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Quantum critical point revisited by dynamical mean-field theory
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Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on
a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave
instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy
waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and
high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function
of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing
with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the
quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle
scattering.
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Introduction. The interplay between quasiparticles and
bosonic collective modes, in particular, in the proximity of
a quantum critical point (QCP) [1,2], is believed to be a
driving force behind the rich phase diagram of many correlated
electronic systems [3–5]. This Rapid Communication explores
the connection between the quasiparticles and collective
modes in a doped antiferromagnet within the framework of
local dynamical mean-field theory (DMFT) [6]. It is known
that local DMFT is not fully capable of addressing the effects
of nonlocal correlations, which are particularly important for
the critical phenomena in low-dimensional systems. Here,
however, we aim to investigate to what extent local DMFT
can depict the spin fluctuations in a strongly correlated system
and the possibility to construct the nonlocal effects from
local DMFT. In fact, the formalism for two-particle response
functions, although proposed in the early stages of DMFT [6],
has not been well explored to study the dynamical properties
of two-particle fluctuations. Recently, an approach based on
this formalism and random phase approximation (RPA) has
gained success in describing the magnetic excitations in iron
pnictides [7–9]. In this work, we make a step beyond the
RPA approach by taking full account of the frequency depen-
dence of the vertex functions, and compute the momentum
dependence of the excitation energy and damping rate of spin
fluctuations, in the hopes of providing insight and guidance in
interpreting the spectra of correlated materials from neutron
and resonant inelastic x-ray scattering measurements (RIXS)
[10–16].

With the two-dimensional Hubbard model as a working
example, we use the vertex functions to calculate the nonlocal
correction to the single-electron self-energy in the leading
order of a quasiparticle-paramagnon interaction. We show
that the leading-order correction reproduces the momentum-
dependent feature that emerges from a self-consistent cal-
culation in the cluster extensions of DMFT [17–19]. We
also compare it with the nonlocal correction obtained by the
phenomenological approach based on the spin-fermion (SF)
model [20,21] where the vertices are replaced by constants.
The result highlights the importance of energy dependence in
the interaction vertices to capture the nonlocal physics in a
perturbative approach.

We study the two-dimensional Hubbard Hamiltonian on
a square lattice with nearest t and next-nearest-neighbor
hopping t ′,

H = −
∑

〈i,j〉,σ
tij c

†
i,σ cj,σ + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓. (1)

Taking t = 1 as the unit for energy and temperature, we
set t ′ = −0.3 and the Coulomb interaction U = 14. The
noninteracting bandwidth is W = 8. We focus on the band
fillings between n = 0.6 and n = 0.9. To solve the effective
impurity problem in the DMFT self-consistent condition, we
adopt the continuous time quantum Monte Carlo (CTQMC)
method [22] as implemented in Ref. [23].

Figure 1 presents a summary of the main results. Near
half filling, the model undergoes a spin density wave (SDW)
transition and the transition temperature TSDW decreases as
more holes are introduced. The ordering vector for n � 0.9
is commensurate (C), QSDW = (π,π ). When n < 0.9, QSDW

becomes incommensurate (IC) and at n � 0.84, TSDW van-
ishes, defining the quantum critical point (QCP). In the vicinity
of the QCP (0.76 � n � 0.9), the frequency-dependent part
of the Green’s function ω − �(ω) can be fit by a universal
function of ω/EHF [see Eq. (2)], where EHF is the effective
Fermi energy characterizing the energy dependence of the
quasiparticle (QP) damping rate. Near QCP, EHF deviates
from the Brinkman-Rice scale EBR = (1 − n)W [24], which
is the Fermi energy in a slightly doped Mott insulator in the
strong coupling limit. The self-energy also leads to a strong
energy dependence in the QP residue ZQP in this region
(0.76 � n � 0.9), which is not described by a conventional
Landau-Fermi liquid theory.

