature. Let us first review the
SPT phases in (1+1)D with symmetry group SG, which are
classified by different projective representations of SG or,
equivalently, by different central extensions of SG:

1 → U(1) → E → SG → 1. (B16)

In the tensor-network construction, the center U(1) is mapped
to the U(1) phase IGG, and symmetry actions on all legs of
the tensor network Wgg together with the U(1) IGG form the
extended group E. So, the construction of (1+1)D SPT phases
by MPS can be viewed as a realization of the central extension.

A crossed module extension is an exact sequence:

1 → U(1) → N
ϕ−→ E → SG → 1 (B17)

with a left action of E on N , represented by n �→ en,
such that ϕ(n)n′ = nn′n−1 as well as ϕ( en) = eϕ(n)e−1, for
all n,n′ ∈ N and e ∈ E. It is well known [85–89] that the
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crossed module extensions of SG by U(1) are classified by
H 3[SG,U(1)], which is the same object that classifies the
(2+1)D SPT phases protected by SG. As in the (1+1)D case,
our construction can be viewed as a realization of a crossed
module extension by tensor networks. Namely, given a crossed
module extension characterized by a 3-cohomology [ω], we
can write tensor equations realizing this crossed module
extension and construct generic tensor wave functions for the
SPT phase characterized by [ω]. This fact also indicates that
our tensor constructions are able to capture all cohomological
bosonic SPT phases in (2+1)D.

Now, let us describe the procedure to obtain tensor
equations from a crossed module extension. Given a crossed
module extension in Eq. (B17), one can decompose it to two
short exact sequences as follows:

1 → U(1) → N
φ−→ M → 1,

1 → M
i−→ E → SG → 1, (B18)

where M is identified as ϕ(N ), and i : M ↪→ E is an inclusion
map. Apparently, ϕ = i ◦ φ.

We can write tensor equations to realize these two short
exact sequences. As shown in Eq. (31), symmetry actions
on all legs of tensor networks {Wgg|∀ g ∈ SG} form a
projective representation with coefficient in group {λ}, which
we identify as M . In the anyon condensation context, M

is the gauge group characterizing the topological order
before condensation. M together with {Wgg|∀ g} form the
extended group E, which captures the SET physics before
anyon condensation. According to the assumption, ∀ λ ∈ M

can be decomposed to plaquette IGG elements: λ = ∏
p λp.

An element n ∈ N is identified as a set of plaquette IGG
elements: n = {λp|∀ p}, which satisfies

∏
p λp = λ. Then,

N = {{λp|∀ p}| ∏p λp = λ ∈ M}. Mapping φ is defined as

φ : N �→ M, φ(n) =
∏
p

λp. (B19)

It is easy to see that the kernel of φ forms a U(1) group:
{{χp|∀ p}| ∏p χp = I } ∼= U (1).

Now, let us consider the action of E on N . Set n = {λp|∀ p},
n′ = {λ′

p|∀ p}, and e = λ(e)Wgg ∈ E, we define the action as

ϕ(n)n′ �
{

λλ′
p

∣∣∀ p
} = {

λp · λ′
p · λ−1

p

∣∣∀ p
} = n · n′ · n−1,

ϕ( en) =
∏
p

λ(e)Wggλp = λ(e)Wggλ = e · ϕ(n) · e−1, (B20)

which indeed satisfies the crossed module condition. In
summary, from a crossed module extension, we are able to
construct tensor equations for SPT phases and vice versa.

APPENDIX C: EXAMPLES FOR SPT
PHASES WITH Z2×ZT

2

In this Appendix, we write examples for SPT phases
protected by Z2×ZT

2 symmetry on square lattice. We label
group elements as {I,g,T ,gT }, where g = σx and the time
reversal acts as complex conjugation. For simplicity, we
assume translationally invariant tensors.

First, we have H 3[Z2×ZT
2 ,U(1)] = Z2×Z2. The tensor

equations for these SPT phases are

W 2
g = λ(g,g),

WT T WT T = λ(T ,T ),

WgWT T = WT T Wg,

Wggλp = −λp. (C1)

Here, λ(g,g) and λ(T ,T ) are IGG elements, which take value
in {I,λ}. So, we totally get Z2×Z2 classification.

We list the results in the following:
(1) λ(g,g) = λ(T ,T ) = I. This case corresponds to trivial

phase.
(2) λ(g,g) = λ and λ(T ,T ) = I. This class can be realized

by D = 4 PEPS, where the local Hilbert space for a single
tensor is dD4 = 512 dimensional. Elements of IGG are
represented as

λ = σ0 ⊕ (−σ0),

λl = λu = σz ⊕ σz,

λr = λd = σz ⊕ (−σz). (C2)

Symmetries are represented as

Wg(α) = Wg(β) = W−1
g (γ ) = W−1

g (δ) = σx ⊕ iσy,

WT (i) = σ0 ⊕ σ0. (C3)

The constrained subspace is a 16-dimensional real Hilbert
space.

(3) λ(g,g) = λ(T ,T ) = λ. This class can be realized by
D = 4 PEPS, where the local Hilbert space for a single tensor
is dD4 = 512 dimensional. IGG elements are represented as

λ = σ0 ⊕ (−σ0),

λl = λu = σz ⊕ σz,

λr = λd = σz ⊕ (−σz). (C4)

Symmetries are represented as

Wg(α) = Wg(β) = W−1
g (γ ) = W−1

g (δ) = σx ⊕ iσy,

WT (α) = WT (β) = W−1
T (γ ) = W−1

T (δ) = σx ⊕ iσy. (C5)

The constrained subspace is a 16-dimensional real Hilbert
space. Notice, this phase is related to the previous case by
relabeling gT as T .

(4) λ(g,g) = I and λ(T ,T ) = λ. This class can be realized
by D = 6 PEPS, where the local Hilbert space for a single
tensor is dD4 = 2592 dimensional. IGG elements are

λ = σ0 ⊕ (−σ0 ⊗ σ0),

λl = λu = σz ⊕ (σz ⊗ σz),

λr = λd = σz ⊕ (−σz ⊗ σz). (C6)

Symmetries are represented as

Wg(i) = σx ⊕ (σx ⊗ σ0),

WT (α) = WT (β) = W−1
T (γ ) = W−1

T (δ) = σx ⊕ (σ0 ⊗ iσy).

