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Competing phases and orbital-selective behaviors in the two-orbital Hubbard-Holstein model
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We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in
the two-orbital Hubbard-Holstein model at half-filling using the dynamical mean-field theory. We find that the
e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an
orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott
phase (OSMP). At small e-e and e-ph couplings, we find a competition between the OSMP and the OSPI, while
at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We
further demonstrate that the Hund’s coupling influences the OSPI transition by lowering the energy associated
with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in
multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing
interactions.
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Introduction. In recent years many researchers have focused
on studying electron-electron (e-e) interactions in multiorbital
systems such as the iron-based superconductors (FeSCs). In
doing so, they have discovered numerous new phenomena,
including the Hund’s metal [1–3] and the orbital-selective
Mott phase (OSMP) [4–8], which arise from the competing
action of the electronic interactions. These concepts have
helped shape our understanding of the enigmatic properties
of these materials. Despite this success, however, surprisingly
little is currently known about how competition/cooperation
with other factors such as impurities or the electron-phonon
(e-ph) interaction influences these phenomena. This question
is important for our microscopic understanding of these
materials, as subtle multiorbital correlation effects can produce
states that are readily affected by small perturbations.

In the case of the FeSCs, the e-ph interaction was ruled out
as a possible pairing mediator by early ab initio calculations
[9] indicating that the total coupling strength was small,
with a dimensionless e-ph coupling λ � 0.2. Because of this,
many researchers have assumed that this interaction plays a
secondary role in these materials with regard to other aspects as
well. However, there is growing evidence that this outlook may
have been premature. For example, more recent calculations
find that taking into account the possible magnetism [10–13] or
orbital fluctuations [14,15] can increase the total e-ph coupling
strength compared to the original estimates. This finding is
consistent with the general notion that electron correlations
can enhance e-ph interactions [16]. Moreover, the discovery
of the FeSe films on oxide substrates [17] has implicated new
possible lattice interactions, either across the interface [18,19]
or within the FeSe film [20]. Since bulk FeSe is believed to be
in the OSMP regime [21,22], these experiments naturally raise
questions about when and how e-ph interactions can influence
such multiorbital phenomena.

Hubbard-Holstein models are the simplest models cap-
turing the interplay between e-e and e-ph interactions. The
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single-band variant has been extensively studied, particularly
at half-filling, where a direct competition occurs between anti-
ferromagnetic Mott insulating (MI) and charge-density-wave
(CDW) phases [23–32]. In comparison, far fewer studies exist
for multiband generalizations of the model [14,33]. Motivated
by this, we carried out a dynamical mean-field theory (DMFT)
[34] study of a degenerate two-orbital Hubbard-Holstein
model with inequivalent bandwidths. Here, we focus on the
half-filled case and construct low-temperature phase diagrams
in the λ-U and λ-J planes, where U and J are the Hubbard
and Hund’s interaction strengths, respectively. Similarly to
the single-band case, we observe a competition between
CDW and MI phases when the e-ph and e-e interactions
are large. When the interactions are weak to intermediate
in strength, however, we find additional phases displaying
orbital-selective behavior. The first is the now well-studied
OSMP driven by the electronic interactions [35]. The second
is a lattice-driven analog of the OSMP, which we refer to
as an orbital-selective Peierls insulator (OSPI). The phase
boundaries of the model are also significantly influenced by the
e-ph interaction, even for relatively weak values of λ < 0.3.
This result clearly demonstrates that one cannot rule out the
influence of the e-ph in correlated multiorbital systems a priori
based on density-functional-theory-based estimates for the
total coupling strength.