The single-electron Green’s function. The Hubbard model
has been investigated extensively by the DMFT community
[6,17,18,25], with the most attention focused on the single-
electron Green’s function Gk(ω) and the density of states.
Since the Green’s function is also an important ingredient of
the SF model, we are compelled to discuss it first. We start
with the local self-energy.

The physical meaning of EHF can be grasped from Fig. 2(a):
It is the energy scale below which a band of heavy fermions
is formed. These fermions can be considered as QPs, as at
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FIG. 1. The energy scales and the phase diagram of the doped
Hubbard model at T = 0.02. EHF is the characteristic energy scale
for the frequency dependence of the self-energy. The solid line is a
guide for the eye. EBR = (1 − n)W is the Brinkman-Rice scale. TSDW

is the SDW transition temperature. Shading highlights regions with
commensurate (C) or incommensurate (IC) SDW ordering vector
QSDW.

small frequencies |ω| < EHF their damping rate is quadratic in
frequency, �QP(ω) = −ZQP�

′′ ∼ (ω/EHF)2. The self-energy
�(ω) itself is quadratic only in a very narrow range of
frequencies, |ω| � ω∗ = 0.05. A strong frequency dependence
of ZQP = [1 − d�′(ω)/dω]−1, as shown in Fig. 2(b), helps
the QPs to remain well defined in the entire frequency interval
below EHF. The dashed lines in Fig. 2(a) are quadratic fits
of �(ω) and �′′(ω), suggesting the robustness of the QPs
far beyond ω∗. We point out ω∗ is the energy scale for
“kink” structure [26] in the spectral function. For ω < ω∗, the

FIG. 2. Spectral properties for n = 0.85 and T = 0.02. (a) The
imaginary part of the self-energy −�′′(ω) and the QP damping
�QP(ω). The dashed lines represent a quadratic fit in the region
|ω| � 0.05. (b) The quasiparticle residue ZQP(ω). (c) The density
of states (DOS). Also shown are the DOS for n = 0.69 and n = 0.95.
(d) The spectral function Ak(ω) = −G′′

k(ω)/π .

FIG. 3. (a) The QP damping rate; (b) the QP damping rescaled
by the renormalized Fermi energy EHF of the hidden QPs; (c) the QP
residue; (d) the QP residue rescaled by EHF. Main panels: T = 0.02.
Inset in (b) and (d): T = 0.05.

QP dispersion is renormalized by ZQP � (1 − n) = EBR/W .
When |ω| > ω∗, ZQP continuously deviates from (1 − n),
and so does the QP band renormalization. EHF ensures the
QPs remain resilient beyond ω∗. Also noteworthy from the
fitting is that the electronlike QPs (ω > 0) extend to ω �
0.2, while holelike (ω < 0) only to ω � −0.13. The strong
energy/temperature dependence in ZQP has given rise to the
concept of a hidden Fermi liquid (HFL) [27–29], in which the
linear resistivity and other anomalous transport properties of
correlated metals are consequences of the strong temperature
dependence of ZQP, but the QPs remain well defined such that
transport can be treated with the Boltzmann theory.

In our effort to determine the degree of universality present
in the Hubbard model, we fit the frequency-dependent part of
the Green’s function by the scaling form,

ω − �̃(ω) = W × g(ω/EHF), (2)

where �̃(ω) = �(ω) − �(ω = 0). As illustrated by Figs. 3(b)
and 3(d), this scaling works very well in the vicinity of
the QCP, namely, for the interval 0.79 < n < 0.88, and for
|ω| < EHF/2. We point out that Eq. (2) is different from the
scaling form near the Mott insulating state proposed by a
renormalization group study in Ref. [30], where the scaling is
controlled by EBR.