(C7)
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The constrained subspace is an 82-dimensional real Hilbert
space.

APPENDIX D: EXAMPLES ON “WEAK INDICES”

In this Appendix, we discuss weak SPT indices due to
interplay of point group and translation on honeycomb lattice.
The lattice group is defined by group generators T1,T2,C6,σ ,
as in Fig. 10(a). The relations between these generators are
listed as follows:

T −1
2 T −1

1 T2T1 = e,

C−1
6 T −1

2 C6T1 = e,

C−1
6 T −1

2 T1C6T2 = e,

σ−1T −1
1 σT2 = e,

σ−1T −1
2 σT1 = e,

σC6σC6 = e,

C6
6 = σ 2 = T 2 = e. (D1)

Considering the group relation T −1
2 T −1

1 T2T1 = e, the corre-
sponding tensor equation takes the form

W−1
T2

[T2(x,y,i)]W−1
T1

[T1T2(x,y,i)]WT2 [T1T2(x,y,i)]

× WT1

[
T −1

2 T1T2(x,y,i)
] = χ12(x,y,i), (D2)

where i ∈ {a,b,c} labels bonds. And χ12(x,y,i) �
χ12(x,y,u,i) denotes the IGG element action on leg i

of site (x,y,u). By tuning the phase ambiguity WTi
→ εTi

WTi
,

we are able to set χ12 = 1. Further, we can set WT1 = WT2 = I
by gauge transformation V . Then, the remaining gauge
transformation V should be translational invariant:
V (x,y,i) = V (i).

Now, let us add rotation symmetry C6. For relation
C−1

6 T −1
2 C6T1 = e, we have

W−1
C6

(x,y,i)WC6 (x,y + 1,i) = χC6T1

[
C−1

6 (x,y,i)
]
, (D3)

where we use WTi
= I. It is easy to see, by choosing proper

εC6 , and redefining WC6 → εC6WC6 , we can set χC6T1 to be
identity. Thus, WC6 is equal in the y direction:

WC6 (x,y + 1,i) = WC6 (x,y,i) = WC6 (x,0,i). (D4)

The remaining εC6 should also be y invariant: εC6 (x,y + 1,i) =
εC6 (x,y,i). Further, as loops of phases, εC6 should satisfy the
Gauss law:

εC6 (x,y,a) · εC6 (x,y,b) · εC6 (x,y,c) = 1,

ε∗
C6

(x,y,a) · ε∗
C6

(x − 1,y,b) · ε∗
C6

(x,y − 1,c) = 1. (D5)

Since εC6 (x,y − 1,c) = εC6 (x,y,c), we conclude the remain-
ing εC6 (x,y,b) are also x invariant. Then, we left with the εC6

redundancy satisfying

εC6 (x,y,a/c) = εC6 (x,0,a/c),

εC6 (x,y,b) = εC6 (b). (D6)

We consider another relation C−1
6 T −1

2 T1C6T2 = e, and the
tensor equation reads as

W−1
C6

(x,y,i)WC6 (x − 1,y + 1,i) = χC6T2

[
C−1

6 (x,y,i)
]
.

(D7)

Since WC6 is y independent, χC6T2 [C−1
6 (x,y,i)] = χC6T2

[C−1
6 (x,0,i)]. Under εC6 transformation,

χC6T2

[
C−1

6 (x,0,i)
]

→ χC6T2

[
C−1

6 (x,0,i)
] · εC6 (x,0,i) · ε∗

C6
(x − 1,0,i). (D8)

We can tune εC6 (x,0,c) to make χC6T2 [C−1
6 (x,y,c)] = 1. The

remaining εC6 (x,y,i) = εC6 (i), which do not affect χC6T1 .
Since χT2C6 are also loops of phases satisfying Gauss law,

χT2C6 (x,y,a) = χ∗
T2C6

(x,y,b) ≡ χC6 . Then, we have

WC6 (x,y,a) = χx
C6

WC6 (a),

WC6 (x,y,b) = (
χ∗

C6

)x
WC6 (b),

WC6 (x,y,c) = WC6 (c). (D9)

For relation C6
6 = e, we have

χ
4x+2y−3
C6

· WC6 (b) · [
W−1

C6
(c)

]t · WC6 (a) · [
W−1

C6
(b)

]t

· WC6 (c) · [
W−1

C6
(a)

]t

= χC6
6
(x,y,a) = χ∗

C6
6
(−x + 1, − y + 1,a)

= χC6
6
(−x − y + 1,x,u,b)

= χ∗
C6

6
(x + y − 1, − x + 1,u,b)

= χC6
6
(y, − x − y + 1,u,c)

= χ∗
C6

6
(−y + 1,x + y − 1,u,c), (D10)

where we use Eq. (D9) to get the above equation. Then, we
conclude

χC6
6
(x,y,u,a) = χ

4x+2y−3
C6

· ξC6 ,

χC6
6
(x,y,u,b) = χ

−2x+2y−1
C6

· ξC6, (D11)

χC6
6
(x,y,u,c) = χ

−2x+4y+1
C6

· ξC6,

where ξC6 � WC6 (b) · [W−1
C6

(c)]t · WC6 (a) · [W−1
C6

(b)]t · WC6 (c) ·
[W−1

C6
(a)]t = ±1. Using Gauss law on site (x,y,u/v), we

obtain

χ3
C6

= ξ. (D12)

Under gauge transformation V (i),

WC6 (i) → V (i) · WC6 (i) · V t
[
C−1

6 (i)
]
. (D13)

So, we can make

WC6 (x,y,a) = χx
C6

,

WC6 (x,y,a) = (
χ∗

C6

)x
,

WC6 (x,y,c) = WC6 (c) = χ3
C6

W t
C6

(c). (D14)

The remaining V satisfies V (a) = V (c) = [V −1(b)]t.
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Now, let us consider reflection symmetry σ . For relation
σ−1T −1

2 σT1 = e, we have

W−1
σ (x,y,i)Wσ (x,y + 1,i) = χσT1 [σ−1(x,y,i)]. (D15)

Using εσ ambiguity, χσT1 can be tuned to identity. Thus, Wσ

is y independent. The remaining εσ satisfies

εσ (x,y,a/c) = εσ (x,0,a/c),

εσ (x,y,b) = εσ (b). (D16)

