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In the quasi-one-dimensional heavy-fermion system YbNi4(P1−xAsx)2 the presence of a ferromagnetic (FM)
quantum critical point (QCP) at xc ≈ 0.1 with unconventional quantum critical exponents in the thermodynamic
properties has been recently reported. Here, we present muon-spin relaxation (μSR) experiments on polycrystals
of this series to study the magnetic order and the low-energy 4f -electronic spin dynamics across the FM QCP.
The zero-field μSR measurements on pure YbNi4P2 proved static long-range magnetic order and suggested a
strongly reduced ordered Yb moment of about 0.04μB. With increasing As substitution, the ordered moment
is reduced by half at x = 0.04 and to less than 0.005μB at x = 0.08. The dynamic behavior in the μSR
response shows that magnetism remains homogeneous upon As substitution, without evidence of a disorder
effect. In the paramagnetic state across the FM QCP the dynamic muon-spin relaxation rate follows 1/T1T ∝ T −n

with 1.01 ± 0.04 � n � 1.13 ± 0.06. The critical fluctuations are very slow and become even slower when
approaching the QCP.
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Quantum criticality is a central topic in the field of strongly
correlated electron physics [1–4]. In d- and f -electron-based
metallic systems close to an antiferromagnetic (AFM) ground
state, quantum critical points (QCPs) are well established
from both the experimental and theoretical point of view. On
the other hand, the existence of a ferromagnetic (FM) QCP
in metals is controversially discussed [5]. In fact, in clean
two-dimensional (2D) and three-dimensional (3D) itinerant
ferromagnets, theoretical studies deny the presence of a FM
QCP and the second-order FM quantum phase transition (QPT)
becomes first order before reaching the QCP [6,7]. This has
been observed in several 3d-electron ferromagnets such as
MnSi [8], ZrZn2 [9], or in U-based systems [10]. Other theories
and experimental studies demonstrate that an inhomogeneous
magnetic phase forms in between the paramagnetic (PM)
and the homogeneous FM phase [11–15]. In other systems
the formation of disordered phases, e.g., quantum Griffiths
phase or a spin-glass-like state, has been observed instead
of a FM QCP [16–18]. In 5f -electron-based metals such
as UGe2 [19] or UCoGe [20], it was observed that FM
QCPs have been avoided by the formation of superconducting
phases. In summary, evidence for the existence of a FM QCP
in metallic systems has been lacking so far. However, the
recent observation of a power-law divergence of the Grüneisen
ratio in the Kondo-lattice ferromagnet YbNi4(P1−xAsx)2 at a
critical concentration xc ≈ 0.1 [21], which proves the existence
of a QCP [22], has reopened the discussion. This material
has quasi-one-dimensional (1D) crystalline and electronic
structures [23], and a strong Kondo interaction.

1D fluctuations are expected to suppress the mechanism
which induces the first-order transition. Thus, it seems that,
in such materials, FM QCPs could be observable. It became
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therefore of relevant importance to study the spin dynamics in
YbNi4(P1−xAsx)2 across its FM QCP.

The heavy-fermion metal YbNi4P2 possesses a very low
Curie temperature TC = 0.15 K and a small ordered Yb
moment due to the strong Kondo effect with a Kondo
temperature of 8 K [21,23,24]. The quasi-1D crystal structure
is due to Yb and Ni-tetrahedra chains along the c axis of the
tetragonal unit cell [25]. Susceptibility measurements between
50 and 400 K indicate clear Curie-Weiss behavior with an
effective moment close to the value of trivalent Yb [26]. A
recent resonant x-ray emission spectroscopy (RXES) study
revealed a low-temperature valence of Yb+2.988 [27]. Noncor-
related band-structure calculations found a quasi-1D electronic
structure and a nonmagnetic Ni4P2 sublattice [23]. The absence
of Ni-related magnetism in YbNi4P2 is further supported by
the fact that LuNi4P2 presents a nonmagnetic ground state [28].
In YbNi4P2 the presence of strong FM correlations was seen in
NMR experiments above 2 K [29,30], and in inelastic neutron
scattering [31]. Muon-spin relaxation (μSR) experiments were
already performed on pure YbNi4P2 and have proved a
homogeneous static magnetic order with an ordered moment
of about 0.04μB. Above TC the muon-spin polarization obeys a
time-field scaling relation, indicating cooperative critical spin
dynamics, with the dynamic spin-spin autocorrelation function
following a power-law behavior. These results suggest that
the non-Fermi-liquid (NFL) behavior above TC is induced by
quasihomogeneous critical spin fluctuations [24].