The strong ω dependence of ZQP leads to a strong mo-
mentum dependency of the QP residue. The latter fact enables
us to explain the famous “waterfall” phenomenon observed
in angular-resolved photoemission experiments [31–34]. This
phenomenon amounts to vanishing of the spectral weight in
the lower Hubbard band in a particular region of the Brillouin
zone. In the strong coupling limit (U → ∞), the high-energy
excitations with double occupancy (the upper Hubbard band)
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carry a spectral weight of n/2 [35]. Therefore, the combined
spectral weight for the QPs and the lower Hubbard band
is 1 − n/2 [Fig. 2(c)]. In the shaded region of Fig. 2(d)
the QPs with ω > 0.5 exhaust all available spectral weight,
leaving nothing for the states below the chemical potential.
Approaching the Fermi surface, ZQP decreases, giving rise
to the kink in the QP dispersion and the emergence of the
incoherent continuum. The incoherent continuum at ω < −2
is placed around the bare band dispersion and is connected to
the QP band by the spectral intensity in the vertical direction
(the “waterfall”).

We see that the high-energy waterfall feature, along with
the low-energy “kink” feature [26] in the QP band, is a conse-
quence of the ω-dependent self-energy which is characterized
by a single energy scale EHF. As far as we are aware, this
connection has not been addressed in previous works [36–41].

Lattice susceptibilities in the spin channel. Computing the
lattice susceptibility of bosonic modes within local DMFT
requires an extra effort [6]. First, one needs to determine the
local irreducible vertex in the spin (S) channel �S

irr(iν,iν ′)i�.
It is computed by the Bethe-Salpeter equation

[
χS

loc(iν,iν ′)i�
]−1 = [

χ0
loc(iν,iν ′)i�

]−1 + 1

β2
�S

irr(iν,iν ′)i�,

(3)

where χS
loc(iν,iν ′)i� is the local two-particle correla-

tion function in the spin channel and χ0
loc(iν,iν ′)i� =

−βGloc(iν)Gloc(iν + i�)δνν ′ is the local polarization bubble.
Gloc(iν) is the local Green’s function fully dressed by the
self-energy. χS

loc(iν,iν ′)i� and Gloc(iν) are sampled by the
CTQMC solver.

The lattice (q-dependent) two-particle correlation func-
tion χS(iν,iν ′)q,i� is constructed from �S

irr(iν,iν ′)i�
and the q-dependent polarization bubble χ0(iν,iν ′)q,i� =
−β

∑
k Gk(iν)Gk+q(iν + i�)δνν ′ ,

[χS(iν,iν ′)q,i�]−1 = [χ0(iν,iν ′)q,i�]−1 + 1

β2
�S

irr(iν,iν ′)i�.

(4)

The dynamical susceptibility in the Matsubara frequency
domain is then calculated by closing the fermionic frequencies,
χS(q,i�) = 1

β2

∑
ν,ν ′ χS(iν,iν ′)q,i�. Finally, we fit χ (q,i�)

by the damped harmonic model to determine the resonance
energy �S(q) and the damping rate γ S(q),

χS(q,i�) = χS(q)�S(q)2

�S(q)2 + |�|2 + γ S(q)|�| , (5)

where χS(q) is the static spin susceptibility at � = 0. The
analytical continuation to real frequencies is straightforward
by taking i� → � + i0+ in the damped harmonic model.
The RPA approach adopted in Refs. [7–9] approximates
�S

irr(iν,iν ′)i� in Eq. (4) by a constant, while we retain the
full frequency dependence of �S

irr(iν,iν ′)i�.
Figure 4 shows the details of the spin dynamics in the

damped harmonic model for T = 0.05 (left column) and
T = 0.02 (right column). Figures 4(a) and 4(b) compare the
“bare” static susceptibility χ0(q) (the polarization bubble)
and the full static susceptibility χS(q). Without the vertex

FIG. 4. (a) and (b) Static susceptibility at T = 0.05 and T =
0.02. Solid line: χS(q). Dashed line: χS