For relation σ−1T −1
1 σT2 = e, we get

W−1
σ (x,0,i)Wσ (x + 1,0,i) = χσT2 [σ−1(x,y,i)]. (D17)

Then, by tuning εσ , we are able to set

χσT2 [σ−1(x,y,a)] = χ∗
σT2

[σ−1(x,y,b)] ≡ χσ ,

χσT2 [σ−1(x,y,c)] = 1 (D18)

with remaining εσ (x,y,i) = εσ (i). For Wσ , we get

Wσ (x,y,a) = χx
σ Wσ (a),

Wσ (x,y,b) = (χ∗
σ )xWσ (b),

Wσ (x,y,c) = Wσ (c). (D19)

Considering relation σ 2 = e, we have

Wσ (x,y,i)Wσ [σ (x,y,i)] = χσ 2 (x,y,i) = χσ 2 [σ (x,y,i)].
(D20)

By setting (x,y) = (0,0), we have χσ 2 (b) = χσ 2 (c). Further,
we can set χσ 2 (a) = χσ 2 (b) = χσ 2 (c) = 1 by using εσ am-
biguity. Then, we have the remaining εσ (x,y,a) = 1 and
εσ (x,y,b) · εσ (x,y,c) = 1.

Inserting Eq. (D19) into (D20), we get

χσ 2 (x,y,a) = χx+y
σ ,

χσ 2 (x,y,b) = (χ∗
σ )x,

χσ 2 (x,y,c) = (χ∗
σ )y. (D21)

Using Gauss law of χσ 2 ,

χ∗
σ 2 (x,y,a) · χ∗

σ 2 (x − 1,y,b) · χ∗
σ 2 (x,y − 1,c) = 1, (D22)

we conclude χσ = ±1. For relation σC6σC6 = e, we have

Wσ (x,y,s,i)WC6 [σ (x,y,s,i)]Wσ [σC6(x,y,s,i)]

× WC6 [C6(x,y,i)] = χσC6 (x,y,i). (D23)

Combining with Eqs. (D14) and (D19), we get

χy−1
σ χ

y

C6
· Wσ (a·)[W−1

σ (b)
]t[

W−1
C6

(c)
]t = χσC6 (x,y,a)

= χ∗
σC6

(x + y + 1, − y,a) (D24)

and

χy+1
σ χ

y

C6
Wσ (b)WC6 (c)[W−1

σ (a)]t = χσC6 (x,y,b)

= χ∗
σC6

(x + y + 1, − y,a) (D25)

as well as

χ
−2y

C6
[Wσ (c)]

[
W−1

σ (c)
]t = χσC6 (x,y,c) = χ∗

σC6
(x + y,−y,c).

(D26)

Then, using Gauss law for χσC6 (x,y,i), we obtain

χ2
C6

= 1,

Wσ (c) = W t
σ (c). (D27)

So, we conclude χσC6 (x,y,c) = 1. By using remaining εσ

ambiguity, we can set χσC6 (a) = χσC6 (b). Namely,

Wσ (a)
[
W−1

σ (b)
]t[

W−1
C6

(c)
]t = 1. (D28)

By using V ambiguity, we can set Wσ (c) = Wσ (b) = I. We are
left with overall gauge transformation V , with V · V t = I.

Now, let us summarize the result. For a spin system in
honeycomb lattice, we construct four types of phases labeled
by two Z2 indices χC6 and χσ . These phases can be viewed as
“weak SPT” for point group, which are caused by the interplay
between translational symmetries together with point-group
symmetries. By choosing gauge, the symmetry transformation
rules on internal legs are

WT1 (x,y,i) = WT2 (x,y,i) = 1,

WC6 (x,y,a) = WC6 (x,y,b) = χx
C6

,

WC6 (x,y,c) = WC6 (c) = χC6W
t
C6

(c),

Wσ (x,y,a) = χx
σ Wσ (a) = χx

σ χC6W
t
C6

,

Wσ (x,y,b) = χx
σ ,

Wσ (x,y,c) = I. (D29)

To see the relation to the cohomology explicitly, let us
consider ω(T2,C6,C6). According to Eq. (35), we get

λp(T2,C6)λp(T2C6,T1)

= ω(T2,C6,T1) WT2 T2λp(C6,T1)λp(T2,C6T1). (D30)

To get plaquette IGG elements λp, we need to figure out
the global IGG elements λ before decomposition first. We
set the convention that the group elements are written as
g = T

s1
1 T

s2
2 C

s3
6 σ s4 , where s1,s2 ∈ Z, s3 ∈ Z6, and s4 ∈ Z2.

The induced action on tensor networks (both physical and
internal legs) is defined as

Wg = (
WT1T1

)s1
(
WT2T2

)s2 (WC6C6)s3 (Wσσ )s4 . (D31)

Then, using Eq. (D29), we can calculate λ’s related to
ω(T2,C6,C6) as

λ(T2,C6) = λ(T2,C6T1) = I,

λ(T2C6,T1)(x,y,a/b) = λ(C6,T1)(x,y,a/b) = χC6 ,

λ(T2C6,T1)(x,y,c) = λ(C6,T1)(x,y,c) = I. (D32)

We draw the configuration of λ(T2C6,T1) in Fig. 12. It is easy
to verify the “2-cocycle” condition for λ’s,

λ(T2,C6)λ(T2C6,T1) = WT2 T2λ(C6,T1)λ(T2,C6T1), (D33)

where we use the fact that the action of T2 on λ(C6,T1) is trivial,
as shown in Fig. 12(a). However, when we decompose global
IGG elements λ to plaquette IGG elements λp, λp(C6,T1) is no
longer invariant under T2 transformation if χC6 is nontrivial,
as shown in Fig. 12(b). Instead, we get WT2 T2λp(C6,T1) =
−χC6λp(C6,T1). Namely, ω(T2,C6,T1) = χC6 .
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FIG. 12. (a) One configuration of “global” IGG element
λ(T2C6,T1), where the dashed blue line means χC6 action. It is
invariant under translation symmetries. (b) The decomposition into
multiplication of plaquette IGG element λp(T2C6,T1). The plaquette
IGG element is no longer translationally invariant if χC6 = −1.