With a small amount of As substitution for P it is possible
to tune TC continuously to zero [21]. In fact, for x = 0.08, TC

is suppressed below 25 mK and the sample with x = 0.13 is
nonmagnetic [see Fig. 1(b)]. For x = 0.08, both the specific
heat C(T )/T and the volume thermal expansion coefficient
β(T )/T diverge according to power laws with unconventional
exponents, namely, T −0.43 and T −0.64, respectively. Therefore.
the Grüneisen ratio �(T ) = β(T )/C(T ) diverges as T −0.22,
indicating the presence of a nearby FM QCP for x ≈ xc.
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FIG. 1. (a) shows the time spectra for all As concentrations at T =
20 mK. The solid lines denote the theoretical simulation as explained
in the main text. (b) outlines the phase diagram of YbNi4(P1−xAsx)2

as determined in Ref. [21] (�) and compared with points derived
from our μSR investigations (©,

⊗
). (c) depicts the fitted magnetic

order parameter (μSR frequencies). The solid line is a fit to the
phenomenological function fμ (see main text).

Here, we present μSR studies on polycrystalline
YbNi4(P1−xAsx)2 with x = 0, 0.04, 0.08, and 0.13 down to
T = 20 mK. We show that with increasing As substitution,
the ordered moment decreases continuously to values smaller
than 0.005μB at x ≈ xc. In the paramagnetic state across the
FM QCP, the dynamic muon-spin relaxation rate 1/T1T ∝
T −n with an exponent value decreases across the FM QCP
from 1.13 ± 0.06 for x = 0 to 1.01 ± 0.04 for x = 0.13.
This behavior cannot be explained by any existing theory
of FM quantum criticality. Finally, from the measured spin
autocorrelation time, we find that the spin fluctuations are
very slow and become even slower for x → xc.

The powder samples were prepared by milling single
crystals of the respective concentration. The single crystals
were grown by a modified Bridgman method from a Ni-P
self-flux in a closed Ta container and are from the same
batches as those used in Ref. [21]. The excess flux was removed
by centrifuging at high temperatures, followed by etching in
diluted nitric acid (details are described in Ref. [32]). The
phase purity of the used samples was analyzed by powder
x-ray diffraction and magnetization measurements, and we
found phase pure samples beside small residuals of the flux
of order 2%. The positive spin-polarized muons are implanted
into the sample in a μSR experiment, and the time evolution of
the muon-spin polarization P (t) is monitored by detecting the
asymmetric spatial distribution of positrons emitted from the
muon decay [33,34]. Zero magnetic field (ZF) and longitudinal
applied magnetic fields (LF) with respect to initial muon-spin
polarization were used to perform μSR experiments. All
experiments were carried out at the πM3 beam line at the Swiss

TABLE I. Comparison of results obtained for YbNi4(P1−xAsx)2

with different As concentrations.

x n′ fμ (20 mK) Blocal (20 mK) μord (20 mK in μB)

0.00 0.21 ± 0.02 0.1993 13.87 G 0.04
0.04 0.28 ± 0.05 0.0989 6.64 G 0.021
0.08 <0.005

Muon Source at the Paul Scherrer Institute, Switzerland. For
thermal contact, the samples were glued on a Ag plate, giving
rise to a time- and temperature-independent background signal
due to muons that stopped in the Ag plate (about 20%–30%).
The μSR time spectra were analyzed using the free software
package MUSRFIT [35].