Methods. The Hamiltonian for the degenerate two-orbital
Hubbard-Holstein model [33] is H = Hkin + Hlat + He-ph +
He-e, where

Hkin = −
∑

〈i,j〉,γ,σ

tγ c
†
i,γ,σ cj,γ,σ − μ

∑
i,γ,σ

n̂i,γ,σ ,

He-ph + Hlat = g
∑
i,γ,σ

(b†i + bi )

(
n̂i,γ,σ − 1

2

)
+ �

∑
i

b
†
i bi ,

He-e = U
∑
i,γ

n̂i,γ,↑n̂i,γ,↓ + U ′ ∑
i,γ �=γ ′

n̂i,γ,↑n̂i,γ ′,↓

+ (U ′ − J )
∑

i,γ<γ ′,σ

n̂i,γ,σ n̂i,γ ′,σ
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+ J
∑

i,γ �=γ ′
(c†i,γ,↑c

†
i,γ,↓ci,γ ′,↓ci,γ ′,↑

− c
†
i,γ,↑ci,γ,↓c

†
i,γ ′,↓ci,γ ′,↑).

Here, 〈· · · 〉 denotes a summation over nearest neighbors; c†i,γ,σ

creates an electron with spin σ in orbital γ = 1,2 on site i; b
†
i

creates a phonon on site i; n̂i,γ,σ = c
†
i,γ,σ ci,γ,σ is the particle

number operator; tγ is the nearest-neighbor hopping integral
for orbital γ ; U and U ′ are the intra- and interorbital Hubbard
interactions, respectively. Throughout, we choose U ′ = U −
2J due to rotational symmetry [2,36]. J is the Hund’s coupling,
which is fixed to J = U/5 unless otherwise stated; g is the
e-ph interaction strength; � is the phonon energy; and μ is the
chemical potential, which is adjusted to fix the average particle
per site to 〈n̂〉 = 2.

We studied the model using single-site DMFT [34], with
exact diagonalization [37] as the impurity solver. DMFT
maps the full lattice model with local interactions onto an
impurity model embedded in a self-consistently determined
host. In this case, the host is approximated using a set of
Nb = 4 discrete energy levels (results for Nb = 6 are shown
in the Supplemental Material [38], where we find good
convergence). We work in infinite dimensions (where DMFT
is exact) by adopting a Bethe lattice with a semicircular density
of states ργ (ε) = 8

π

√
(Wγ /2)2 − ε2/W 2

γ , where Wγ = 4tγ is
the bandwidth. Throughout the Rapid Communication, we
set W1 = 5W2 ≡ W = 2 eV, fix the temperature at T = 1

β
=

0.01 eV, unless otherwise stated, and set the phonon energy to
� = 0.15 eV. (Results for smaller values of � are qualitatively
similar and can be found in Ref. [38].) The bandwidth and
Hund’s coupling J are chosen so that we can obtain a
robust OSMP without the e-ph coupling. The dimensionless
e-ph coupling constant is defined as λ = 2g2

W�
. The infinite

phonon Hilbert space for the impurity model is limited by
only allowing up to Nph phonons, where Nph ∼ 40 is typical,
depending on the parameters used. We have checked that all
of our results are well converged for increasing values of Nph.

Results. The λ-U phase diagram for the model is shown
in Fig. 1. Here, we plot the orbitally resolved Matsubara
quasiparticle weight Zγ = (1 − Im
(iπT )

πT
)−1 on a logarithmic

scale. Five distinct phases can be identified from the values
of Zγ , the local magnetic moment m2

γ z = 〈(n̂γ↑ − n̂γ↓)2〉, and
the average number of phonon quanta Nph = 〈b†b〉 (all shown
in Fig. 2), and their boundaries are indicated by the white
lines. Three of these phases are similar to those found in
the single-band Hubbard-Holstein model. The first phase is
a metallic phase (M) at small (λ,U ), where both Z1 and Z2 are
large. The second is a MI phase, which appears at large U . It is
identified by a situation where Zγ = 0, the magnetic moments
are large m2

1z ≈ m2
2z ≈ 1, and Nph is nearly zero. The third

phase is a CDW insulating phase where Z1 = Z2 = 0, while
Nph is large (Nph � 1) and no local moments have formed
(i.e., m2

1z ≈ m2
2z ≈ 0). An examination of the wave functions

reveals that the CDW phase corresponds to a state where
the impurity site is either fully occupied or entirely empty
with equal probability, consistent with a checkerboard-type
ordering common to the single-band model [23,24,26]. This