We can perform similar calculation for reflection, where
we get ω(T2,σ,T1) = χσ . Thus, ω belongs to some nontrivial
cohomology class for nontrivial χC6 and/or χσ .

APPENDIX E: THE 4-COHOMOLOGY CLASSIFICATION
FROM TENSOR EQUATIONS IN (3+1)D

In this Appendix, we formulate the framework for tensor
construction of SPT phases in (3+1)D. If an infinity 3D tensor
network is symmetric under group SG, we have

Wgg ◦ T = T, ∀ g ∈ SG, (E1)

where Wg is the gauge transformation associated to group
element g ∈ SG.

Now, let us turn to the IGG of 3D tensor networks. We
consider the case where all elements of the IGG can be
decomposed to some cubic IGG elements λc:

λ =
∏

c

λc. (E2)

Here, λc only acts nontrivially on legs belonging to cubic c. In
general, λc’s belonging to different cubic c do not commute,
so we should keep track of the multiplication order. For later
convenience, we also introduce the plaquette IGG {ξp}, where
ξp acts nontrivially only on legs belonging to plaquette p.

Let us discuss commutation relations between different
elements of IGG. For cubic IGG elements λc, we consider
the expression ςcc′ = (λc)−1(λ′

c′)−1λcλ
′
c′ . According to the

definition, ςcc′ belongs to IGG:
(1) When c ∩ c′ = ∅ or they only share a common site,

ςcc′ = I.
(2) When c ∩ c′ = v, where v is the common edge, ςv ≡

ςcc′ only has nontrivial action on legs of v. Then, ςv = I in this
case.

(3) When c ∩ c′ = p, where p is the common plaquette,
according to the definition, we conclude ςcc′ is a plaquette IGG
element.

(4) When c = c′, then ςcc′ ∈ {λc}.
To summarize, we have

λ−1
c (λ′

c′)−1λcλ
′
c′ =

⎧⎪⎨
⎪⎩

ξ̃p, c ∩ c′ = p

λ̃c, c ≡ c′

I, otherwise.

(E3)

For the plaquette IGG, similar to the 2D case, we have

(ξp)−1(ξ ′
p′)−1ξpξ ′

p′ = ξ̃pδpp′ . (E4)

It is also straightforward to see the commutator between a
plaquette IGG element and a cubic IGG element

λ−1
c ξ−1

p λcξp =
{

I, p �∈ c

ξ̃p, p ∈ c.
(E5)

Now, we define a special kind of cubic IGG, which are
formed by multiplication of plaquette IGG elements ηc ≡∏

p∈c ξ c
p. For a set of {ηc}, if we further require ξc

p(i) =
[ξ c′

p (i)]−1 for cubic c and c′ sharing the same plaquette
p (i labels a leg belonging to p), we have∏

c

ηc = I. (E6)

We assume it is the only way to decompose identity to cubic
IGG.

Notice that ηc is defined as multiplication of plaquette
IGG elements ξc

p, so there are phase ambiguities when we
decompose ηc to ξ c

p:

ηc =
∏
p∈c

ξ c
p =

∏
p∈c

χc
pξ c

p (E7)

As we will show later, the phase ambiguities are essential
ingredients to get the 4-cohomology classification of 3D SPT
phases.

Let us define �c = ∏
c′�c λc′ . Then, given λ, due to the ηc

ambiguity, we get

λ =
∏

c

λc =
∏

c

�−1
c−1 · �c

=
∏

c

�−1
c−1 · ηc · �c. (E8)

According to Eqs. (E3) and (E5), we conclude

λ−1
c (�′

c′ )−1λc�
′
c′ =

{̃
λc, c � c′

η̃c, c > c′ (E9)

where λ̃c belongs to cubic IGG, and η̃c is the special IGG
element formed by multiplication of plaquette IGG elements.
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Now, let us consider the symmetry equation on tensor
networks. According to the definition of IGG, we have

Wg1g1Wg2g2 = λ(g1,g2)Wg1,g2g1g2, ∀ g1,g2 ∈ SG, (E10)

where λ’s belong to global IGG, which can always be
decomposed into cubic IGG elements due to our assumption.

From associativity(
Wg1Wg2

)
Wg3 = Wg1

(
Wg2Wg3

)
, (E11)

we get

λ(g1,g2)λ(g1g2,g3) = Wg1 g1λ(g2,g3)λ(g1,g2g3). (E12)

We then write the above equation in terms of �c’s:

∏
c

[�c−1(g1,g2)�c−1(g1g2,g3)]−1 · [�c(g1,g2)�c(g1g2,g3)]

=
∏

c

[ Wg1 g1�c−1(g2,g3)�c−1(g1,g2g3)]−1 · [ Wg1 g1�c(g2,g3)�c(g1,g2g3)]. (E13)

According to Eq. (E8), we conclude that

[�c−1(g1,g2)�c−1(g1g2,g3)]−1 · [�c(g1,g2)�c(g1g2,g3)]

= [ Wg1 g1�c−1(g2,g3)�c−1(g1,g2g3)]−1 · [ηc(g1,g2,g3)] · [ Wg1 g1�c(g2,g3)�c(g1,g2g3)]. (E14)

Further, we get

�c(g1,g2)�c(g1g2,g3) =
∏
c′�c

[�c′−1(g1,g2)�c′−1(g1g2,g3)]−1 · [�c′(g1,g2)�c′(g1g2,g3)]

=
∏
c′�c

[ Wg1 g1�c′−1(g2,g3)�c′−1(g1,g2g3)]−1 · ηc′ (g1,g2,g3) · [ Wg1 g1�c′ (g2,g3)�c′(g1,g2g3)]

= Hc(g1,g2,g3) · Wg1 g1�c(g2,g3)�c(g1,g2g3), (E15)

where Hc �
∏

c′�c ηc′ . So, we have

�c(g1,g2)�c(g1g2,g3) = Hc(g1,g2,g3) · Wg1 g1�c(g2,g3)�c(g1,g2g3). (E16)

Now, let us determine the condition for Hc. Similar to the 2D case, we calculate

�c(g1,g2)�c(g1g2,g3)�c(g1g2g3,g4)

= Hc(g1,g2,g3) · Wg1 g1�c(g2,g3)�c(g1,g2g3)�c(g1g2g3,g4)