Figure 1(a) represents ZF μSR time spectra for x = 0,
0.04, 0.08, and 0.13 collected at T = 20 mK. The plot
clearly indicates that the spontaneous frequency of oscillation
associated with the static ordered Yb magnetic moment
decreases with increasing As concentration. To extract the
magnetic order parameters in the ordered state, the muon
asymmetry data were modeled by the following function (solid
lines in Fig. 1) [24,36,37],

aP (t) = as

(
1

3
+ 2

3

[
cos(2πfμt)

− σ 2t

2πfμ

sin(2πfμt)

]
e− 1

2 σ 2t2

)
+ abge

−λbgt . (1)

Here, fμ, σ , and λbg are the muon-precession frequency,
the Gaussian field width of the internal field distribution,
and the constant background contribution, respectively. The
2
3 oscillating and the 1

3 nonoscillating terms originate from the
spatial averaging in polycrystalline samples, where 2

3 ( 1
3 ) of the

internal magnetic field components are directed perpendicular
(parallel) to the initial muon spin, causing a precession (no
precession) of the muon spin. The observation of 2

3 and 1
3

sample signal fractions, and the Gaussian relaxation of P (t)
below TC is proof that 100% of the sample volume shows
static magnetic ordering of the magnetic moments not only for
x = 0.0 but also for x = 0.04. A more detailed description of
Eq. (1) can be found, for example, in Refs. [24,36,37].

Spehling et al. have analyzed a number of potential muon
stopping sites, but only considered high symmetry positions
[24]. Looking at the distribution of atoms within this structure
type, we suspect the muon to sit on a lower symmetry position
near the 4c site, and therefore calculated the size of the ordered
moment from the field expected at this site. From the measured
μSR frequency value fμ = 0.188 MHz at T = 20 mK, a
local internal field at the muon site of Blocal = 13.87 G can
be determined, using the relation Blocal = 2π × fμ/γμ, where
γμ = 2π × 13.55 kHz/G is the muon gyromagnetic ratio. On
the other hand, the fitted μSR frequency at 20 mK is 0.09 MHz
for x = 0.04, which corresponds to an internal field value of
6.642 G. The values are listed in Table I. With increasing
As substitution, the ordered moment is reduced by half in
x = 0.04, and at x ≈ 0.08, the ordered moment becomes
smaller than 0.005μB.

Figure 2 shows the ZF μSR time spectra for
YbNi4(P1−xAsx)2 with x = 0, 0.04, 0.08, and 0.13
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FIG. 2. (a)–(d) represent the muon-spin polarization P (t) for x =
0, 0.04, 0.08, and 0.13 at selected temperatures.

concentrations at representative temperatures. A spontaneous
μSR frequency is observed in the time spectra below
T = 140 and 90 mK for As concentrations x = 0 and 0.04,
respectively [Figs. 2(a) and 2(b)]. This proves the onset of
static long-range magnetic ordering of the Yb moments.
For x = 0 and 0.04, above the magnetic ordering, the μSR
time spectra reveal a dominant exponential behavior. Here, a
stretched exponential function P (t) = exp (−λt)β was used
to model P (t), indicating that the muon-spin relaxation is
due to the dynamics of electronic moments. λ = 1/T1 is the
generalized muon-spin relaxation rate, and β is the exponent.
The exponent β is the measure of the homogeneity of the
system. Only a slight enhancement (value varies 1–1.15)
of β is observed towards low temperatures, suggesting that
the system is homogeneous. The same functional form was
used to describe P (t) for x = 0.08 [38,39]. In comparison to
x = 0 and 0.04, a clear development of the magnetic order
parameter is not observed for x = 0.08 down to T = 19 mK
[see Fig. 2(c)]. However, the μSR time spectra for x = 0.08
look very similar to those of x = 0 and 0.04 above T > 140
and 90 mK, respectively. Given that for the x = 0.08, TC = 28
mK was observed in χAC, these μSR observations suggest that
the static ordered magnetic moment is too small to be detected
in the μSR time window, which therefore sets an upper
limit for the ordered Yb moment of μB � 0.005μB [21].
This is because the frequency of oscillations related to static
magnetic order is too small to be captured in the current μSR
time window. Another possibility is the sample pellet did not
reach the temperature of the mixing chamber (20 mK) [40].