0 (q) computed by the
polarization bubble. χS

0 (q) is multiplied by 10 or 50 for comparison.
(c) and (d) Resonance energy �S(q) and the dispersion of AFM
and FM spin wave. Inset of (d): Partition of the Brillioun zone
by the nature of spin excitations. (e) and (f) The relaxation rate
�S(q) = [�S(q)]2/γ S(q) and damping rate γ S(q). n = 0.85.

contribution, χ0(q) is only weakly dependent on q and
temperature, suggesting that the instability does not originate
from the particle-hole excitations at the Fermi surface. To find
the SDW transition temperature for a given q, we extrapolate
1/χS(q) to zero as a function of T . Figures 4(a) and 4(b)
suggest those q’s with the most diverging χS(q) form a
“ring” around the M point. Then we pick the q with the
highest transition temperature TSDW as the SDW ordering
vector QSDW, with TSDW the SDW transition temperature
of the system. Figure 1 shows the variation of TSDW and
QSDW with band filling. QSDW = (π,π ) for n � 0.9 and is
incommensurate for n � 0.9. For instance, for band filling
n = 0.85, we have QSDW � (π ± 0.2π,π ) and (π,π ± 0.2π ).
The QCP for the SDW order is located at n � 0.84.

The damped harmonic model reveals the partition of the
spin excitations in q space, as shown in Figs. 4(c) and 4(d).
Near the � point the resonance energy �S(q) follows the
dispersion of the ferromagnetic (FM) spin wave. Passing
the X point and approaching the M point, �S(q) traces the
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antiferromagnetic (AFM) spin wave at T = 0.02 and then
enters the critical ring centered on the M point, where �S(q)
develops a “mexican hat” shape, with low-lying excitations
located on the ring. The damping rate γ S(q) [inset of
Figs. 4(e) and 4(f)] is peaked at the M point, suggesting
the FM paramagnons near � are only weakly damped.
Passing the M point, the paramagnons become overdamped
[�S(q) < γ S(q)/2]. The low-lying critical incommensurate
paramagnons, characterized by the relaxation rate �S(q) ≡
[�S(q)]2/γ S(q), are shown in Figs. 4(e) and 4(f). The
coexistence of incommensurate paramagnons at low energy
and overdamped AFM fluctuations at high energy, along with
the signature of FM fluctuations, resembles the spin dynamics
in the normal state of cuprate superconductors as measured by
neutron and RIXS experiments [10–16].

With the four-point correlation functions and vertex func-
tions at hand we can calculate the nonlocal self-energy due to
the emission of paramagnons. Although a self-consistent cal-
culation on the two-particle level requires an extended DMFT
framework, such as the dynamical vertex approximation [17],
the dual fermion approach [18,19], or the dynamical cluster
approximation [42], the leading order in the q-dependent
two-particle full vertex (FV) function �

↑↓
kk′(iω,iω′)q,i�, which

can be written in terms of the full vertices �S/C(iω,iω′)q,i�

in the spin (S) and charge (C) channel, provides us with
a convenient way to examine the effect of incommensurate
paramagnons,

�FV(k,iω)

= 1

2
Un − U

β2

∑
ω′,�,q,k′

Gk′+q(iω′ + i�)Gk′(iω′)

×Gk+q(iω + i�)�↑↓
kk′(iω,iω′)q,i�

= 1

2
Un + U

2β3

∑
ω′,�,q

χ0(iω′,iω′)q,i�Gk+q(iω + i�)

× [
3�S(iω,iω′)q,i� − �C(iω,iω′)q,i�

+�C
loc(iω,iω′)i� − �S

loc(iω,iω′)i�
]
. (6)

We point to Ref. [17] and references therein for the derivation
of Eq. (6). The Feynman diagram for �FV(k,iω) is sketched
in Fig. 6(a). The full vertices �S/C(iω,iω′)q,i� are calculated
from the irreducible local vertex functions �

S/C
irr (iω,iω′)i� via

[
1

β2
�S/C(iω,iω′)q,i�

]−1

=
[

1

β2
�S/C

irr (iω,iω′)i�

]−1

− χ0(iω,iω′)q,i�. (7)