= Hc(g1,g2,g3) · Wg1 g1�c(g2,g3) · Hc(g1,g2g3,g4) · Wg1 g1�c(g2g3,g4)�c(g1,g2g3g4)

= Hc(g1,g2,g3) · [ Wg1 g1�c(g2,g3) ◦ Hc(g1,g2g3,g4)] · Wg1 g1Hc(g2,g3,g4)

· Wg1 g1Wg2 g2�c(g3,g4) Wg1 g1�c(g2,g3g4)�c(g1,g2g3g4), (E17)

where we define a ◦ b � a · b · a−1. We calculate the above equation in another way as

�c(g1,g2)�c(g1g2,g3)�c(g1g2g3,g4)

= �c(g1,g2)Hc(g1g2,g3,g4) Wg1g2 g1g2�c(g3,g4)�c(g1g2,g3g4)

= [�c(g1,g2) ◦ Hc(g1g2,g3,g4)] · [�c(g1,g2)Wg1g2g1g2 ◦ �c(g3,g4)] · Hc(g1,g2,g3g4) · Wg1 g1�c(g2,g3g4) · �c(g1,g2g3g4)

= [�c(g1,g2) ◦ Hc(g1g2,g3,g4)] · H̃c(g1,g2,g3,g4) · [ Wg1 g1Wg2 g2�c(g3,g4) ◦ Hc(g1,g2,g3g4)]

· Wg1 g1Wg2 g2�c(g3,g4) Wg1 g1�c(g2,g3g4)�c(g1,g2g3g4). (E18)

In the last line, we use the following relation:

�c(g1,g2)Wg1g2g1g2 ◦ �c(g3,g4) = �c(g1,g2)V −1
c+1(g1,g2)�−1

c (g1,g2) ◦ Wg1 g1Wg2 g2�c(g3,g4)

= H̃c(g1,g2,g3,g4) · Wg1 g1Wg2 g2�c(g3,g4), (E19)

where we define Vc �
∏

c′�c λc′ , so λ = �c · Vc+1.
Comparing Eqs. (E17) and (E18), we conclude

Hc(g1,g2,g3) · [ Wg1 g1�c(g2,g3) ◦ Hc(g1,g2g3,g4)] · Wg1 g1Hc(g2,g3,g4)

= [�c(g1,g2) ◦ Hc(g1g2,g3,g4)] · H̃c(g1,g2,g3,g4) · [Wg1 g1Wg2 g2�c(g3,g4) ◦ Hc(g1,g2,g3g4)]. (E20)
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Notice Hc can be expressed as Hc = ∏
p ξp, where p takes value in (

⋃
c′�c c′) ∩ (

⋃
c′′>c c′′). When decomposing Hc, there

is an associated phase ambiguity χp(i), where χp(i) = χ∗
p′(i) if p and p′ share the same leg i. We apply this observation to

Eq. (E20) and choose p = c0 ∩ c1, where c0 � c and c1 > c, then we get

ω−1
p (g1,g2,g3,g4) · ξp(g1,g2,g3) · [Wg1 g1�c(g2,g3) ◦ ξp(g1,g2g3,g4)] · Wg1 g1ξp(g2,g3,g4)

= [�c(g1,g2) ◦ ξp(g1g2,g3,g4)] · ξ̃p(g1,g2,g3,g4) · [
Wg1 g1Wg2 g2�c(g3,g4) ◦ ξp(g1,g2,g3g4)

]
. (E21)

Further, we get �c ◦ ξp = λc0 ◦ ξp. There is a canonical choice for ξ̃p(g1,g2,g3,g4), which reads as

ξ̃p(g1,g2,g3,g4) = λc0 (g1,g2)λ−1
c1

(g1,g2) · Wg1 g1Wg2 g2λc0 (g3,g4) · λc0 (g1,g2)λc1 (g1,g2) · Wg1 g1Wg2 g2λ−1
c0

(g3,g4). (E22)

So, the equation becomes

ω−1
p (g1,g2,g3,g4) · ξp(g1,g2,g3) · [

Wg1 g1λc0 (g2,g3) ◦ ξp(g1,g2g3,g4)
] · Wg1 g1ξp(g2,g3,g4)

= [λc0 (g1,g2) ◦ ξp(g1g2,g3,g4)] · ξ̃p(g1,g2,g3,g4) · [
Wg1 g1Wg2 g2λc0 (g3,g4) ◦ ξp(g1,g2,g3g4)

]
= [λc0 (g1,g2) ◦ ξp(g1g2,g3,g4)] · [

λc0 (g1,g2)Wg1g2 g1g2λc0 (g3,g4) ◦ ξp(g1,g2,g3g4)
] · ξ̃p(g1,g2,g3,g4). (E23)

Further, we have

ξ̃p(g1,g2,g3,g4) · ξp = [
λc0 (g1,g2)Wg1g2 g1g2λc0 (g3,g4) Wg1 g1Wg2 g2λ−1

c0
(g3,g4) ◦ ξp

] · ξ̃p(g1,g2,g3,g4),

ξp · ξ̃p(g1,g2,g3,g4) = ξ̃p(g1,g2,g3,g4) · [
Wg1 g1Wg2 g2λc0 (g3,g4) λc0 (g1,g2)Wg1g2 g1g2λc0 (g3,g4)−1 ◦ ξp

]
, (E24)

where we use

Wg1 g1Wg2 g2ξp = λ(g1,g2)Wg1g2 g1g2ξp = λc0 (g1,g2)λc1 (g1,g2)Wg1g2 g1g2ξp. (E25)

Let us calculate the following expression:

[ξ (g1,g2,g3)] · [Wg1 g1λ0(g2,g3) ◦ ξ (g1,g2g3,g4)] · [Wg1 g1ξ (g2,g3,g4)] · [ Wg1 g1Wg2 g2λ0(g3,g4) Wg1 g1λ0(g2,g3g4) ◦ ξ (g1,g2g3g4,g5)]

· [Wg1 g1Wg2 g2λ0(g3,g4) ◦ Wg1 g1ξ (g2,g3g4,g5)] · [Wg1 g1Wg2 g2ξ (g3,g4,g5)]

= ω(g1,g2,g3,g4)ω(g1,g2,g3g4,g5) · [λ0(g1,g2) ◦ ξ (g1g2,g3,g4)] · [̃ξ (g1,g2,g3,g4)]