In Fig. 1(c), the fitted μSR frequencies fμ are plotted
together with a phenomenological fit of the function fμ(T ) =
fμ(0)(1 − T

TC
)
n′

(solid lines) for T < TC, where n′ is the
exponent. From our fit we find that n′ slightly increases from
0.21(2) to 0.28(5) with increasing As concentration. However,

FIG. 3. Temperature dependence of the dynamic muon-spin
relaxation rate λ/T = 1/T1T for different As concentrations in the
paramagnetic state above the ordering temperature. Dotted lines
indicate the power-law behavior 1/T1T ∝ T −n. The exponent n

slightly decreases from 1.13 ± 0.06 to 1.01 ± 0.04 with increasing
x.

the very low data point density for the T range 0.6 � T/TC �
1 prevents a precise estimation of the exponents.

For the sample with x = 0.13, all μSR time spectra reveal
a pronounced Gaussian functional form instead of a stretched
exponential [see Fig. 2(d)], as expected for a nonmagnetic
ground state in which the muon-spin polarization P (t) is due
to the interaction with nuclear dipole moments only. P (t) is
best modeled by the following functional form,

aP (t) = as

[
1
3 + 2

3 (1 − σ 2t2)e− 1
2 σ 2t2]

e−λt + abge
−λbgt , (2)

where σ is the Gaussian field width and λ is the muon-
spin relaxation rate. In a simple paramagnet, P (t) is due
to static randomly oriented nuclear dipole moments with
a T -independent Gaussian relaxation rate σ , theoretically
described by the Kubo-Toyabe function [41], which is the
bracketed term in Eq. (2). An additional exponential term,
exp(−λt), is introduced to account for the extra muon
relaxation due to electronic moments, where λ is the dynamic
muon-spin relaxation rate due to fluctuations of the electronic
moments. At all temperatures, the data were analyzed using a
fixed σ = 0.1316 MHz determined at high temperatures in the
PM state, where P (t) is due to nuclear moments only.

Figure 3 shows the fitted λ/T (= 1/T1T ) values as a
function of T for x = 0, 0.04, 0.08, and 0.13. An increase
of λ/T is observed with lowering temperature following
a power-law behavior 1/T1T ∝ T −n. The exponent value
decreases slightly with increasing x from 1.13 ± 0.06 for
x = 0 to 1.01 ± 0.04 for x = 0.13. It should be noted that for
the compound x = 0.13, a different functional form was used
to describe the experimental data. The fact that 1/T1T ∝ T −n

with a nearly identical exponent for all concentrations is con-
sistent with the observation that the temperature dependencies
of the thermodynamic quantities C(T )/T and β(T )/T show
the same power-law exponent in the PM region of the phase
diagram across the FM QCP. This indicates that disorder does
not play a relevant role. For the sample with x = 0.08, located
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closest to xc, 1/T1T ∝ T −1.07±0.03, indicating that 1/T1 is
approximately T independent.

Itinerant ferromagnetism is often discussed on the basis
of spin-fluctuation theories [42]. Within the self-consistent
renormalization (SCR) theory, the spin-lattice relaxation rate
1/T1T in itinerant ferromagnets scales with the uniform
magnetic susceptibility χ in 3D and 1/T1T ∝ χ3/2 in 2D
[42,43]. The exponents have been calculated at the FM QCP
and the expected value is n = 4

3 in 3D, while in 2D there
is no long-range FM order and the SCR theory predicts
1/T1T ∝ T −3/2(− ln T )−3/2 ≈ T −1.4 for T → 0 [43,44]. Our
exponents are therefore not close to these predictions—they
are smaller. In addition, the unusual power-law exponents in
the thermodynamic quantities support our present findings, and
suggests the inadequacy of the itinerant spin-fluctuation theory
for the FM fluctuation in close proximity to the QCP [21].

Previous nuclear magnetic resonance (NMR) experiments
have detected a spin-lattice relaxation rate 1/T1T which
follows a ∼T −n function also with a small n = 0.75 in a
broad temperature range above 2 K [29]. Although NMR
experiments were performed in an external magnetic field and
crystalline electric field effects have to be considered in this
temperature range, the exponent is still small compared to
other Yb-based FM systems studied at the FM QPT in the
same T range [45].