FIG. 1. The phase diagram for the two-orbital Hubbard-Holstein
model in the e-ph interaction strength (λ)—Hubbard U plane at
charge density n = 2 and temperature β = 200/W . (a) and (b) show
density plots of quasiparticle weights Z1 and Z2 on a logarithmic
scale, respectively. The different phases are labeled as follows: metal
(M), orbital-selective Mott phase (OSMP), Mott insulater (MI),
charge-density wave (CDW), and orbital-selective Peierls insulator
(OSPI). The white dots indicate points where the calculations were
performed, and we plotted them to show phase boundaries. The color
scale is plotted using a linear interpolation.

phase is likely to be a (π,π,...) CDW order (sometimes referred
to as a strong-coupling bipolaronic insulating phase in the
single-band case). Alternatively, this phase could reflect phase
separation, although delocalization effects should favor the
CDW. Further studies on extended clusters will be needed to
address this issue.

In addition to the “standard” phases, we also observe two
distinct phases with orbital-selective characteristics. The first
is the widely studied OSMP, which appears between the M
and MI phases. It resembles the same OSMP found in the
model without e-ph interactions [35]. Here, the orbital with
the narrower bandwidth becomes insulating with Z2 = 0 and
m2

2z ≈ 1, while the orbital with the wider bandwidth remains
itinerant with a nonzero quasiparticle weight. Interestingly,
we also observe a second region of orbital-selective behavior,
located in a small portion of parameter space between the
M/OSMP phases and the fully insulating CDW phase, denoted
as OSPI in Fig. 1. As with the OSMP, in this region, the narrow
band becomes insulating while the wide band remains itinerant
with Z1 �= 0 and Z2 = 0. But unlike the OSMP, here we find
tiny local moments on orbital 2 with m2

2z � 0.05, and a large
Nph (Nph > 1). The latter indicates the presence of a sizable
lattice distortion. The e-ph interaction drives the orbital-
selective insulating properties in this case rather than the
Hubbard and Hund’s interaction. We label this state an orbital-
selective Peierls insulator (OSPI), in analogy to the OSMP.

For reference, Fig. 2 shows the evolution of the quantities
used to identify the five regions of the phase diagram as a
function of λ for different values of U . When U � 0.4 eV, m2

γ z
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FIG. 2. The quasiparticle weights (a) Z1 and (b) Z2 as a function
of the e-ph interaction strength (λ) at different Hubbard U values.
Mean values of the local magnetic moments m2

1z, m2
2z and phonon

numbers (Nph) are shown in (c), (d), and (e), respectively.

and Nph vary smoothly near the phase transition, while for U >

0.4 eV, these quantities vary quickly in the transition region,
but are nevertheless continuous. This behavior is consistent
with a previous DMFT study of the single-band Hubbard-
Holstein model [24], where a smooth transition occurs at weak
coupling that becomes increasingly sharp as U/W increases.

To study the analogy between the OSMP and the OSPI fur-
ther, we examine the classification of the phase transitions and
their possible hysteresis behavior [39]. Figures 3(a) and 3(b)
plot the evolution of Zγ at T = 0.002 eV along the (U,λ = 0)
and (U = 0,λ) axes, respectively. Although there are two Mott
transitions in the two-orbital system, we observe a single
hysteresis loop near the OSMP boundary, which indicates
a coexistence region, as discussed in Ref. [39]. The critical
U values for increasing and decreasing interaction strengths
are Uc,1 = 0.6 eV and Uc,2 = 0.5 eV, respectively. Similarly,
along the (U = 0,λ) line we also find a single coexistence
region, consistent with DMFT studies for the single-band
Holstein model [40,41]. As with the Mott transition, the
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FIG. 3. (a) The quasiparticle weight Zγ as a function of U at a
fixed λ = 0. (b) The quasiparticle weight Zγ as a function of λ at
a fixed U = 0. Zγ are results at T = 0.002 eV and Z̄γ are results
at T = 0.01 eV. The solid lines and the dashed lines are results of
increasing and decreasing U or λ, respectively.