· [Wg1 g1Wg2 g2λ0(g3,g4)λ0(g1,g2) ◦ ξ (g1g2,g3g4,g5)] · [Wg1 g1Wg2 g2λ0(g3,g4) λ0(g1,g2)Wg1g2 g1g2λ0(g3g4,g5) ◦ ξ (g1,g2,g3g4g5)]

· [Wg1 g1Wg2 g2λ0(g3,g4) ◦ ξ̃ (g1,g2,g3g4,g5)] · [Wg1 g1Wg2 g2ξ (g3,g4,g5)]

= ω(g1,g2,g3,g4)ω(g1,g2,g3g4,g5) · [λ0(g1,g2) ◦ ξ (g1g2,g3,g4)] · [λ0(g1,g2) Wg1g2 g1g2λ0(g3,g4) ◦ ξ (g1g2,g3g4,g5)]

· [λ0(g1,g2)Wg1g2 g1g2(λ0(g3,g4)λ0(g3g4,g5)) ◦ ξ (g1,g2,g3g4g5)] · [̃ξ (g1,g2,g3,g4)] · [Wg1 g1Wg2 g2λ0(g3,g4) ◦ ξ̃ (g1,g2,g3g4,g5)]

· [Wg1 g1Wg2 g2ξ (g3,g4,g5)]

= ω(g1,g2,g3,g4)ω(g1,g2,g3g4,g5) · [λ0(g1,g2) ◦ ξ (g1g2,g3,g4)] · [λ0(g1,g2) Wg1g2 g1g2λ0(g3,g4) ◦ ξ (g1g2,g3g4,g5)]

· [λ0(g1,g2)Wg1g2g1g2 ◦ ξ (g3,g4,g5)] · [λ0(g1,g2)Wg1g2 g1g2( Wg3 g3λ0(g4,g5)λ0(g3,g4g5)) ◦ ξ (g1,g2,g3g4g5)]

· [λ0(g1,g2)Wg1g2g1g2 ◦ ξ−1(g3,g4,g5)] · [̃ξ (g1,g2,g3,g4)] · [Wg1 g1Wg2 g2λ0(g3,g4) ◦ ξ̃ (g1,g2,g3g4,g5)]

· [Wg1 g1Wg2 g2ξ (g3,g4,g5)]

= ω(g1,g2,g3,g4)ω(g1,g2,g3g4,g5)ω(g1g2,g3,g4,g5) · [λ0(g1,g2)λ0(g1g2,g3) ◦ ξ (g1g2g3,g4,g5)]

· [λ0(g1,g2) λ0(g1g2,g3)Wg1g2g3 g1g2g3λ(g4,g5) ◦ ξ (g1g2,g3,g4g5)] · [λ0(g1,g2)λ0(g1g2,g3)Wg1g2g3 g1g2g3λ0(g4,g5)

· λ0(g1,g2)Wg1g2 g1g2λ0(g3,g4g5) ◦ ξ (g1,g2,g3g4g5)] · [λ0(g1,g2) ◦ ξ̃ (g1g2,g3,g4,g5)] · [
λ0(g1,g2)Wg1g2g1g2 ◦ ξ−1(g3,g4,g5)

]
· [̃ξ (g1,g2,g3,g4)] · [Wg1 g1Wg2 g2λ0(g3,g4) ◦ ξ̃ (g1,g2,g3g4,g5)] · [Wg1 g1Wg2 g2ξ (g3,g4,g5)]. (E26)

We use another way to calculate the above expression in the following:

[ξ (g1,g2,g3)] · [Wg1 g1λ0(g2,g3) ◦ ξ (g1,g2g3,g4)] · [Wg1 g1ξ (g2,g3,g4)] · [ Wg1 g1Wg2 g2λ0(g3,g4) Wg1 g1λ0(g2,g3g4) ◦ ξ (g1,g2g3g4,g5)]

· [Wg1 g1Wg2 g2λ0(g3,g4) ◦ Wg1 g1ξ (g2,g3g4,g5)] · [Wg1 g1Wg2 g2ξ (g3,g4,g5)]

= [ξ (g1,g2,g3)] · [Wg1 g1λ0(g2,g3) ◦ ξ (g1,g2g3,g4)] · [Wg1 g1λ0(g2,g3) Wg1 g1λ0(g2g3,g4) ◦ ξ (g1,g2g3g4,g5)]

· [Wg1 g1ξ (g2,g3,g4)] · [Wg1g1
Wg2 g2λ0(g3,g4) ◦ ξ (g2,g3g4,g5)] · [Wg1 g1Wg2 g2ξ (g3,g4,g5)]
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= g1ω(g2,g3,g4,g5) · [ξ (g1,g2,g3)] · [Wg1 g1λ0(g2,g3) ◦ ξ (g1,g2g3,g4)] · [Wg1 g1λ0(g2,g3) Wg1 g1λ0(g2g3,g4) ◦ ξ (g1,g2g3g4,g5)]

· [Wg1 g1λ0(g2,g3) ◦ Wg1 g1ξ (g2g3,g4,g5)] · [Wg1g1
λ0(g2,g3)Wg2g3 g2g3λ0(g4,g5) ◦ ξ (g2,g3,g4g5)] · [Wg1 g1̃ξp(g2,g3,g4,g5)]

= g1ω(g2,g3,g4,g5)ω(g1,g2g3,g4,g5) · [ξ (g1,g2,g3)] · [Wg1 g1λ0(g2,g3)λ0(g1,g2g3) ◦ ξ (g1g2g3,g4,g5)]

· [Wg1 g1λ0(g2,g3) λ0(g1,g2g3)Wg1g2g3 g1g2g3λ0(g4,g5) ◦ ξ (g1,g2g3,g4g5)] · [Wg1 g1λ0(g2,g3) ◦ ξ̃ (g1,g2g3,g4,g5)]

· [Wg1 g1λ0(g2,g3) Wg1 g1Wg2g3 g2g3λ0(g4,g5) Wg1 g1λ−1
0 (g2,g3) ◦ Wg1 g1ξ (g2,g3,g4g5)] · [Wg1 g1̃ξp(g2,g3,g4,g5)]