To understand the nature of magnetic correlations, in
particular, whether the magnetism is static or dynamic, μSR
experiments in different longitudinal fields (LFs) up to BLF =
300 G were performed. We found that above TC and with
small applied fields the muon-spin relaxation is completely
suppressed in the samples with x = 0.0 and 0.04 [see Ref.
[24] and Fig. 4(c)]. This indicates that the zero-field relaxation
in the magnetic ordered state originates from static internal
fields on the microsecond time scale. Above the ordering
temperature, we could fit all data for all As concentrations with
a simple exponential function P (t) = P (0)e−λLt , as shown
in Fig. 4 (solid lines). The single exponential fit in the LF
suggests that the system is free from magnetic disorder and is
intrinsically homogeneous. The spin dynamics is characterized
by a narrow distribution of correlation times for x = 0 as well
for x = 0.08 near the FM QCP. With increasing field, the
relaxation rates λL decrease. The field dependence of λL is
presented in the main panel of Fig. 4(b) for all x � 0.1. They
show very similar values. From the magnetic field dependence
of λL, the spin autocorrelation time τc can be estimated
using λL(BLF) = (2γ 2

μ〈B2
loc〉τc)/[1 + (γ 2

μB2
LFτ

2
c )]. This is the

so-called Redfield formalism where τc is independent of
the applied magnetic field BLF. Here, Bloc(t) describes the
time-varying local magnetic field at the muon site due to
fluctuations of neighboring Yb 4f moments, with a local
time-averaged second moment 
2 = γ 2

μ〈B2
loc〉, and a single

fluctuation time τc, meaning a single exponential autocor-
relation function characterized by a single time constant.
For h̄ω 
 kBT (ω giving the spin-fluctuation frequency), the
fluctuation-dissipation theorem [46] relates τc to the imaginary
component of the local q-independent f -electron dynamic
susceptibility, i.e., τc(B) = (kBT )[χ ′′/ω]. Dotted curves in
the main panel of Fig. 4(b) are fits to the experimental data.
The results of the fits give 
2 ≈ 0.1, 0.1, and 0.108 (MHz)
and τc ≈ 6.00 × 10−7, 9.11 × 10−7, and 14.11 × 10−7 s for
x = 0.00, 0.04, and 0.08, respectively. With increasing x, τc

FIG. 4. The main panel shows the magnetic field dependence of
the dynamic muon-spin relaxation rate λL for x = 0, 0.04 and 0.08.
The inset shows the magnetic field dependence of the muon-spin
polarization at T = 150 mK for x = 0.04. The top panel shows the
magnetic field dependence of the muon-spin polarization at T =
20 mK for x = 0.08. The dotted line represents Redfield fits (see
main text).

becomes larger and it becomes even larger for x → xc. The
estimated τc value for x = 0.08 is much larger than that found
in YbRh2Si2 [47] and in CeFePO [18], respectively. These
fluctuations can therefore be considered to be very slow critical
spin fluctuations. On the other hand, similar 
2 values for
all the concentrations suggest a rather homogeneous system
because 
2 is the second moment of the field distribution at the
muon stopping sites. If the system is inhomogeneous, then one
would expect rather different field distributions for different
As concentrations.

In conclusion, the present μSR experiments show that by
introducing a small amount of As at the P site in the system
YbNi4(P1−xAsx)2, the magnetic order remains homogeneous
and the static ordered Yb moment is suppressed continuously
from about 0.04μB to values lower than 0.005μB for x →
xc = 0.1. There is no evidence for a disorder effect in the μSR
samples. Notably, in the paramagnetic region of the phase
diagram and across the FM QCP, the dynamic muon-spin
relaxation rate 1/T1T ∝ T −n with n ≈ 1, indicating 1/T1 is
approximately T independent. The critical fluctuations are
very slow in the pure compound and become even slower
when approaching the FM QCP. All these findings support
the presence of a clean FM QCP in this system. However, the
power laws observed in the T dependence of thermodynamic
quantities and in 1/T1T remain to be understood.
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are thankful to DFG for financial assistance through Grants
No. SA 2426/1-1, No. KR 3831/4-1, No. BR 4110/1-1, and
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H. Pfau, S. Tencé, H. Rosner, F. Steglich, and C. Geibel, New J.
Phys. 13, 103014 (2011).

[24] J. Spehling, M. Günther, C. Krellner, N. Yèche, H. Luetkens, C.
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