hysteresis loop appears close to the first Peierls transition
and the critical λ values for increasing and decreasing
interactions are λc,1 = 0.08 and λc,2 = 0.066, respectively.
Thus, the OSMP and OSPI transitions phenomena appear to
be analogous to one another. The appearance of hysteresis
indicates a first-order transition out of the metallic phase
while the other transitions are continuous. Finally, we note
that the hysteresis behavior disappears at T = 0.01 eV, where
we performed most of our calculations.

The Hund’s coupling plays a major role in establishing the
boundaries of the OSMP [5,42]. Therefore, we explored its
role in determining the CDW and OSPI phases observed here.
Figure 4 shows the phase diagram in the λ-J/U plane for a
fixed U = 0.8 eV. For λ < 0.3, the metallic phase survives to
larger values of J/U as λ increases. This result is consistent
with the notion that the e-ph interaction mediates an effective
attractive interaction that competes with the on-site Hubbard
interactions. When 0.3 < λ < 0.4, the OSMP disappears and
is replaced by the OSPI and CDW phases and the critical
λ value for both phases is decreased as J/U increases. For
larger λ, the CDW phase persists for all J/U values. Thus, the
Hund’s coupling not only favors the OSMP transition but also
has a stabilizing effect for the lattice-driven phases.

In the single-band Hubbard-Holstein model, the action of
the repulsive Hubbard interaction and the effective attractive
interaction mediated by the phonons gives rise to the compe-
tition between CDW and MI phases. Here, in the multiorbital
case, the stabilization of the CDW phase with increasing
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FIG. 4. The phase diagram in the λ-J/U plane at filling n = 2. (a)
and (b) plot quasiparticle weights Z1 and Z2, respectively. The labels
used in this graph are the same as in Fig. 1. The Coulomb interaction
is fixed at U = 0.8 eV and U ′ = U − 2J . The white dots indicate
points where the calculations were performed, and we plotted them
to show phase boundaries. The color scale is plotted using a linear
interpolation.

J/U is due to the reduction of the interorbital Hubbard
interaction, imposed by the condition that U ′ = U − 2J . In
short, increasing J reduces U ′ and therefore also reduces the
total potential energy cost for a double occupation of a given
site. The cost for creating a charge-ordered phase, where each
site alternates between fully occupied and empty, is therefore
lowered. This interpretation can be confirmed explicitly by
holding U and U ′ fixed while varying J . The corresponding
phase diagram does not show the same stabilization of the
CDW phase with increasing J [38].

Summary. We have studied the interplay between the e-e
and e-ph interactions in a degenerate two-orbital Hubbard-
Holstein model. A competition between the on-site e-e and
e-ph interactions leads to many competing phases including
the OSMP and OSPI at small couplings and the MI and CDW
at large couplings. We also find that the Hund’s coupling J has
nontrivial effects on the phases driven by the e-ph interactions.
Importantly, our results demonstrate that weak to intermediate
e-ph interaction strengths can have a significant impact on the
phase diagram of this model. As such, one cannot rule out an
important role for phonons a priori in multiorbital systems,
where multiple electronic interactions are already competing
with one another.

We close with a short note and some speculation. Reference
[43] has also used the term OSPI in the context of a
two-orbital dimer model, where superexchange is stronger
between a particular subset of orbitals, creating a preferential
dimerization. An entirely different mechanism drives our
OSPI, where we start from a metallic state and obtain the OSPI
through the e-ph interaction. As with the OSMP, the OSPI,
in this case, is induced by the different bandwidths for the
two orbitals. Finally, although the OSPI discovered here was
derived from a Holstein coupling, we believe bond-stretching
phonons that modulate interatomic hopping integrals could
induce a similar phenomenon. In such cases, these interactions
could have a significant impact on nematic phases observed in
some FeSCs [44,45].
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