= g1ω(g2,g3,g4,g5)ω(g1,g2g3,g4,g5) · [λ0(g1,g2)λ0(g1g2,g3) ◦ ξ (g1g2g3,g4,g5)] · { λ0(g1,g2)λ0(g1g2,g3)Wg1g2g3 g1g2g3λ0(g4,g5)

◦ [ξ (g1,g2,g3)] · [Wg1 g1λ0(g2,g3) ◦ ξ (g1,g2g3,g4g5)] · [Wg1 g1ξ (g2,g3,g4g5)] · [ξ−1(g1,g2,g3)]} · [ξ (g1,g2,g3)]

· [Wg1 g1λ0(g2,g3) ◦ ξ̃ (g1,g2g3,g4,g5)] · [Wg1 g1̃ξp(g2,g3,g4,g5)]

= g1ω(g2,g3,g4,g5)ω(g1,g2g3,g4,g5)ω(g1,g2,g3,g4g5) · [λ0(g1,g2)λ0(g1g2,g3) ◦ ξ (g1g2g3,g4,g5)]

· [λ0(g1,g2) λ0(g1g2,g3)Wg1g2g3 g1g2g3λ0(g4,g5) ◦ ξ (g1g2,g3,g4g5)]

· [λ0(g1,g2)λ0(g1g2,g3)Wg1g2g3 g1g2g3λ0(g4,g5) λ0(g1,g2)Wg1g2 g1g2λ0(g3,g4g5) ◦ ξ (g1,g2,g3g4g5)] · [ξ (g1,g2,g3)]

· [Wg1 g1λ0(g2,g3) ◦ ξ̃ (g1,g2g3,g4,g5)] · [Wg1 g1̃ξp(g2,g3,g4,g5)] · [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5) ◦ ξ−1(g1,g2,g3)]

· [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5) ◦ ξ̃ (g1,g2,g3,g4g5)]. (E27)

Next, let us prove the following equation:

[λ0(g1,g2) ◦ ξ̃ (g1g2,g3,g4,g5)] · [λ0(g1,g2)Wg1g2g1g2 ◦ ξ−1(g3,g4,g5)] · [̃ξ (g1,g2,g3,g4)]

· [Wg1 g1Wg2 g2λ0(g3,g4) ◦ ξ̃ (g1,g2,g3g4,g5)] · [Wg1 g1Wg2 g2ξ (g3,g4,g5)]

= [ξ (g1,g2,g3)] · [Wg1 g1λ0(g2,g3) ◦ ξ̃ (g1,g2g3,g4,g5)] · [Wg1 g1̃ξp(g2,g3,g4,g5)] · [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5) ◦ ξ−1(g1,g2,g3)]

· [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5) ◦ ξ̃ (g1,g2,g3,g4g5)]. (E28)

Before that, let us mention some useful relations. First, we have

λc0 λc1λc2 = λc1 λc0λc2 , if c0 �= c1 �= c2. (E29)

Then, we conclude

ξ̃ (g1,g2,g3,g4) = [
λ0(g1,g2)λ−1

1 (g1,g2) ◦ Wg1 g1Wg2 g2λ0(g3,g4)
] · [

Wg1 g1Wg2 g2λ−1
c0

(g3,g4)
]

= [
λ0(g1,g2)λ−1

1 (g1,g2)λ(g1,g2) ◦ Wg1g2 g1g2λ0(g3,g4)
] · [

Wg1 g1Wg2 g2λ−1
c0

(g3,g4)
]

= [λ/c1 (g1,g2)Wg1g2 g1g2λ0(g3,g4)] · [Wg1 g1Wg2 g2λ−1
0 (g3,g4)],

where λ/c1
� �c1−1Vc1+1.

In order to proceed, we consider the following relation according to Eq. (E14):[
�−1

c0−1(g1g2,g3) ◦ λ0(g1,g2)
] · [λ0(g1g2,g3)]

= [(
Wg1 g1�c0−1(g2,g3)�c0−1(g1,g2g3)

)−1 ◦ η0(g1,g2,g3)
] · [

�−1
c0−1(g1,g2g3) ◦ Wg1 g1λ0(g2,g3)

] ◦ [λ0(g1,g2g3)]. (E30)

According to the commutation relations (E3), (E4), and (E5), we conclude

λ0(g1,g2)λ0(g1g2,g3) = η′
0(g1,g2,g3) Wg1 g1λ0(g2,g3)λ0(g1,g2g3), (E31)

where

η′
0(g1,g2,g3) =

⎛
⎝ ∏

p∈{c′<c0}∩c0

ξ ′
p(g1,g2,g3)

⎞
⎠ ·

⎛
⎝ ∏

p∈{c′>c0}∩c0

ξp(g1,g2,g3)

⎞
⎠, (E32)

where the prime label is due to nontrivial commutation relation.
Further, we have

λ/c1
(g1,g2)λ/c1

(g1g2,g3) ◦ λ0

=
⎡
⎣[

�c0−1(g1,g2) ◦ λc0 (g1,g2)
](

λ/c0/c1
(g1,g2)�c0−1(g1g2,g3) ◦ λ0(g1g2,g3)

)⎛⎝ ∏
c �=c0,c1

λc(g1,g2)λc(g1g2,g3)

⎞
⎠ ◦ λ0

⎤
⎦
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=
⎡
⎣η′′

c0
(g1,g2,g3) Wg1 g1λc0 (g2,g3)λc0 (g1,g2g3)(η′

c(g1,g2,g3)
∏

c �=c0,c1

Wg1 g1λc(g2,g3)λc(g1,g2g3)) ◦ λ0

⎤
⎦

= ξc0∩c1 (g1,g2,g3) Wg1 g1λ/c1
(g2,g3)λ/c1

(g1,g2g3) ◦ λ0. (E33)

In the second line, we use Eq. (E29). In the third line, we have

η′′
c0

(g1,g2,g3) = ξc0∩c1 (g1,g2,g3) ·
∏

p∈c0∩{c �=c1}
ξ ′′
c0∩c(g1,g2,g3). (E34)

The last line is from the observation that λ/c1
(g1,g2)λ/c1

(g1g2,g3) = ηc1
Wg1 g1λ/c1

(g2,g3)λ/c1
(g1,g2g3) for some ηc1 . And only ξc0∩c1

has nontrivial action on some λ0. This plaquette IGG element should equal to ξ (g1,g2,g3) up to some phase factor, due to the
above derivation.