Instead of isolated hot spots, the soft paramagnon fluc-
tuations connect continuous segments of the Fermi surface,
forming a hot region marked by purple in the inset of
Figs. 5(a) and 5(b). We depict the local self-energy �

′′
(iω) and

the nonlocal correction δ�
′′
FV(k,iω) = �

′′
FV(k,iω) − �

′′
(iω)

calculated by Eq. (6) for k’s at the antinodal point (1)
and the nodal point (2) in Fig. 5. For comparison, we also
show the nonlocal correction calculated with the dynamical

FIG. 5. Imaginary part of the self-energy calculated with the full
vertex (FV) functions and with spin-fermion (SF) models for the
antinodal point (1) and nodal point (2) for U = 14 in (a) and (b), and
U = 6 and 18 in (c) and (d). Nonlocal corrections to the local self-
energy, δ�FV/SF(k,iω) = �FV/SF(k,iω) − �(iω), are presented with
the local self-energy �(iω). Also shown are the values of the effective
Coulomb interaction Ueff for the SF model [Eq. (9)]. n = 0.85.

susceptibility χS(q,i�),

δ�
′′
SF(k,iω) = �

′′
SF(k,iω) − �

′′
(iω), (8)

where

�SF(k,iω) = U 2
eff

β

∑
�,q

χS(q,i�)Gq+k(i� + iω), (9)

as is done in the spin-fermion (SF) model [20,21]. The
Feynman diagram for �SF(k,iω) is shown in Fig. 6(b). The

FIG. 6. Feynman diagrams for the self-energy with (a) full
vertices (FV) and with (b) the spin-fermion (SF) model.
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effective Coulomb interaction Ueff is chosen to get the best fit
to the �

′′
FV(k,iω) at high frequency.

Figure 5 shows the results for U = 6, 14, and 18. The FV
and SF calculations lead to diminishing high-frequency tails at
both the antinodal and nodal points, indicating that the nonlocal
correction is significant only at low energy. At large U = 14,18
the difference between the FV and SF results becomes quite
pronounced at small energies. Although in both FV and SF
models the self-energy shows a strong frequency dependence,
the momentum dependence is different. At the nodal point, the
energy dependence of δ�

′′
FV(k,iω) resembles that of a Fermi

liquid, while at the antinodal point, δ�
′′
FV(k,iω) gives strong

scattering. It is noteworthy that this momentum dependence of
δ�

′′
FV(k,iω) also emerges from recent calculations using the

dynamical cluster approximation [43], suggesting the leading
order in the vertex functions captures the essential physics of
the quasiparticle-paramagnon interaction. On the other hand,
the SF model, which does not take into account the frequency
dependence of the vertex function, overestimates the scattering
in δ�

′′
(k,iω) at both the antinodal and nodal points. It should

also be noted that to achieve the convergence between the FV
and the SF at high energy we need to adopt a very large value
for Ueff. Admittedly, the success of the SF approach [20,21,44]
should not be underestimated by a first-order perturbative

calculation in Eq. (9). By the comparison demonstrated in
Fig. 5, we emphasize that the two-particle approach based
on vertex calculations in local DMFT is a convenient starting
point to study the dynamics of spin fluctuations in correlated
materials, given the availability of numerical packages [23,45]
combining local DMFT and first principles methods, and
their success in predicting the electronic structures of various
correlated materials [46–49].

Conclusions. Using the example of the Hubbard model,
we have demonstrated how the standard DMFT procedure
can be augmented by the inclusion of corrections from the
interactions of quasiparticles with collective excitations. Our
calculation points to the pivotal role of incommensurate
critical paramagnons in a doped antiferromagnet, making
contact with recent neutron scattering and RIXS measure-
ments [10–14]. Such corrections become significant near
the QCP, as predicted by the phenomenological SF model.
Our calculations indicate that the frequency dependence of
the interaction vertices is necessary to capture the nonlocal
corrections.
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