Now, let us calculate the following expression:[
λ/c1

(g1,g2)λ/c1
(g1g2,g3)Wg1g2g3g1g2g3 ◦ λ0(g4,g5)

] · [
λ/c1

(g1,g2)Wg1g2g1g2 ◦ λ0(g3,g4g5)
]

= [
λ/c1

(g1,g2) ◦ ξ̃ (g1g2,g3,g4,g5)
] · [

λ/c1
(g1,g2)Wg1g2g1g2Wg3g3 ◦ λ0(g4,g5)

] · [
λ/c1

(g1,g2)Wg1g2g1g2 ◦ λ0(g3,g4g5)
]

= [
λ/c1

(g1,g2) ◦ ξ̃ (g1g2,g3,g4,g5)
] · [

λ/c1
(g1,g2)Wg1g2g1g2 ◦ (η′

0)−1(g3,g4,g5)
] · [

λ/c1
(g1,g2)Wg1g2g1g2 ◦ λ0(g3,g4)

]
· [

λ/c1
(g1,g2)Wg1g2g1g2 ◦ λ0(g3g4,g5)

]
= [

λ/c1
(g1,g2) ◦ ξ̃ (g1g2,g3,g4,g5)

] · [
λ/c1

(g1,g2)Wg1g2g1g2 ◦ (η′
0)−1(g3,g4,g5)

] · [̃ξ (g1,g2,g3,g4)]

· [Wg1g1Wg2g2 ◦ λ0(g3,g4)] · [̃ξ (g1,g2,g3g4,g5)] · [Wg1 g1Wg2 g2λ0(g3g4,g5)]

= [
λ/c1

(g1,g2) ◦ ξ̃ (g1g2,g3,g4,g5)
] · [

λ/c1
(g1,g2)Wg1g2g1g2 ◦ (η′

0)−1(g3,g4,g5)
] · [̃ξ (g1,g2,g3,g4)] · [Wg1 g1Wg2 g2λ0(g3,g4)

◦ ξ̃ (g1,g2,g3g4,g5)] · [
Wg1g1Wg2g2 ◦ η′

0(g3,g4,g5)
] · [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5)] · [Wg1 g1Wg2 g2λ0(g3,g4g5)]

= [
λc0 (g1,g2) ◦ ξ̃ (g1g2,g3,g4,g5)

] · [
λc0 (g1,g2)Wg1g2g1g2 ◦ ξ−1(g3,g4,g5)

] · [̃ξ (g1,g2,g3,g4)] · [Wg1 g1Wg2 g2λ0(g3,g4)

◦ ξ̃ (g1,g2,g3g4,g5)] · [
Wg1g1Wg2g2 ◦ ξ (g3,g4,g5)

] · [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5)] · [Wg1 g1Wg2 g2λ0(g3,g4g5)]. (E35)

We can calculate the above equation in another way as[
λ/c1

(g1,g2)λ/c1
(g1g2,g3)Wg1g2g3g1g2g3 ◦ λ0(g4,g5)

] · [
λ/c1

(g1,g2)Wg1g2g1g2 ◦ λ0(g3,g4g5)
]

= [
ξ (g1,g2,g3) Wg1 g1λ/c1

(g2,g3)λ/c1
(g1,g2g3)Wg1g2g3g1g2g3 ◦ λ0(g4,g5)

] · [̃ξ (g1,g2,g3,g4g5)] · [Wg1 g1Wg2 g2λ0(g3,g4g5)]

= [ξ (g1,g2,g3)] · [
Wg1 g1λ/c1

(g2,g3) ◦ ξ̃ (g1,g2g3,g4,g5)
] · [

Wg1g1λ/c1
(g2,g3)Wg2g3g2g3 ◦ λ0(g4,g5)

] · [ξ−1(g1,g2,g3)]

· [̃ξ (g1,g2,g3,g4g5)] · [Wg1 g1Wg2 g2λ0(g3,g4g5)]

= [ξ (g1,g2,g3)] · [Wg1 g1λ/c1
(g2,g3) ◦ ξ̃ (g1,g2g3,g4,g5)] · [Wg1 g1 ξ̃ (g2,g3,g4,g5)] · [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5)] · [ξ−1(g1,g2,g3)]

· [̃ξ (g1,g2,g3,g4g5)] · [Wg1 g1Wg2 g2λ0(g3,g4g5)]

= [ξ (g1,g2,g3)] · [Wg1 g1λc0 (g2,g3) ◦ ξ̃ (g1,g2g3,g4,g5)] · [Wg1 g1 ξ̃ (g2,g3,g4,g5)] · [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5) ◦ ξ−1(g1,g2,g3)]

· [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5) ◦ ξ̃ (g1,g2,g3,g4g5)] · [Wg1 g1Wg2 g2Wg3 g3λ0(g4,g5)] · [Wg1 g1Wg2 g2λ0(g3,g4g5)]. (E36)

According to the above discussion, we prove that ω satisfies the 4-cocycle condition

ωp(g1,g2,g3,g4)ωp(g1,g2,g3g4,g5)ωp(g1g2,g3,g4,g5) = g1ωp(g2,g3,g4,g5)ωp(g1,g2g3,g4,g5)ωp(g1,g2,g3,g4g5). (E37)

Here, the action of symmetry operator g is similar as the case in (2+1)D. Namely, for time-reversal symmetry as well as
reflection (inversion) symmetry, g acts antiunitary on the U(1) phase.

Further, since ξp’s are defined up to U(1) phases χp, one can show ω’s are equivalent up to coboundary according to Eq. (E23):

ωp(g1,g2,g3,g4) ∼ ωp(g1,g2,g3,g4)
χp(g1,g2,g3) · χp(g1,g2g3,g4) · g1χp(g2,g3,g4)

χp(g1g2,g3,g4) · χp(g1,g2,g3g4)
. (E38)
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[74] S. K. Shukla, M. B. Şahinoğlu, F. Pollmann, and X. Chen,

arXiv:1610.00608.
[75] Z.-X. Luo, E. Lake, and Y.-S. Wu, arXiv:1611.01140.
[76] C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev.

A 81, 052338 (2010).
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